forked from opencobra/cobrapy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
1516 lines (1289 loc) · 54.3 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""Define the Model class."""
import logging
from copy import copy, deepcopy
from functools import partial
from types import ModuleType
from typing import TYPE_CHECKING, Dict, Iterable, List, Optional, Tuple, Union
from warnings import warn
import optlang
from optlang.symbolics import Basic, Zero
from ..medium import find_boundary_types, find_external_compartment, sbo_terms
from ..util.context import HistoryManager, get_context, resettable
from ..util.solver import (
add_cons_vars_to_problem,
assert_optimal,
check_solver,
interface_to_str,
remove_cons_vars_from_problem,
set_objective,
)
from ..util.util import AutoVivification, format_long_string
from .configuration import Configuration
from .dictlist import DictList
from .gene import Gene
from .group import Group
from .metabolite import Metabolite
from .object import Object
from .reaction import Reaction
from .solution import get_solution
if TYPE_CHECKING:
import pandas as pd
from optlang.container import Container
from cobra import Solution
from cobra.summary import ModelSummary
from cobra.util.solver import CONS_VARS
logger = logging.getLogger(__name__)
configuration = Configuration()
class Model(Object):
"""Class representation for a cobra model.
Parameters
----------
id_or_model: str or Model, optional
String to use as model id, or actual model to base new model one.
If string, it is used as id. If model, a new model object is
instantiated with the same properties as the original model (default None).
name: str, optional
Human readable string to be model description (default None).
Attributes
----------
reactions : DictList
A DictList where the key is the reaction identifier and the value a
Reaction
metabolites : DictList
A DictList where the key is the metabolite identifier and the value a
Metabolite
genes : DictList
A DictList where the key is the gene identifier and the value a
Gene
groups : DictList
A DictList where the key is the group identifier and the value a
Group
"""
def __init__(
self, id_or_model: Union[str, "Model", None] = None, name: Optional[str] = None
) -> None:
"""Initialize the Model."""
if isinstance(id_or_model, Model):
Object.__init__(self, name=name)
self.__setstate__(id_or_model.__dict__)
self._solver = id_or_model.solver
else:
Object.__init__(self, id_or_model, name=name)
self.genes = DictList()
self.reactions = DictList() # A list of cobra.Reactions
self.metabolites = DictList() # A list of cobra.Metabolites
self.groups = DictList() # A list of cobra.Groups
# genes based on their ids {Gene.id: Gene}
self._compartments = {}
self._contexts = []
# from cameo ...
# if not hasattr(self, '_solver'): # backwards compatibility
# with older cobrapy pickles?
interface = check_solver(configuration.solver)
self._solver = interface.Model()
self._solver.objective = interface.Objective(Zero)
self._populate_solver(self.reactions, self.metabolites)
self._tolerance = None
self.tolerance = configuration.tolerance
def __setstate__(self, state: Dict) -> None:
"""Make sure all cobra.Objects in the model point to the model.
Parameters
----------
state: dict
"""
self.__dict__.update(state)
for y in ["reactions", "genes", "metabolites"]:
for x in getattr(self, y):
x._model = self
if not hasattr(self, "name"):
self.name = None
def __getstate__(self) -> Dict:
"""Get state for serialization.
Ensures that the context stack is cleared prior to serialization,
since partial functions cannot be pickled reliably.
Returns
-------
odict: Dict
A dictionary of state, based on self.__dict__.
"""
odict = self.__dict__.copy()
odict["_contexts"] = []
return odict
@property
def solver(self) -> "optlang.interface.Model":
"""Get the attached solver instance.
The associated the solver object, which manages the interaction with
the associated solver, e.g. glpk.
This property is useful for accessing the optimization problem
directly and to define additional non-metabolic constraints.
Examples
--------
>>> from cobra.io import load_model
>>> model = load_model("textbook")
>>> new = model.problem.Constraint(model.objective.expression, lb=0.99)
>>> model.solver.add(new)
"""
return self._solver
@solver.setter
@resettable
def solver(self, value: Union[str, ModuleType]) -> None:
"""Set the attached solver instance.
