-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfull_forecast_model.Rmd
202 lines (164 loc) · 5.07 KB
/
full_forecast_model.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
---
params:
series: '2hrs ph3'
model: Arima(order=c(1, 0, 0), seasonal=c(1, 0, 0), method="ML")
transformation: identity() #log() %>% (function(d) {d[d==-Inf]<-0; d})
traindays: 7
testdays: 1
xreg: NULL
obs: FALSE
serial: FALSE
title: '`r params$model` on full `r params$series`'
author: 'Barbu Paul - Gheorghe'
output:
html_document:
toc: true
toc_float: true
number_sections: true
self_contained: true
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = FALSE)
```
```{r includes, warning=FALSE, include=FALSE}
library(forecast)
library(ggplot2)
library(tictoc)
source('datasets.R')
source('funcs.R')
```
# Parameters
Series: **`r params$series`**.
Model: **`r params$model`**.
Transformation: **`r params$transformation`**.
As observations: **`r params$obs`**.
Train days: **`r params$traindays`**.
Test days: **`r params$testdays`**.
xreg: **`r params$xreg`**.
Parallel processing: **`r !params$serial`**.
# Original data
The data has been previously cleaned, negative values were made 0.
```{r data, echo=FALSE, message=FALSE, warning=FALSE}
fulldata <- datasets[[params$series]]$series
if(params$obs)
{
totaldays <- length(fulldata)
}else{
totaldays <- round(length(fulldata)/frequency(fulldata))
}
fulldata.transformed <- NULL
use_transformation <- !is.null(params$transformation) && params$transformation != 'identity()'
if(use_transformation)
{
eval(parse(text=paste('fulldata %>%',
params$transformation))) -> fulldata.transformed
}else{
fulldata.transformed <- fulldata
}
```
```{r plot-data, echo=FALSE, message=FALSE, warning=FALSE}
plt <- autoplot(fulldata, series="Original") +
xlab("Observation [days]") +
ylab("Energy [Watts]") +
ggtitle("Original data") +
guides(colour=guide_legend(title="Data series"))
if(use_transformation)
{
plt + autolayer(fulldata.transformed, series="Transformed")
}else{
plt
}
```
Total data points: **`r length(fulldata)`** representing
**`r totaldays`** days.
Number of data points per day: **`r frequency(fulldata)`**
(gathered once every **`r (24*60)/frequency(fulldata)`** minutes).
# Forecast data
```{r get-forecast, message=FALSE, include=FALSE}
tic('Forecast')
fcastfunc <- NULL
if(params$obs)
{
if(params$serial)
{
fcastfunc <- fullforecast.serial.obs
}else{
fcastfunc <- fullforecast.obs
}
}else{
if(params$serial)
{
fcastfunc <- fullforecast.serial
}else{
fcastfunc <- fullforecast
}
}
fcast <- fcastfunc(fulldata,
params$transformation,
params$model,
params$traindays,
params$testdays,
params$xreg)
fcast.times <- toc()
```
Time elapapsed for forecasting
**`r totaldays - params$traindays`**
`r ifelse(params$obs, "data points", paste("days (representing", frequency(fulldata) * (totaldays - params$traindays), "data points)"))`,
initial training data not taken into account:
**`r fcast.times$toc - fcast.times$tic`** seconds
(**`r (fcast.times$toc - fcast.times$tic)/60`** minutes).
`r current.rendered.filename.withext <- get(env = parent.frame(n = 8), 'output_file')`
```{r save-forecasts, echo=FALSE}
#get(env = parent.frame(n = 8), 'output_dir')
# current.rendered.filename.withext <- get(env = parent.frame(n = 18), 'output_file')
current.rendered.filename <- tools::file_path_sans_ext(current.rendered.filename.withext)
save(fcast, file=paste(
current.rendered.filename,
".RData",
sep=""))
write.csv(fcast$points, file=paste(
current.rendered.filename,
".points.csv",
sep=""))
write.csv(fcast$adjpoints, file=paste(
current.rendered.filename,
".adjpoints.csv",
sep=""))
```
## Forecasts (un-adjusted) plot against the data
```{r plot-forecast-unadjusted, echo=FALSE}
autoplot(fulldata.transformed,
series=ifelse(use_transformation, "Transformed", "Original")) +
autolayer(fcast$points, series="Forecasts") +
xlab("Observation [days]") +
ylab("Energy [Watts]") +
ggtitle("Original data and forecasts") +
guides(colour=guide_legend(title="Data series"))
```
## Accuracy of the un-adjusted forecasts against the data
```{r forecast-accuracy, echo=FALSE}
knitr::kable(fcast$accuracy)
```
## Forecasts (adjusted) plot against the data
```{r plot-forecast-adjusted, echo=FALSE}
# autoplot(fulldata.transformed,
# series=ifelse(use_transformation, "Transformed", "Original")) +
# autolayer(fcast$adjpoints, series="Forecasts") +
# xlab("Observation [days]") +
# ylab("Energy [Watts]") +
# ggtitle("Original data and forecasts") +
# guides(colour=guide_legend(title="Data series"))
lbls <- c("Original", "Forecasts")
autoplot(ts.union(fulldata.transformed, fcast$adjpoints)) +
geom_point(aes(shape=series)) +
scale_shape_discrete(labels=lbls) +
scale_color_manual(labels=lbls, values=c("#00BFC4", "#F8766D")) +
labs(shape="Data series", color="Data series") +
xlab("Observation [days]") +
ylab("Energy [Watts]") +
ggtitle("Original data and forecasts")
```
## Accuracy of the adjusted forecasts against the data
```{r forecast-adjaccuracy, echo=FALSE}
knitr::kable(fcast$adjaccuracy)
```