-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbond_test_code.jl
508 lines (399 loc) · 20.6 KB
/
bond_test_code.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
# building fixed rate bonds
include("src/QuantJulia.jl")
using QuantJulia
function build_bonds(bond_mats::Vector{Date}, bond_rates::Vector{Float64}, tenor::QuantJulia.Time.TenorPeriod, conv::QuantJulia.Time.BusinessDayConvention,
rule::QuantJulia.Time.DateGenerationRule, calendar::QuantJulia.Time.BusinessCalendar, dc::QuantJulia.Time.DayCount, freq::QuantJulia.Time.Frequency, issue_date::Date)
bonds = Vector{FixedRateBondHelper}(length(bond_mats))
pricing_engine = DiscountingBondEngine()
for i =1:length(bond_mats)
term_date = bond_mats[i]
# rate = bond_rates[i] / 100
rate = bond_rates[i]
sched = QuantJulia.Time.Schedule(issue_date, term_date, tenor, conv, conv, rule, true)
bond_help = FixedRateBondHelper(Quote(100.0), FixedRateBond(0, 100.0, sched, rate, dc, conv, 100.0, issue_date, calendar, pricing_engine))
bonds[i] = bond_help
end
return bonds
end
function build_depos{P <: Dates.Period, DC <: QuantJulia.Time.DayCount, B <: QuantJulia.Time.BusinessDayConvention, C <: QuantJulia.Time.BusinessCalendar, I <: Integer}(depo_quotes::Vector{Float64}, depo_tenors::Vector{P},
dc::DC, conv::B, calendar::C, fixing_days::I)
depos = Vector{DepositRateHelper}(length(depo_quotes))
for i = 1:length(depo_quotes)
depo_quote = Quote(depo_quotes[i])
depo_tenor = QuantJulia.Time.TenorPeriod(depo_tenors[i])
depo = DepositRateHelper(depo_quote, depo_tenor, fixing_days, calendar, conv, true, dc)
depos[i] = depo
end
return depos
end
function build_swaps{P <: Dates.Period, DC <: QuantJulia.Time.DayCount, B <: QuantJulia.Time.BusinessDayConvention, C <: QuantJulia.Time.BusinessCalendar, F <: QuantJulia.Time.Frequency, I <: Integer}(swap_quotes::Vector{Float64},
swap_tenors::Vector{P}, fixed_dc::DC, fixed_conv::B, calendar::C, fixed_freq::F, float_index::IborIndex, forward_start::I)
forward_start_period = Dates.Day(forward_start)
swaps = Vector{SwapRateHelper}(length(swap_quotes))
pricing_engine = DiscountingSwapEngine()
for i = 1:length(swap_quotes)
swaps[i] = SwapRateHelper(swap_quotes[i], swap_tenors[i], calendar, fixed_freq, fixed_conv, fixed_dc, float_index, 0.0, forward_start_period, pricing_engine)
end
return swaps
end
function get_npvs(bonds, issue_date, calendar, dc, freq)
pricing_engine = DiscountingBondEngine()
rate_quote = Quote(0.05)
compounding = CompoundedCompounding()
yts = FlatForwardTermStructure(0, issue_date, calendar, rate_quote, dc, compounding, freq)
npvs = zeros(length(bonds))
for i=1:length(bonds)
npvs[i] = calculate(pricing_engine, yts, bonds[i])
end
return npvs
end
function par_rate(yts::YieldTermStructure, dates::Vector{Date}, dc::QuantJulia.Time.DayCount)
sum = 0.0
for i = 2:length(dates)
dt = QuantJulia.Time.year_fraction(dc, dates[i - 1], dates[i])
sum += discount(yts, dates[i]) * dt
end
result = discount(yts, dates[1]) - discount(yts, dates[end])
return result/sum
end
function setup()
today = now()
issue_date = Date(Dates.Year(today), Dates.Month(today), Dates.Day(today))