The associated the solver object, which manages the interaction with
the associated solver, e.g. glpk.
This property is useful for accessing the optimization problem
directly and to define additional non-metabolic constraints.
Parameters
----------
value: ModuleType or str
The solver to set, which will be checked by `check_solver()`.
"""
interface = check_solver(value)
# Do nothing if the solver did not change
if self.problem == interface:
return
self._solver = interface.Model.clone(self._solver)
@property
def tolerance(self) -> float:
"""Get the tolerance.
Returns
-------
float
The tolerance of the mdoel.
"""
return self._tolerance
@tolerance.setter
def tolerance(self, value: float) -> None:
"""Set the tolerance.
Parameters
----------
value: float
Value to set tolerance.
"""
solver_tolerances = self.solver.configuration.tolerances
try:
solver_tolerances.feasibility = value
except AttributeError:
logger.info(
f"The current solver interface {interface_to_str(self.problem)} "
f"doesn't support setting the feasibility tolerance."
)
try:
solver_tolerances.optimality = value
except AttributeError:
logger.info(
f"The current solver interface {interface_to_str(self.problem)} "
f"doesn't support setting the optimality tolerance."
)
try:
solver_tolerances.integrality = value
except AttributeError:
logger.info(
f"The current solver interface {interface_to_str(self.problem)} "
f"doesn't support setting the integrality tolerance."
)
self._tolerance = value
@property
def compartments(self) -> Dict:
"""Return all metabolites' compartments.
Returns
-------
dict
A dictionary of metabolite compartments, where the keys are the short
version (one letter version) of the compartmetns, and the values are the
full names (if they exist).
"""
return {
met.compartment: self._compartments.get(met.compartment, "")
for met in self.metabolites
if met.compartment is not None
}
@compartments.setter
def compartments(self, value: Dict) -> None:
"""Get or set the dictionary of current compartment descriptions.
Assigning a dictionary to this property updates the model's
dictionary of compartment descriptions with the new values.
Parameters
----------
value : dict
Dictionary mapping compartments abbreviations to full names.
Examples
--------
>>> from cobra.io import load_model
>>> model = load_model("textbook")
>>> model.compartments = {'c': 'the cytosol'}
>>> model.compartments
{'c': 'the cytosol', 'e': 'extracellular'}
"""
self._compartments.update(value)
@property
def medium(self) -> Dict[str, float]:
"""Get the constraints on the model exchanges.
`model.medium` returns a dictionary of the bounds for each of the
boundary reactions, in the form of `{rxn_id: bound}`, where `bound`
specifies the absolute value of the bound in direction of metabolite
creation (i.e., lower_bound for `met <--`, upper_bound for `met -->`)
Returns
-------
Dict[str, float]
A dictionary with rxn.id (str) as key, bound (float) as value.
"""
def is_active(reaction: Reaction) -> bool:
"""Determine if boundary reaction permits flux towards creating metabolites.
Parameters
----------
reaction: cobra.Reaction
Returns
-------
bool
True if reaction produces metaoblites and has upper_bound above 0
or if reaction consumes metabolites and has lower_bound below 0 (so
could be reversed).
"""
return (bool(reaction.products) and (reaction.upper_bound > 0)) or (
bool(reaction.reactants) and (reaction.lower_bound < 0)
)
def get_active_bound(reaction: Reaction) -> float:
"""For an active boundary reaction, return the relevant bound.
Parameters
----------
reaction: cobra.Reaction
Returns
-------
float:
upper or minus lower bound, depenending if the reaction produces or
consumes metaoblties.
"""
if reaction.reactants:
return -reaction.lower_bound
elif reaction.products:
return reaction.upper_bound
return {
rxn.id: get_active_bound(rxn) for rxn in self.exchanges if is_active(rxn)
}
@medium.setter
def medium(self, medium: Dict[str, float]) -> None:
"""Set the constraints on the model exchanges.
