|
| 1 | +source('funcs.R') |
| 2 | + |
| 3 | +# benchmark models ---- |
| 4 | + |
| 5 | +report.full(model = 'snaive()', |
| 6 | + series = '1hrs pv1', |
| 7 | + transformation = 'identity()', |
| 8 | + traindays = 7, |
| 9 | + testdays = 1) |
| 10 | + |
| 11 | +report.full(model = 'meanf()', |
| 12 | + series = '1hrs pv1', |
| 13 | + transformation = 'identity()', |
| 14 | + traindays = 7, |
| 15 | + testdays = 1) |
| 16 | + |
| 17 | +report.full(model = 'naive()', |
| 18 | + series = '1hrs pv1', |
| 19 | + transformation = 'identity()', |
| 20 | + traindays = 7, |
| 21 | + testdays = 1) |
| 22 | + |
| 23 | +# try to find the best ARIMA model ---- |
| 24 | +report(model = 'Arima(order=c(1, 0, 0))', |
| 25 | + series = '1hrs pv1', |
| 26 | + transformation = 'identity()', |
| 27 | + diffs = 'identity()', |
| 28 | + sdiffs = 'identity()', |
| 29 | + startday = 0, |
| 30 | + traindays = 7, |
| 31 | + testdays = 3) |
| 32 | + |
| 33 | +report(model = 'Arima(order=c(2, 0, 0))', |
| 34 | + series = '1hrs pv1', |
| 35 | + transformation = 'identity()', |
| 36 | + diffs = 'identity()', |
| 37 | + sdiffs = 'identity()', |
| 38 | + startday = 0, |
| 39 | + traindays = 7, |
| 40 | + testdays = 3) |
| 41 | + |
| 42 | +report(model = 'Arima(order=c(3, 0, 0))', |
| 43 | + series = '1hrs pv1', |
| 44 | + transformation = 'identity()', |
| 45 | + diffs = 'identity()', |
| 46 | + sdiffs = 'identity()', |
| 47 | + startday = 0, |
| 48 | + traindays = 7, |
| 49 | + testdays = 3) |
| 50 | + |
| 51 | +report(model = 'Arima(order=c(1, 0, 0), seasonal=c(1, 0, 0))', |
| 52 | + series = '1hrs pv1', |
| 53 | + transformation = 'identity()', |
| 54 | + diffs = 'identity()', |
| 55 | + sdiffs = 'identity()', |
| 56 | + startday = 0, |
| 57 | + traindays = 7, |
| 58 | + testdays = 3) |
| 59 | + |
| 60 | +# add fourier terms |
| 61 | +report(model = 'Arima(order=c(1, 0, 0), seasonal=c(1, 0, 0), xreg=fourier(., K=2))', |
| 62 | + series = '1hrs pv1', |
| 63 | + transformation = 'identity()', |
| 64 | + diffs = 'identity()', |
| 65 | + sdiffs = 'identity()', |
| 66 | + startday = 0, |
| 67 | + traindays = 7, |
| 68 | + testdays = 3, |
| 69 | + xreg='fourier(., K=2, h=h)') |
| 70 | + |
| 71 | +# Find the best train:test days ratio for ARIMA(1,0,0)(1,0,0) ---- |
| 72 | +scaler <- 1/100000000000 |
| 73 | +best.fcast.1hrsPv1 <- NULL |
| 74 | +best.traindays <- 0 |
| 75 | +best.testdays <- 0 |
| 76 | + |
| 77 | +for(traindays in 3:7) |
| 78 | +{ |
| 79 | + for(testdays in 2:3) |
| 80 | + { |
| 81 | + print(paste("Trying", traindays, "train days and", testdays, "test days")) |
| 82 | + current <- fullforecast(model = 'Arima(order=c(1, 0, 0), seasonal=c(1, 0, 0), method="CSS")', |
| 83 | + dataset = datasets[['1hrs pv1']]$series * scaler, |
| 84 | + transformation = 'identity()', |
| 85 | + traindays = traindays, |
| 86 | + testdays = testdays, |
| 87 | + xreg=NULL) |
| 88 | + |
| 89 | + if(is.null(best.fcast.1hrsPv1) || current$accuracy[[2]] < best.fcast.1hrsPv1$accuracy[[2]]) |
| 90 | + { |
| 91 | + best.fcast.1hrsPv1 <- current |
| 92 | + best.traindays <- traindays |