bond_mats = [issue_date + Dates.Year(i) for i in range(2, 2, 15)]
# bond_rates = [5.75, 6.0, 6.25, 6.5, 6.75, 6.80, 7.00, 7.1, 7.15, 7.2]
bond_rates = [0.0200, 0.0225, 0.0250, 0.0275, 0.0300, 0.0325, 0.0350, 0.0375, 0.0400, 0.0425, 0.0450, 0.0475, 0.0500, 0.0525, 0.0550]
set_eval_date!(settings, issue_date)
freq = QuantJulia.Time.Annual()
tenor = QuantJulia.Time.TenorPeriod(freq)
conv = QuantJulia.Time.Unadjusted()
rule = QuantJulia.Time.DateGenerationBackwards()
calendar = QuantJulia.Time.USGovernmentBondCalendar()
dc = QuantJulia.Time.SimpleDayCount()
bonds = build_bonds(bond_mats, bond_rates, tenor, conv, rule, calendar, dc, freq, issue_date)
return issue_date, bonds, dc, calendar
end
function piecewise_yld_curve()
issue_date, bonds, dc, calendar = setup()
interp = QuantJulia.Math.LogInterpolation()
trait = Discount()
bootstrap = IterativeBootstrap()
yts = PiecewiseYieldCurve(issue_date, bonds, dc, interp, trait, 0.00000000001, bootstrap)
solver = QuantJulia.Math.BrentSolver()
solver2 = QuantJulia.Math.FiniteDifferenceNewtonSafe()
calculate!(IterativeBootstrap(), yts, solver2, solver)
# println(yts.data)
for bond in bonds
date_vec = Vector{Date}(length(bond.cashflows.coupons) + 1)
date_vec[1] = issue_date
for (i, cf) in enumerate(bond.cashflows.coupons)
date_vec[i+1] = date(cf)
end
par = par_rate(yts, date_vec, dc)
println(100.0 * par)
end
end
# npvs = get_npvs(bonds, issue_date, calendar, dc, freq)
function fitted_bond_curve_exp()
issue_date, bonds, dc, calendar = setup()
esf = ExponentialSplinesFitting(true, length(bonds))
fitted_curve = FittedBondDiscountCurve(0, issue_date, calendar, bonds, dc, esf, 1e-10, 5000, 1.0)
initialize!(fitted_curve)
calculate!(fitted_curve)
println(fitted_curve.fittingMethod.commons.minimumCostValue)
println(fitted_curve.fittingMethod.commons.numberOfIterations)
println(fitted_curve.fittingMethod.commons.guessSolution)
disc = discount(fitted_curve, 1.0)
println(disc)
end
function fitted_bond_curve_simp()
issue_date, bonds, dc, calendar = setup()
spf = SimplePolynomialFitting(true, 3, length(bonds))
fitted_curve = FittedBondDiscountCurve(0, issue_date, calendar, bonds, dc, spf, 1e-10, 5000, 1.0)
initialize!(fitted_curve)
calculate!(fitted_curve)
# println(fitted_curve.fittingMethod.minimumCostValue)
println(fitted_curve.fittingMethod.commons.numberOfIterations)
# println(fitted_curve.fittingMethod.guessSolution)
disc = discount(fitted_curve, 1.0)
println(disc)
end
function fitted_bond_curve_ns()
issue_date, bonds, dc, calendar = setup()
nsf = NelsonSiegelFitting(length(bonds))
fitted_curve = FittedBondDiscountCurve(0, issue_date, calendar, bonds, dc, nsf, 1e-10, 5000, 1.0)
initialize!(fitted_curve)
calculate!(fitted_curve)
# println(fitted_curve.fittingMethod.minimumCostValue)
println(fitted_curve.fittingMethod.commons.numberOfIterations)
# println(fitted_curve.fittingMethod.guessSolution)
disc = discount(fitted_curve, 1.0)
println(disc)
end
function fitted_bond_curve_sven()
issue_date, bonds, dc, calendar = setup()
sf = SvenssonFitting(length(bonds))
fitted_curve = FittedBondDiscountCurve(0, issue_date, calendar, bonds, dc, sf, 1e-10, 5000, 1.0)