`model.medium` returns a dictionary of the bounds for each of the
boundary reactions, in the form of `{rxn_id: rxn_bound}`, where `rxn_bound`
specifies the absolute value of the bound in direction of metabolite
creation (i.e., lower_bound for `met <--`, upper_bound for `met -->`)
Parameters
----------
medium: dict
The medium to initialize. medium should be a dictionary defining
`{rxn_id: bound}` pairs.
"""
def set_active_bound(reaction: Reaction, bound: float) -> None:
"""Set active bound.
Parameters
----------
reaction: cobra.Reaction
Reaction to set
bound: float
Value to set bound to. The bound is reversed and set as lower bound
if reaction has reactants (metabolites that are consumed). If reaction
has reactants, it seems the upper bound won't be set.
"""
if reaction.reactants:
reaction.lower_bound = -bound
elif reaction.products:
reaction.upper_bound = bound
# Set the given media bounds
media_rxns = []
exchange_rxns = frozenset(self.exchanges)
for rxn_id, rxn_bound in medium.items():
rxn = self.reactions.get_by_id(rxn_id)
if rxn not in exchange_rxns:
logger.warning(
f"{rxn.id} does not seem to be an an exchange reaction. "
f"Applying bounds anyway."
)
media_rxns.append(rxn)
# noinspection PyTypeChecker
set_active_bound(rxn, rxn_bound)
frozen_media_rxns = frozenset(media_rxns)
# Turn off reactions not present in media
for rxn in exchange_rxns - frozen_media_rxns:
is_export = rxn.reactants and not rxn.products
set_active_bound(
rxn, min(0.0, -rxn.lower_bound if is_export else rxn.upper_bound)
)
def copy(self) -> "Model":
"""Provide a partial 'deepcopy' of the Model.
All the Metabolite, Gene, and Reaction objects are created anew but
in a faster fashion than deepcopy.
Returns
-------
cobra.Model: new model copy
"""
new = self.__class__()
do_not_copy_by_ref = {
"metabolites",
"reactions",
"genes",
"notes",
"annotation",
"groups",
}
for attr in self.__dict__:
if attr not in do_not_copy_by_ref:
new.__dict__[attr] = self.__dict__[attr]
new.notes = deepcopy(self.notes)
new.annotation = deepcopy(self.annotation)
new.metabolites = DictList()
do_not_copy_by_ref = {"_reaction", "_model"}
for metabolite in self.metabolites:
new_met = metabolite.__class__()
for attr, value in metabolite.__dict__.items():
if attr not in do_not_copy_by_ref:
new_met.__dict__[attr] = copy(value) if attr == "formula" else value
new_met._model = new
new.metabolites.append(new_met)
new.genes = DictList()
for gene in self.genes:
new_gene = gene.__class__(None)
for attr, value in gene.__dict__.items():
if attr not in do_not_copy_by_ref:
new_gene.__dict__[attr] = (
copy(value) if attr == "formula" else value
)
new_gene._model = new
new.genes.append(new_gene)
new.reactions = DictList()
do_not_copy_by_ref = {"_model", "_metabolites", "_genes"}
for reaction in self.reactions:
new_reaction = reaction.__class__()
for attr, value in reaction.__dict__.items():
if attr not in do_not_copy_by_ref:
new_reaction.__dict__[attr] = copy(value)
new_reaction._model = new
new.reactions.append(new_reaction)
# update awareness
for metabolite, stoic in reaction._metabolites.items():
new_met = new.metabolites.get_by_id(metabolite.id)
new_reaction._metabolites[new_met] = stoic
new_met._reaction.add(new_reaction)
new_reaction.update_genes_from_gpr()
new.groups = DictList()
do_not_copy_by_ref = {"_model", "_members"}
# Groups can be members of other groups. We initialize them first and
# then update their members.
for group in self.groups:
new_group: Group = group.__class__(group.id)
for attr, value in group.__dict__.items():
if attr not in do_not_copy_by_ref:
new_group.__dict__[attr] = copy(value)
new_group._model = new
new.groups.append(new_group)
for group in self.groups:
new_group = new.groups.get_by_id(group.id)
# update awareness, as in the reaction copies
new_objects = []
for member in group.members:
if isinstance(member, Metabolite):
new_object = new.metabolites.get_by_id(member.id)
elif isinstance(member, Reaction):
new_object = new.reactions.get_by_id(member.id)
elif isinstance(member, Gene):
new_object = new.genes.get_by_id(member.id)
elif isinstance(member, Group):
new_object = new.groups.get_by_id(member.id)
else:
raise TypeError(
f"The group member {member!r} is unexpectedly not a "
f"metabolite, reaction, gene, nor another group."