| 93 | + best.testdays <- testdays |
| 94 | + } |
| 95 | + } |
| 96 | +} |
| 97 | + |
| 98 | +report.full(model = 'Arima(order=c(1, 0, 0), seasonal=c(1, 0, 0), method="ML")', |
| 99 | + series = '1hrs pv1', |
| 100 | + transformation = 'identity()', |
| 101 | + traindays = best.traindays, # 5 |
| 102 | + testdays = best.testdays) # 2 |
| 103 | + |
| 104 | +# Skip over the step where I hardcode a fourier value ---- |
| 105 | +# Find best K for the above model ARIMA(1,0,0)(1,0,0) ---- |
| 106 | + |
| 107 | +best.fcast.k.1hrsPv1 <- NULL |
| 108 | +best.k <- 0 |
| 109 | +#K must be not be greater than period/2 |
| 110 | +for(k in 1:(frequency(datasets[['1hrs pv1']]$series)/2)) |
| 111 | +{ |
| 112 | + print(paste("Trying k =", k)) |
| 113 | + m <- paste0('Arima(order=c(1, 0, 0), seasonal=c(1, 0, 0), method="CSS", xreg=fourier(., K=', k, '))') |
| 114 | + xreg <- paste0('fourier(., h=h, K=', k, ')') |
| 115 | + current <- fullforecast(model = m, |
| 116 | + dataset = datasets[['1hrs pv1']]$series * scaler, |
| 117 | + transformation = 'identity()', |
| 118 | + traindays = best.traindays, # ? |
| 119 | + testdays = best.testdays, # ? |
| 120 | + xreg=xreg) |
| 121 | + |
| 122 | + if(is.null(best.fcast.k.1hrsPv1) || current$accuracy[[2]] < best.fcast.k.1hrsPv1$accuracy[[2]]) |
| 123 | + { |
| 124 | + best.fcast.k.1hrsPv1 <- current |
| 125 | + best.k <- k |
| 126 | + } |
| 127 | +} |
| 128 | + |
| 129 | +report.full(model = paste('Arima(order=c(1, 0, 0), seasonal=c(1, 0, 0), method="CSS", xreg=fourier(., K=', best.k, '))', sep=''), |
| 130 | + series = '1hrs pv1', |
| 131 | + transformation = 'identity()', |
| 132 | + traindays = best.traindays, # 5 |
| 133 | + testdays = best.testdays, # 2 |
| 134 | + xreg = paste('fourier(., h=h, K=', best.k, ')')) # 2 |
| 135 | + |
| 136 | +# Best model: 5:2, ARIMA(1, 0, 0)(1, 0, 0), K=2, RMSE=460 MAE=232 ---- |
| 137 | +# 11th-17th obs dummies rmse=461, mae=230 |
| 138 | +# without seasonal part, only fourier: rmse=460, mae=234 |
| 139 | +# without seasonal part, 2AR, only fourier: rmse=460, mae=234 |
| 140 | +# without seasonal part, 3AR, only fourier: rmse=460, mae=234 |
| 141 | +# dummies without seasonal part, only fourier: rmse=460, mae=237 |
| 142 | +# dummies without seasonal part, 2AR, only fourier: rmse=460, mae=237 |
| 143 | +# dummies without seasonal part, 3AR, only fourier: rmse=460, mae=237 |
| 144 | +report.full(model = 'Arima(order=c(1, 0, 0), seasonal=c(1, 0, 0), method="CSS", xreg=fourier(., K=2))', |
| 145 | + series = '1hrs pv1', |
| 146 | + transformation = 'identity()', |
| 147 | + traindays = 5, |
| 148 | + testdays = 2, |
| 149 | + xreg = 'fourier(., h=h, K=2)') |
| 150 | + |
| 151 | +dummies.fcast <- quote( |
| 152 | + {cbind( |
| 153 | + dummies=getNthObsDummies(11, 6, h, frequency(.)), |
| 154 | + fourier(., h=h, K=2) |
| 155 | + )} |
| 156 | +) |
| 157 | + |
| 158 | +dummies.fit <- quote( |
| 159 | + {cbind( |
| 160 | + dummies=getNthObsDummies(11, 6, length(.), frequency(.)), |
| 161 | + fourier(., K=2) |
| 162 | + )} |
| 163 | +) |
| 164 | + |