initialize!(fitted_curve)
calculate!(fitted_curve)
# println(fitted_curve.fittingMethod.minimumCostValue)
println(fitted_curve.fittingMethod.commons.numberOfIterations)
# println(fitted_curve.fittingMethod.guessSolution)
disc = discount(fitted_curve, 1.0)
println(disc)
end
function fitted_bond_curve_cbspline()
issue_date, bonds, dc, calendar = setup()
knots = [-30.0, -20.0, 0.0, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0, 40.0, 50.0]
cbsf = CubicBSplinesFitting(true, knots, length(bonds))
fitted_curve = FittedBondDiscountCurve(0, issue_date, calendar, bonds, dc, cbsf, 1e-10, 5000, 1.0)
initialize!(fitted_curve)
calculate!(fitted_curve)
println(fitted_curve.fittingMethod.commons.numberOfIterations)
disc = discount(fitted_curve, 1.0)
println(disc)
end
function fitted_bond_curve_all()
tic()
issue_date, bonds, dc, calendar = setup()
esf = ExponentialSplinesFitting(true, length(bonds))
esf_fitted_curve = FittedBondDiscountCurve(0, issue_date, calendar, bonds, dc, esf, 1e-10, 5000, 1.0)
initialize!(esf_fitted_curve)
calculate!(esf_fitted_curve)
spf = SimplePolynomialFitting(true, 3, length(bonds))
spf_fitted_curve = FittedBondDiscountCurve(0, issue_date, calendar, bonds, dc, spf, 1e-10, 5000, 1.0)
initialize!(spf_fitted_curve)
calculate!(spf_fitted_curve)
nsf = NelsonSiegelFitting(length(bonds))
nsf_fitted_curve = FittedBondDiscountCurve(0, issue_date, calendar, bonds, dc, nsf, 1e-10, 5000, 1.0)
initialize!(nsf_fitted_curve)
calculate!(nsf_fitted_curve)
knots = [-30.0, -20.0, 0.0, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0, 40.0, 50.0]
cbsf = CubicBSplinesFitting(true, knots, length(bonds))
cbsf_fitted_curve = FittedBondDiscountCurve(0, issue_date, calendar, bonds, dc, cbsf, 1e-10, 5000, 1.0)
initialize!(cbsf_fitted_curve)
calculate!(cbsf_fitted_curve)
sf = SvenssonFitting(length(bonds))
sf_fitted_curve = FittedBondDiscountCurve(0, issue_date, calendar, bonds, dc, sf, 1e-10, 5000, 1.0)
initialize!(sf_fitted_curve)
calculate!(sf_fitted_curve)
toc()
println("Exponential Splines: $(esf_fitted_curve.fittingMethod.commons.numberOfIterations)")
println("Simple Polynomial: $(spf_fitted_curve.fittingMethod.commons.numberOfIterations)")
println("Nelson Siegel: $(nsf_fitted_curve.fittingMethod.commons.numberOfIterations)")
println("Cubic B-Splines: $(cbsf_fitted_curve.fittingMethod.commons.numberOfIterations)")
println("Svensson Fitting: $(sf_fitted_curve.fittingMethod.commons.numberOfIterations)")
end
function generate_floatingrate_bond()
# Floating Rate bond
settlement_days = 3
face_amount = 100.0
fb_issue_date = Date(2005, 10, 21)
bond_engine = DiscountingBondEngine()
fb_dc = QuantJulia.Time.Actual360()
conv = QuantJulia.Time.ModifiedFollowing()
fb_schedule = QuantJulia.Time.Schedule(Date(2005, 10, 21), Date(2010, 10, 21), QuantJulia.Time.TenorPeriod(QuantJulia.Time.Quarterly()),
QuantJulia.Time.Unadjusted(), QuantJulia.Time.Unadjusted(), QuantJulia.Time.DateGenerationBackwards(), false,
QuantJulia.Time.USNYSECalendar())
fixing_days = 2
in_arrears = true
gearings = ones(length(fb_schedule.dates) - 1)
spreads = fill(0.001, length(fb_schedule.dates) - 1)