)
new_objects.append(new_object)
new_group.add_members(new_objects)
try:
new._solver = deepcopy(self.solver)
# Cplex has an issue with deep copies
except Exception: # pragma: no cover
new._solver = copy(self.solver) # pragma: no cover
# it doesn't make sense to retain the context of a copied model so
# assign a new empty context
new._contexts = []
return new
def add_metabolites(self, metabolite_list: Union[List, Metabolite]) -> None:
"""Add new metabolites to a model.
Will add a list of metabolites to the model object and add new
constraints accordingly.
The change is reverted upon exit when using the model as a context.
Parameters
----------
metabolite_list : list or Metabolite.
A list of `cobra.core.Metabolite` objects. If it isn't an iterable
container, the metabolite will be placed into a list.
"""
if not hasattr(metabolite_list, "__iter__"):
metabolite_list = [metabolite_list]
if len(metabolite_list) == 0:
return None
# First check whether the metabolites exist in the model
metabolite_list = [x for x in metabolite_list if x.id not in self.metabolites]
bad_ids = [
m for m in metabolite_list if not isinstance(m.id, str) or len(m.id) < 1
]
if len(bad_ids) != 0:
raise ValueError(f"invalid identifiers in {repr(bad_ids)}")
for x in metabolite_list:
x._model = self
self.metabolites += metabolite_list
# from cameo ...
to_add = []
for met in metabolite_list:
if met.id not in self.constraints:
constraint = self.problem.Constraint(Zero, name=met.id, lb=0, ub=0)
to_add += [constraint]
self.add_cons_vars(to_add)
context = get_context(self)
if context:
context(partial(self.metabolites.__isub__, metabolite_list))
for x in metabolite_list:
# Do we care?
context(partial(setattr, x, "_model", None))
def remove_metabolites(
self, metabolite_list: Union[List, Metabolite], destructive: bool = False
) -> None:
"""Remove a list of metabolites from the the object.
The change is reverted upon exit when using the model as a context.
Parameters
----------
metabolite_list : list or Metaoblite
A list of `cobra.core.Metabolite` objects. If it isn't an iterable
container, the metabolite will be placed into a list.
destructive : bool, optional
If False then the metabolite is removed from all
associated reactions. If True then all associated
reactions are removed from the Model (default False).
"""
if not hasattr(metabolite_list, "__iter__"):
metabolite_list = [metabolite_list]
# Make sure metabolites exist in model
metabolite_list = [x for x in metabolite_list if x.id in self.metabolites]
for x in metabolite_list:
x._model = None
# remove reference to the metabolite in all groups
associated_groups = self.get_associated_groups(x)
for group in associated_groups:
group.remove_members(x)
if not destructive:
for the_reaction in list(x._reaction): # noqa W0212
the_coefficient = the_reaction._metabolites[x] # noqa W0212
the_reaction.subtract_metabolites({x: the_coefficient})
else:
for x2 in list(x._reaction): # noqa W0212
x2.remove_from_model()
self.metabolites -= metabolite_list
to_remove = [self.solver.constraints[m.id] for m in metabolite_list]
self.remove_cons_vars(to_remove)
context = get_context(self)
if context:
context(partial(self.metabolites.__iadd__, metabolite_list))
for x in metabolite_list:
context(partial(setattr, x, "_model", self))
def add_boundary(
self,
metabolite: Metabolite,
type: str = "exchange",
reaction_id: Optional[str] = None,
lb: Optional[float] = None,
ub: Optional[float] = None,
sbo_term: Optional[str] = None,
) -> Reaction:
"""
Add a boundary reaction for a given metabolite.
