|
240 | 240 | For non-standard datetime parsing, use ``pd.to_datetime`` after ``pd.read_excel``.
|
241 | 241 |
|
242 | 242 | Note: A fast-path exists for iso8601-formatted dates.
|
243 |
| -date_parser : function, optional |
244 |
| - Function to use for converting a sequence of string columns to an array of |
245 |
| - datetime instances. The default uses ``dateutil.parser.parser`` to do the |
246 |
| - conversion. Pandas will try to call `date_parser` in three different ways, |
247 |
| - advancing to the next if an exception occurs: 1) Pass one or more arrays |
248 |
| - (as defined by `parse_dates`) as arguments; 2) concatenate (row-wise) the |
249 |
| - string values from the columns defined by `parse_dates` into a single array |
250 |
| - and pass that; and 3) call `date_parser` once for each row using one or |
251 |
| - more strings (corresponding to the columns defined by `parse_dates`) as |
252 |
| - arguments. |
253 |
| -
|
254 |
| - .. deprecated:: 2.0.0 |
255 |
| - Use ``date_format`` instead, or read in as ``object`` and then apply |
256 |
| - :func:`to_datetime` as-needed. |
257 | 243 | date_format : str or dict of column -> format, default ``None``
|
258 | 244 | If used in conjunction with ``parse_dates``, will parse dates according to this
|
259 | 245 | format. For anything more complex,
|
@@ -398,7 +384,6 @@ def read_excel(
|
398 | 384 | na_filter: bool = ...,
|
399 | 385 | verbose: bool = ...,
|
400 | 386 | parse_dates: list | dict | bool = ...,
|
401 |
| - date_parser: Callable | lib.NoDefault = ..., |
402 | 387 | date_format: dict[Hashable, str] | str | None = ...,
|
403 | 388 | thousands: str | None = ...,
|
404 | 389 | decimal: str = ...,
|
@@ -436,7 +421,6 @@ def read_excel(
|
436 | 421 | na_filter: bool = ...,
|
437 | 422 | verbose: bool = ...,
|
438 | 423 | parse_dates: list | dict | bool = ...,
|
439 |
| - date_parser: Callable | lib.NoDefault = ..., |
440 | 424 | date_format: dict[Hashable, str] | str | None = ...,
|
441 | 425 | thousands: str | None = ...,
|
442 | 426 | decimal: str = ...,
|
@@ -474,7 +458,6 @@ def read_excel(
|
474 | 458 | na_filter: bool = True,
|
475 | 459 | verbose: bool = False,
|
476 | 460 | parse_dates: list | dict | bool = False,
|
477 |
| - date_parser: Callable | lib.NoDefault = lib.no_default, |
478 | 461 | date_format: dict[Hashable, str] | str | None = None,
|
479 | 462 | thousands: str | None = None,
|
480 | 463 | decimal: str = ".",
|
@@ -521,7 +504,6 @@ def read_excel(
|
521 | 504 | na_filter=na_filter,
|
522 | 505 | verbose=verbose,
|
523 | 506 | parse_dates=parse_dates,
|
524 |
| - date_parser=date_parser, |
525 | 507 | date_format=date_format,
|
526 | 508 | thousands=thousands,
|
527 | 509 | decimal=decimal,
|
@@ -726,7 +708,6 @@ def parse(
|
726 | 708 | na_values=None,
|
727 | 709 | verbose: bool = False,
|
728 | 710 | parse_dates: list | dict | bool = False,
|
729 |
| - date_parser: Callable | lib.NoDefault = lib.no_default, |
730 | 711 | date_format: dict[Hashable, str] | str | None = None,
|
731 | 712 | thousands: str | None = None,
|
732 | 713 | decimal: str = ".",
|
@@ -795,7 +776,6 @@ def parse(
|
795 | 776 | false_values=false_values,
|
796 | 777 | na_values=na_values,
|
797 | 778 | parse_dates=parse_dates,
|
798 |
| - date_parser=date_parser, |
799 | 779 | date_format=date_format,
|
800 | 780 | thousands=thousands,
|
801 | 781 | decimal=decimal,
|
@@ -829,7 +809,6 @@ def _parse_sheet(
|
829 | 809 | false_values: Iterable[Hashable] | None = None,
|
830 | 810 | na_values=None,
|
831 | 811 | parse_dates: list | dict | bool = False,
|
832 |
| - date_parser: Callable | lib.NoDefault = lib.no_default, |
833 | 812 | date_format: dict[Hashable, str] | str | None = None,
|
834 | 813 | thousands: str | None = None,
|
835 | 814 | decimal: str = ".",
|
@@ -942,7 +921,6 @@ def _parse_sheet(
|
942 | 921 | na_values=na_values,
|
943 | 922 | skip_blank_lines=False, # GH 39808
|
944 | 923 | parse_dates=parse_dates,
|
945 |
| - date_parser=date_parser, |
946 | 924 | date_format=date_format,
|
947 | 925 | thousands=thousands,
|
948 | 926 | decimal=decimal,
|
@@ -1648,7 +1626,6 @@ def parse(
|
1648 | 1626 | nrows: int | None = None,
|
1649 | 1627 | na_values=None,
|
1650 | 1628 | parse_dates: list | dict | bool = False,
|
1651 |
| - date_parser: Callable | lib.NoDefault = lib.no_default, |
1652 | 1629 | date_format: str | dict[Hashable, str] | None = None,
|
1653 | 1630 | thousands: str | None = None,
|
1654 | 1631 | comment: str | None = None,
|
@@ -1737,20 +1714,6 @@ def parse(
|
1737 | 1714 | ``pd.to_datetime`` after ``pd.read_excel``.
|
1738 | 1715 |
|
1739 | 1716 | Note: A fast-path exists for iso8601-formatted dates.
|
1740 |
| - date_parser : function, optional |
1741 |
| - Function to use for converting a sequence of string columns to an array of |
1742 |
| - datetime instances. The default uses ``dateutil.parser.parser`` to do the |
1743 |
| - conversion. Pandas will try to call `date_parser` in three different ways, |
1744 |
| - advancing to the next if an exception occurs: 1) Pass one or more arrays |
1745 |
| - (as defined by `parse_dates`) as arguments; 2) concatenate (row-wise) the |
1746 |
| - string values from the columns defined by `parse_dates` into a single array |
1747 |
| - and pass that; and 3) call `date_parser` once for each row using one or |
1748 |
| - more strings (corresponding to the columns defined by `parse_dates`) as |
1749 |
| - arguments. |
1750 |
| -
|
1751 |
| - .. deprecated:: 2.0.0 |
1752 |
| - Use ``date_format`` instead, or read in as ``object`` and then apply |
1753 |
| - :func:`to_datetime` as-needed. |
1754 | 1717 | date_format : str or dict of column -> format, default ``None``
|
1755 | 1718 | If used in conjunction with ``parse_dates``, will parse dates
|
1756 | 1719 | according to this format. For anything more complex,
|
@@ -1810,7 +1773,6 @@ def parse(
|
1810 | 1773 | nrows=nrows,
|
1811 | 1774 | na_values=na_values,
|
1812 | 1775 | parse_dates=parse_dates,
|
1813 |
| - date_parser=date_parser, |
1814 | 1776 | date_format=date_format,
|
1815 | 1777 | thousands=thousands,
|
1816 | 1778 | comment=comment,
|
|
0 commit comments