libor_3m = usd_libor_index(QuantJulia.Time.TenorPeriod(Base.Dates.Month(3)))
floating_bond = FloatingRateBond(settlement_days, face_amount, fb_schedule, libor_3m, fb_dc, conv, fixing_days, fb_issue_date, bond_engine, in_arrears, 100.0, gearings, spreads)
return floating_bond
end
function generate_fixedrate_bond()
settlement_days = 3
face_amount = 100.0
fx_schedule = QuantJulia.Time.Schedule(Date(2007, 5, 15), Date(2017, 5, 15), QuantJulia.Time.TenorPeriod(QuantJulia.Time.Semiannual()),
QuantJulia.Time.Unadjusted(), QuantJulia.Time.Unadjusted(), QuantJulia.Time.DateGenerationBackwards(), false,
QuantJulia.Time.USGovernmentBondCalendar())
pe = DiscountingBondEngine()
fixedrate_bond = FixedRateBond(settlement_days, face_amount, fx_schedule, 0.045, QuantJulia.Time.ISMAActualActual(), QuantJulia.Time.ModifiedFollowing(),
100.0, Date(2007, 5, 15), fx_schedule.cal, pe)
return fixedrate_bond
end
function generate_discounting_ts(sett::Date)
settlement_date = sett
freq = QuantJulia.Time.Semiannual()
tenor = QuantJulia.Time.TenorPeriod(freq)
conv = QuantJulia.Time.Unadjusted()
conv_depo = QuantJulia.Time.ModifiedFollowing()
rule = QuantJulia.Time.DateGenerationBackwards()
calendar = QuantJulia.Time.USGovernmentBondCalendar()
dc_depo = QuantJulia.Time.Actual365()
dc = QuantJulia.Time.ISDAActualActual()
dc_bond = QuantJulia.Time.ISMAActualActual()
fixing_days = 3
# build depos
depo_rates = [0.0096, 0.0145, 0.0194]
depo_tens = [Base.Dates.Month(3), Base.Dates.Month(6), Base.Dates.Month(12)]
# build bonds
issue_dates = [Date(2005, 3, 15), Date(2005, 6, 15), Date(2006, 6, 30), Date(2002, 11, 15), Date(1987, 5, 15)]
mat_dates = [Date(2010, 8, 31), Date(2011, 8, 31), Date(2013, 8, 31), Date(2018, 8, 15), Date(2038, 5, 15)]
coupon_rates = [0.02375, 0.04625, 0.03125, 0.04000, 0.04500]
market_quotes = [100.390625, 106.21875, 100.59375, 101.6875, 102.140625]
insts = Vector{BootstrapHelper}(length(depo_rates) + length(issue_dates))
for i = 1:length(depo_rates)
depo_quote = Quote(depo_rates[i])
depo_tenor = QuantJulia.Time.TenorPeriod(depo_tens[i])
depo = DepositRateHelper(depo_quote, depo_tenor, fixing_days, calendar, conv_depo, true, dc_depo)
insts[i] = depo
end
pricing_engine = DiscountingBondEngine()
for i =1:length(coupon_rates)
term_date = mat_dates[i]
# rate = bond_rates[i] / 100
rate = coupon_rates[i]
issue_date = issue_dates[i]
market_quote = market_quotes[i]
sched = QuantJulia.Time.Schedule(issue_date, term_date, tenor, conv, conv, rule, true)
bond = FixedRateBondHelper(Quote(market_quote), FixedRateBond(3, 100.0, sched, rate, dc_bond, conv, 100.0, issue_date, calendar, pricing_engine))
insts[i + length(depo_rates)] = bond
end
interp = QuantJulia.Math.LogInterpolation()
trait = Discount()
bootstrap = IterativeBootstrap()
yts = PiecewiseYieldCurve(settlement_date, insts, dc, interp, trait, 0.00000000001, bootstrap)
# solver = QuantJulia.Math.BrentSolver()
# solver2 = QuantJulia.Math.FiniteDifferenceNewtonSafe()
calculate!(yts)
return yts
end
function main()
issue_date, bonds, dc, calendar = setup()
println("Today's date: $issue_date")
println("Calculating fit for 15 bonds....")