There are three different types of pre-defined boundary reactions:
exchange, demand, and sink reactions.
An exchange reaction is a reversible, unbalanced reaction that adds
to or removes an extracellular metabolite from the extracellular
compartment.
A demand reaction is an irreversible reaction that consumes an
intracellular metabolite.
A sink is similar to an exchange but specifically for intracellular
metabolites, i.e., a reversible reaction that adds or removes an
intracellular metabolite.
If you set the reaction `type` to something else, you must specify the
desired identifier of the created reaction along with its upper and
lower bound. The name will be given by the metabolite name and the
given `type`.
The change is reverted upon exit when using the model as a context.
Parameters
----------
metabolite : cobra.Metabolite
Any given metabolite. The compartment is not checked but you are
encouraged to stick to the definition of exchanges and sinks.
type : {"exchange", "demand", "sink"}
Using one of the pre-defined reaction types is easiest. If you
want to create your own kind of boundary reaction choose
any other string, e.g., 'my-boundary' (default "exchange").
reaction_id : str, optional
The ID of the resulting reaction. This takes precedence over the
auto-generated identifiers but beware that it might make boundary
reactions harder to identify afterwards when using `model.boundary`
or specifically `model.exchanges` etc. (default None).
lb : float, optional
The lower bound of the resulting reaction (default None).
ub : float, optional
The upper bound of the resulting reaction (default None).
sbo_term : str, optional
A correct SBO term is set for the available types. If a custom
type is chosen, a suitable SBO term should also be set (default None).
Returns
-------
cobra.Reaction
The created boundary reaction.
Examples
--------
>>> from cobra.io load_model
>>> model = load_model("textbook")
>>> demand = model.add_boundary(model.metabolites.atp_c, type="demand")
>>> demand.id
'DM_atp_c'
>>> demand.name
'ATP demand'
>>> demand.bounds
(0, 1000.0)
>>> demand.build_reaction_string()
'atp_c --> '
"""
ub = configuration.upper_bound if ub is None else ub
lb = configuration.lower_bound if lb is None else lb
types = {
"exchange": ("EX", lb, ub, sbo_terms["exchange"]),
"demand": ("DM", 0, ub, sbo_terms["demand"]),
"sink": ("SK", lb, ub, sbo_terms["sink"]),
}
if type == "exchange":
external = find_external_compartment(self)
if metabolite.compartment != external:
raise ValueError(
f"The metabolite is not an external metabolite (compartment is "
f"`{metabolite.compartment}` but should be `{external}`). "
f"Did you mean to add a demand or sink? If not, either change"
f" its compartment or rename the model compartments to fix this."
)
if type in types:
prefix, lb, ub, default_term = types[type]
if reaction_id is None:
reaction_id = f"{prefix}_{metabolite.id}"
if sbo_term is None:
sbo_term = default_term
if reaction_id is None:
raise ValueError(
"Custom types of boundary reactions require a custom "
"identifier. Please set the `reaction_id`."
)
if reaction_id in self.reactions:
# It already exists so just retrieve it.
logger.info(f"Boundary reaction '{reaction_id}' already exists.")
return self.reactions.get_by_id(reaction_id)
name = f"{metabolite.name} {type}"
rxn = Reaction(id=reaction_id, name=name, lower_bound=lb, upper_bound=ub)
rxn.add_metabolites({metabolite: -1})
if sbo_term:
rxn.annotation["sbo"] = sbo_term
self.add_reactions([rxn])
return rxn
def add_reactions(self, reaction_list: Iterable[Reaction]) -> None:
"""Add reactions to the model.
Reactions with identifiers identical to a reaction already in the
model are ignored.
The change is reverted upon exit when using the model as a context.
Parameters
----------
reaction_list : list
A list of `cobra.Reaction` objects
"""
def existing_filter(rxn: Reaction) -> bool:
"""Check if the reaction does not exists in the model.
