forked from csc-training/hpc-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathskeleton.py
46 lines (34 loc) · 1.15 KB
/
skeleton.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import numpy as np
import time
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
# Set the colormap
plt.rcParams['image.cmap'] = 'BrBG'
# Basic variables
a = 0.5 # Diffusion constant.
timesteps = 500 # Number of time-steps to evolve system.
image_interval = 50 # write frequency for png files
# Grid spacings
dx = 0.01
dy = 0.01
dx2 = dx**2
dy2 = dy**2
# For stability, this is the largest interval possible
# for the size of the time-step:
dt = dx2*dy2 / ( 2*a*(dx2+dy2) )
# TODO: Read the initial temperature field from file
def evolve(u, u_previous, a, dt):
"""Explicit time evolution.
u: new temperature field
u_previous: previous field
a: diffusion constant
dt: time step. """
# TODO: determine the new temperature field based on previous values
# and the numerical Laplacian according the explicit time evolution method
# Write figure of initial field to a file
plt.imshow(field)
plt.axis('off')
plt.savefig('heat_{0:03d}.png'.format(0))
# TODO: Implement the main iteration loop and write the figure
# (to a new) file after each 'image_interval' iteration