interp = QuantJulia.Math.LogInterpolation()
trait = Discount()
bootstrap = IterativeBootstrap()
yts = PiecewiseYieldCurve(issue_date, bonds, dc, interp, trait, 0.00000000001, bootstrap)
# solver = QuantJulia.Math.BrentSolver()
# solver2 = QuantJulia.Math.FiniteDifferenceNewtonSafe()
calculate!(yts)
esf = ExponentialSplinesFitting(true, length(bonds))
esf_fitted_curve = FittedBondDiscountCurve(0, issue_date, calendar, bonds, dc, esf, 1e-10, 5000, 1.0)
initialize!(esf_fitted_curve)
calculate!(esf_fitted_curve)
println("(a) exponential splines")
println("reference date : ", esf_fitted_curve.referenceDate)
println("number of iterations : ", esf_fitted_curve.fittingMethod.commons.numberOfIterations)
spf = SimplePolynomialFitting(true, 3, length(bonds))
spf_fitted_curve = FittedBondDiscountCurve(0, issue_date, calendar, bonds, dc, spf, 1e-10, 5000, 1.0)
initialize!(spf_fitted_curve)
calculate!(spf_fitted_curve)
println("(b) simple polynomial")
println("reference date : ", spf_fitted_curve.referenceDate)
println("number of iterations : ", spf_fitted_curve.fittingMethod.commons.numberOfIterations)
nsf = NelsonSiegelFitting(length(bonds))
nsf_fitted_curve = FittedBondDiscountCurve(0, issue_date, calendar, bonds, dc, nsf, 1e-10, 5000, 1.0)
initialize!(nsf_fitted_curve)
calculate!(nsf_fitted_curve)
println("(c) Nelson-Siegel")
println("reference date : ", nsf_fitted_curve.referenceDate)
println("number of iterations : ", nsf_fitted_curve.fittingMethod.commons.numberOfIterations)
knots = [-30.0, -20.0, 0.0, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0, 40.0, 50.0]
cbsf = CubicBSplinesFitting(true, knots, length(bonds))
cbsf_fitted_curve = FittedBondDiscountCurve(0, issue_date, calendar, bonds, dc, cbsf, 1e-10, 5000, 1.0)
initialize!(cbsf_fitted_curve)
calculate!(cbsf_fitted_curve)
println("(d) cubic B-splines")
println("reference date : ", cbsf_fitted_curve.referenceDate)
println("number of iterations : ", cbsf_fitted_curve.fittingMethod.commons.numberOfIterations)
sf = SvenssonFitting(length(bonds))
sf_fitted_curve = FittedBondDiscountCurve(0, issue_date, calendar, bonds, dc, sf, 1e-10, 5000, 1.0)
initialize!(sf_fitted_curve)
calculate!(sf_fitted_curve)
println("(e) Svensson")
println("reference date : ", sf_fitted_curve.referenceDate)
println("number of iterations : ", sf_fitted_curve.fittingMethod.commons.numberOfIterations)
println("Output par rates for each curve. In this case, par rates should equal coupons for these par bonds")
println(" tenor | coupon | bstrap | (a) | (b) | (c) | (d) | (e) ")
for bh in bonds
bond = bh.bond
date_vec = Vector{Date}(length(bond.cashflows.coupons) + 1)
date_vec[1] = issue_date
for (i, cf) in enumerate(bond.cashflows.coupons)
date_vec[i+1] = date(cf)
end
tenor = QuantJulia.Time.year_fraction(dc, issue_date, date(bond.cashflows.coupons[end]))
println(@sprintf(" %.2f | %.3f | %.3f | %.3f | %.3f | %.3f | %.3f | %.3f ",
tenor, 100.0 * bond.cashflows.coupons[end-1].rate.rate, 100.0 * par_rate(yts, date_vec, dc), 100.0 * par_rate(esf_fitted_curve, date_vec, dc), 100.0 * par_rate(spf_fitted_curve, date_vec, dc),
100.0 * par_rate(nsf_fitted_curve, date_vec, dc), 100.0 * par_rate(cbsf_fitted_curve, date_vec, dc), 100.0 * par_rate(sf_fitted_curve, date_vec, dc)))
end
end
function main2()
settlement_date = Date(2008, 9, 18)
calendar = QuantJulia.Time.USGovernmentBondCalendar()
set_eval_date!(settings, settlement_date - Base.Dates.Day(3))
yts = generate_discounting_ts(settlement_date)
pe = DiscountingBondEngine(yts)
# build zero coupon bond
zcb = ZeroCouponBond(3, calendar, 100.0, Date(2013, 8, 15), QuantJulia.Time.Following(), 116.92, Date(2003, 8, 15), pe)
# println(npv(zcb, pricing_engine, yts))
# println(clean_price(zcb))
# println(dirty_price(zcb))
return npv(zcb, zcb.pricingEngine), clean_price(zcb), dirty_price(zcb)