Parameters
----------
rxn: cobra.Reaction
Returns
-------
bool
False if reaction exists, True if it doesn't.
If the reaction exists, will log a warning.
"""
if rxn.id in self.reactions:
logger.warning(f"Ignoring reaction '{rxn.id}' since it already exists.")
return False
return True
# First check whether the reactions exist in the model.
pruned = DictList(filter(existing_filter, reaction_list))
context = get_context(self)
# Add reactions. Also take care of genes and metabolites in the loop.
for reaction in pruned:
reaction._model = self
if context:
context(partial(setattr, reaction, "_model", None))
# Build a `list()` because the dict will be modified in the loop.
for metabolite in list(reaction.metabolites):
# TODO: Maybe this can happen with
# Reaction.add_metabolites(combine=False)
# TODO: Should we add a copy of the metabolite instead?
if metabolite not in self.metabolites:
self.add_metabolites(metabolite)
# A copy of the metabolite exists in the model, the reaction
# needs to point to the metabolite in the model.
else:
# FIXME: Modifying 'private' attributes is horrible.
stoichiometry = reaction._metabolites.pop(metabolite)
model_metabolite = self.metabolites.get_by_id(metabolite.id)
reaction._metabolites[model_metabolite] = stoichiometry
model_metabolite._reaction.add(reaction)
if context:
context(partial(model_metabolite._reaction.remove, reaction))
reaction.update_genes_from_gpr()
self.reactions += pruned
if context:
context(partial(self.reactions.__isub__, pruned))
# from cameo ...
self._populate_solver(pruned)
def remove_reactions(
self,
reactions: Union[str, Reaction, List[Union[str, Reaction]]],
remove_orphans: bool = False,
) -> None:
"""Remove reactions from the model.
The change is reverted upon exit when using the model as a context.
Parameters
----------
reactions : list or reaction or str
A list with reactions (`cobra.Reaction`), or their id's, to remove.
Reaction will be placed in a list. Str will be placed in a list and used to
find the reaction in the model.
remove_orphans : bool, optional
Remove orphaned genes and metabolites from the model as
well (default False).
"""
if isinstance(reactions, str) or hasattr(reactions, "id"):
warn("need to pass in a list")
reactions = [reactions]
context = get_context(self)
for reaction in reactions:
# Make sure the reaction is in the model
try:
reaction = self.reactions[self.reactions.index(reaction)]
except ValueError:
warn(f"{reaction} not in {self}")
else:
forward = reaction.forward_variable
reverse = reaction.reverse_variable
if context:
obj_coef = reaction.objective_coefficient
if obj_coef != 0:
context(
partial(
self.solver.objective.set_linear_coefficients,
{forward: obj_coef, reverse: -obj_coef},
)
)
context(partial(self._populate_solver, [reaction]))
context(partial(setattr, reaction, "_model", self))
context(partial(self.reactions.add, reaction))
self.remove_cons_vars([forward, reverse])
self.reactions.remove(reaction)
reaction._model = None
for met in reaction._metabolites:
if reaction in met._reaction:
met._reaction.remove(reaction)
if context:
context(partial(met._reaction.add, reaction))
if remove_orphans and len(met._reaction) == 0:
self.remove_metabolites(met)
for gene in reaction._genes:
if reaction in gene._reaction:
gene._reaction.remove(reaction)
if context:
context(partial(gene._reaction.add, reaction))
if remove_orphans and len(gene._reaction) == 0:
self.genes.remove(gene)
if context:
context(partial(self.genes.add, gene))
# remove reference to the reaction in all groups
associated_groups = self.get_associated_groups(reaction)
for group in associated_groups:
group.remove_members(reaction)
def add_groups(self, group_list: Union[str, Group, List[Group]]) -> None:
"""Add groups to the model.
Groups with identifiers identical to a group already in the model are
ignored.
If any group contains members that are not in the model, these members
are added to the model as well. Only metabolites, reactions, and genes
can have groups.