| 165 | +report.full(model = paste0('Arima(order=c(1, 0, 0), seasonal=c(1, 0, 0), method="CSS", xreg=', paste0(deparse(dummies.fit), collapse='') ,')'), |
| 166 | + series = '1hrs pv1', |
| 167 | + transformation = 'identity()', |
| 168 | + traindays = 5, |
| 169 | + testdays = 2, |
| 170 | + xreg = paste0(deparse(dummies.fcast), collapse='')) |
| 171 | + |
| 172 | +# NO SAR, with dummies |
| 173 | +# rmse=460, mae=234 |
| 174 | +report.full(model = paste0('Arima(order=c(1, 0, 0), method="CSS", xreg=', paste0(deparse(dummies.fit), collapse='') ,')'), |
| 175 | + series = '1hrs pv1', |
| 176 | + transformation = 'identity()', |
| 177 | + traindays = 5, |
| 178 | + testdays = 2, |
| 179 | + xreg = paste0(deparse(dummies.fcast), collapse='')) |
| 180 | + |
| 181 | +# no SAR with dummies |
| 182 | +# 2 AR terms |
| 183 | +# rmse=460, mae=234 |
| 184 | +report.full(model = paste0('Arima(order=c(2, 0, 0), method="CSS", xreg=', paste0(deparse(dummies.fit), collapse='') ,')'), |
| 185 | + series = '1hrs pv1', |
| 186 | + transformation = 'identity()', |
| 187 | + traindays = 5, |
| 188 | + testdays = 2, |
| 189 | + xreg = paste0(deparse(dummies.fcast), collapse='')) |
| 190 | + |
| 191 | +# no SAR with dummies |
| 192 | +# 3 AR terms |
| 193 | +# rmse=, mae= |
| 194 | +report.full(model = paste0('Arima(order=c(3, 0, 0), method="CSS", xreg=', paste0(deparse(dummies.fit), collapse='') ,')'), |
| 195 | + series = '1hrs pv1', |
| 196 | + transformation = 'identity()', |
| 197 | + traindays = 5, |
| 198 | + testdays = 2, |
| 199 | + xreg = paste0(deparse(dummies.fcast), collapse='')) |
| 200 | + |
| 201 | +# no SAR, no dummies |
| 202 | +# rmse=460, mae=237 |
| 203 | +report.full(model = 'Arima(order=c(1, 0, 0), method="CSS", xreg=fourier(., K=2))', |
| 204 | + series = '1hrs pv1', |
| 205 | + transformation = 'identity()', |
| 206 | + traindays = 5, |
| 207 | + testdays = 2, |
| 208 | + xreg = 'fourier(., h=h, K=2)') |
| 209 | + |
| 210 | +# no SAR, no dummies, 2AR |
| 211 | +# rmse=460, mae=237 |
| 212 | +report.full(model = 'Arima(order=c(2, 0, 0), method="CSS", xreg=fourier(., K=2))', |
| 213 | + series = '1hrs pv1', |
| 214 | + transformation = 'identity()', |
| 215 | + traindays = 5, |
| 216 | + testdays = 2, |
| 217 | + xreg = 'fourier(., h=h, K=2)') |
| 218 | + |
| 219 | +# no SAR, no dummies, 3 AR terms |
| 220 | +# rmse=460, mae=237 |
| 221 | +report.full(model = 'Arima(order=c(3, 0, 0), method="CSS", xreg=fourier(., K=2))', |
| 222 | + series = '1hrs pv1', |
| 223 | + transformation = 'identity()', |
| 224 | + traindays = 5, |
| 225 | + testdays = 2, |
| 226 | + xreg = 'fourier(., h=h, K=2)') |
| 227 | + |
| 228 | + |
| 229 | +# dummies on every weekday ---- |
| 230 | + |
| 231 | +dailyD.fcast <- quote( |
| 232 | + {cbind( |
| 233 | + dummies=getDailyDummies(h, frequency(.), start(.)[[1]]), |
| 234 | + fourier(., h=h, K=2) |
| 235 | + )} |
| 236 | +) |
| 237 | + |
| 238 | +dailyD.fit <- quote( |
| 239 | + {cbind( |
| 240 | + dummies=getDailyDummies(length(.), frequency(.), start(.)[[1]]), |
| 241 | + fourier(., K=2) |
| 242 | + )} |
| 243 | +) |
| 244 | + |