end
function main3()
settlement_date = Date(2008, 9, 18)
set_eval_date!(settings, settlement_date - Dates.Day(3))
cal = QuantJulia.Time.TargetCalendar()
dc = QuantJulia.Time.ISDAActualActual()
# Build deposits
depo_quotes = [0.043375, 0.031875, 0.0320375, 0.03385, 0.0338125, 0.0335125]
depo_tenors = [Dates.Week(1), Dates.Month(1), Dates.Month(3), Dates.Month(6), Dates.Month(9), Dates.Year(1)]
deposit_dc = QuantJulia.Time.Actual360()
fixing_days = 3
biz_conv = QuantJulia.Time.ModifiedFollowing()
depos = build_depos(depo_quotes, depo_tenors, deposit_dc, biz_conv, cal, fixing_days)
# build swaps
fixedLegFreq = QuantJulia.Time.Annual()
fixedLegConv = QuantJulia.Time.Unadjusted()
fixedLegDC = QuantJulia.Time.EuroThirty360()
floatingLegIndex = euribor_index(QuantJulia.Time.TenorPeriod(Base.Dates.Month(6)))
forwardStart = 1
swap_quotes = [0.0295, 0.0323, 0.0359, 0.0412, 0.0433]
swap_tenors = [Dates.Year(2), Dates.Year(3), Dates.Year(5), Dates.Year(10), Dates.Year(15)]
swaps = build_swaps(swap_quotes, swap_tenors, fixedLegDC, fixedLegConv, cal, fixedLegFreq, floatingLegIndex, forwardStart)
insts = Vector{BootstrapHelper}(length(swap_quotes) + length(depo_quotes))
insts[1:length(depo_quotes)] = depos
insts[length(depo_quotes) + 1: end] = swaps
interp = QuantJulia.Math.LogInterpolation()
trait = Discount()
bootstrap = IterativeBootstrap()
yts = PiecewiseYieldCurve(settlement_date, insts, dc, interp, trait, 1e-15, bootstrap)
# solver = QuantJulia.Math.BrentSolver()
# solver2 = QuantJulia.Math.FiniteDifferenceNewtonSafe()
calculate!(yts)
disc_yts = generate_discounting_ts(settlement_date)
# Floating Rate Bond
fb = generate_floatingrate_bond()
cap_vol = ConstantOptionVolatility(3, cal, QuantJulia.Time.ModifiedFollowing(), 0.0, QuantJulia.Time.Actual365())
update_pricer!(fb.cashflows, cap_vol)
fb.iborIndex.ts = yts
fb.pricingEngine.yts = disc_yts
# Zero Coupon Bond
zcb_pe = DiscountingBondEngine(disc_yts)
zcb_cal = QuantJulia.Time.USGovernmentBondCalendar()
# build zero coupon bond
zcb = ZeroCouponBond(3, zcb_cal, 100.0, Date(2013, 8, 15), QuantJulia.Time.Following(), 116.92, Date(2003, 8, 15), zcb_pe)
# fixed rate bond
fxb = generate_fixedrate_bond()
fxb.pricingEngine.yts = disc_yts
println("Today's date: ", settings.evaluation_date)
println("Settlement date: ", settlement_date)
println("")
println(" ZC Fixed Floating ")
println("-----------------------------------------")
println(@sprintf(" NPV %.2f %.2f %.2f", npv(zcb), npv(fxb), npv(fb)))
println(@sprintf(" Clean %.2f %.2f %.2f", clean_price(zcb), clean_price(fxb), clean_price(fb)))
println(@sprintf(" Dirty %.2f %.2f %.2f", dirty_price(zcb), dirty_price(fxb), dirty_price(fb)))
println(@sprintf("accrued %.2f %.2f %.2f", accrued_amount(zcb, settlement_date), accrued_amount(fxb, settlement_date), accrued_amount(fb, settlement_date)))
println(@sprintf(" Next C N/A %.2f%% %.2f%%", next_coupon_rate(fxb.cashflows, settlement_date) * 100.0, next_coupon_rate(fb.cashflows, settlement_date) * 100.0))
println(@sprintf(" Yield %.2f%% %.2f%% %.2f%%",
QuantJulia.yield(zcb, clean_price(zcb), QuantJulia.Time.Actual360(), CompoundedCompounding(), QuantJulia.Time.Annual(), settlement_date) * 100.0,
QuantJulia.yield(fxb, clean_price(fxb), QuantJulia.Time.Actual360(), CompoundedCompounding(), QuantJulia.Time.Annual(), settlement_date) * 100.0,
QuantJulia.yield(fb, clean_price(fb), QuantJulia.Time.Actual360(), CompoundedCompounding(), QuantJulia.Time.Annual(), settlement_date) * 100.0))
# return npv(fb, fb.pricingEngine), clean_price(fb), dirty_price(fb), QuantJulia.yield(fb, clean_price(fb), QuantJulia.Time.Actual360(), CompoundedCompounding(), QuantJulia.Time.Annual(), settlement_date), next_coupon_rate(fb.cashflows, settlement_date)
end