Parameters
----------
group_list : list or str or Group
A list of `cobra.Group` objects to add to the model. Can also be a single
group or a string representing group id. If the input is not a list, a
warning is raised.
"""
def existing_filter(new_group: Group) -> bool:
"""Check if the group does not exist.
Parameters
----------
new_group: cobra.Group
Group to check.
Returns
-------
bool
False if the group already exists, True if it doesn't.
"""
if new_group.id in self.groups:
logger.warning(
f"Ignoring group '{new_group.id}'" f" since it already exists."
)
return False
return True
if isinstance(group_list, str) or hasattr(group_list, "id"):
warn("need to pass in a list")
group_list = [group_list]
pruned = DictList(filter(existing_filter, group_list))
for group in pruned:
group._model = self
for member in group.members:
# If the member is not associated with the model, add it
if isinstance(member, Metabolite) and member not in self.metabolites:
self.add_metabolites([member])
if isinstance(member, Reaction) and member not in self.reactions:
self.add_reactions([member])
# TODO(midnighter): `add_genes` method does not exist.
# if isinstance(member, Gene):
# if member not in self.genes:
# self.add_genes([member])
self.groups += [group]
def remove_groups(self, group_list: Union[str, Group, List[Group]]) -> None:
"""Remove groups from the model.
Members of each group are not removed
from the model (i.e. metabolites, reactions, and genes in the group
stay in the model after any groups containing them are removed).
Parameters
----------
group_list : list or str or Group
A list of `cobra.Group` objects to remove from the model. Can also be a
single group or a string representing group id. If the input is not a list,
a warning is raised.
"""
if isinstance(group_list, str) or hasattr(group_list, "id"):
warn("need to pass in a list")
group_list = [group_list]
for group in group_list:
# make sure the group is in the model
if group.id not in self.groups:
logger.warning(f"{group!r} not in {self!r}. Ignored.")
else:
self.groups.remove(group)
group._model = None
def get_associated_groups(
self, element: Union[Reaction, Gene, Metabolite]
) -> List[Group]:
"""Get list of groups for element.
Returns a list of groups that an element (reaction, metabolite, gene)
is associated with.
Parameters
----------
element: `cobra.Reaction`, `cobra.Metabolite`, or `cobra.Gene`
Returns
-------
list of `cobra.Group`
All groups that the provided object is a member of
"""
# check whether the element is associated with the model
return [g for g in self.groups if element in g.members]
def add_cons_vars(
self, what: Union[List["CONS_VARS"], Tuple["CONS_VARS"]], **kwargs
) -> None:
"""Add constraints and variables to the model's mathematical problem.
Useful for variables and constraints that can not be expressed with
reactions and simple lower and upper bounds.
Additions are reversed upon exit if the model itself is used as
context.
Parameters
----------
what : list or tuple of optlang variables or constraints.
The variables or constraints to add to the model. Must be of
class `optlang.interface.Variable` or
`optlang.interface.Constraint`.
**kwargs : keyword arguments
Passed to solver.add()
"""
add_cons_vars_to_problem(self, what, **kwargs)
def remove_cons_vars(
self, what: Union[List["CONS_VARS"], Tuple["CONS_VARS"]]
) -> None:
"""Remove variables and constraints from problem.
Remove variables and constraints from the model's mathematical
problem.
Remove variables and constraints that were added directly to the
model's underlying mathematical problem. Removals are reversed
upon exit if the model itself is used as context.
Parameters
----------
what : list or tuple of optlang variables or constraints.
The variables or constraints to add to the model. Must be of
class `optlang.interface.Variable` or
`optlang.interface.Constraint`.
"""
remove_cons_vars_from_problem(self, what)
@property
def problem(self) -> "optlang.interface":
"""Get the interface to the model's underlying mathematical problem.
Solutions to cobra models are obtained by formulating a mathematical
problem and solving it. Cobrapy uses the optlang package to
accomplish that and with this property you can get access to the
problem interface directly.
Returns
-------
optlang.interface
The problem interface that defines methods for interacting with
the problem and associated solver directly.
"""