| 245 | +# 5:2 rmse=?, mae=? |
| 246 | +report.full(model = paste0('Arima(order=c(1, 0, 0), seasonal=c(1, 0, 0), method="CSS", xreg=', paste0(deparse(dailyD.fit), collapse='') ,')'), |
| 247 | + series = '1hrs pv1', |
| 248 | + transformation = 'identity()', |
| 249 | + traindays = 5, |
| 250 | + testdays = 2, |
| 251 | + xreg = paste0(deparse(dailyD.fcast), collapse='')) |
| 252 | + |
| 253 | +# dummies on the ?-?th+?-?th obs (the "outliers") ---- |
| 254 | + |
| 255 | +best.fcast.dummy.1hrsPv1 <- NULL |
| 256 | +best.startDummy <- 0 |
| 257 | +best.lenDummy <- 0 |
| 258 | + |
| 259 | +for(startDummy in 8:11) |
| 260 | +{ |
| 261 | + for(lenDummy in 5:9) |
| 262 | + { |
| 263 | + print(paste("Trying startDummy =", startDummy, ", length =", lenDummy)) |
| 264 | + |
| 265 | + obsDummies.fcast <- substitute( |
| 266 | + {cbind( |
| 267 | + dummies=getNthObsDummies(startDummy, lenDummy, h, frequency(.)), |
| 268 | + fourier(., h=h, K=2) |
| 269 | + )}, |
| 270 | + list(startDummy=startDummy, lenDummy=lenDummy) |
| 271 | + ) |
| 272 | + |
| 273 | + obsDummies.fit <- substitute( |
| 274 | + {cbind( |
| 275 | + dummies=getNthObsDummies(startDummy, lenDummy, length(.), frequency(.)), |
| 276 | + fourier(., K=2) |
| 277 | + )}, |
| 278 | + list(startDummy=startDummy, lenDummy=lenDummy) |
| 279 | + ) |
| 280 | + |
| 281 | + current <- fullforecast(model = paste0('Arima(order=c(1, 0, 0), seasonal=c(1, 0, 0), method="CSS", xreg=', paste0(deparse(obsDummies.fit), collapse='') ,')'), |
| 282 | + dataset = datasets[['1hrs pv1']]$series, |
| 283 | + transformation = 'identity()', |
| 284 | + traindays = 5, |
| 285 | + testdays = 2, |
| 286 | + xreg = paste0(deparse(obsDummies.fcast), collapse='')) |
| 287 | + |
| 288 | + if(is.null(best.fcast.dummy.1hrsPv1) || current$accuracy[[2]] < best.fcast.dummy.1hrsPv1$accuracy[[2]]) |
| 289 | + { |
| 290 | + best.fcast.dummy.1hrsPv1 <- current |
| 291 | + best.startDummy <- startDummy |
| 292 | + best.lenDummy <- lenDummy |
| 293 | + } |
| 294 | + |
| 295 | + } |
| 296 | +} |
| 297 | + |
| 298 | +bestObsDummies.fcast <- substitute( |
| 299 | + {cbind( |
| 300 | + dummies=getNthObsDummies(best.startDummy, best.lenDummy, h, frequency(.)), |
| 301 | + fourier(., h=h, K=2) |
| 302 | + )}, |
| 303 | + list(best.startDummy = best.startDummy, best.lenDummy = best.lenDummy) |
| 304 | +) |
| 305 | + |
| 306 | +bestObsDummies.fit <- substitute( |
| 307 | + {cbind( |
| 308 | + dummies=getNthObsDummies(best.startDummy, best.lenDummy, length(.), frequency(.)), |
| 309 | + fourier(., K=2) |
| 310 | + )}, |
| 311 | + list(best.startDummy = best.startDummy, best.lenDummy = best.lenDummy) |
| 312 | +) |
| 313 | + |
| 314 | +# 5:2, dummies: 11:6, rmse=461, mae=230 |
| 315 | +report.full(model = paste0('Arima(order=c(1, 0, 0), seasonal=c(1, 0, 0), method="CSS", xreg=', paste0(deparse(bestObsDummies.fit), collapse='') ,')'), |
| 316 | + series = '1hrs pv1', |
| 317 | + transformation = 'identity()', |
| 318 | + traindays = 5, |
| 319 | + testdays = 2, |
| 320 | + xreg = paste0(deparse(bestObsDummies.fcast), collapse='')) |
0 commit comments