forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_sparse_csr.py
202 lines (162 loc) · 7.93 KB
/
test_sparse_csr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import torch
torch.set_default_dtype(torch.double)
import functools
import random
import operator
import numpy as np
import warnings
from torch.testing._internal.common_utils import TestCase, run_tests, load_tests
# load_tests from torch.testing._internal.common_utils is used to automatically filter tests for
# sharding on sandcastle. This line silences flake warnings
load_tests = load_tests
class TestSparseCSR(TestCase):
def gen_sparse_csr(self, shape, nnz):
total_values = functools.reduce(operator.mul, shape, 1)
dense = np.random.randn(total_values)
fills = random.sample(list(range(total_values)), total_values - nnz)
for f in fills:
dense[f] = 0
dense = torch.from_numpy(dense.reshape(shape))
return dense.to_sparse_csr()
def setUp(self):
# These parameters control the various ways we can run the test.
# We will subclass and override this method to implement CUDA
# tests
self.is_cuda = False
self.device = 'cpu'
self.index_tensor = lambda *args: torch.tensor(*args, dtype=torch.int32)
self.value_tensor = lambda *args: torch.tensor(*args, dtype=torch.double)
def test_csr_layout(self):
self.assertEqual(str(torch.sparse_csr), 'torch.sparse_csr')
self.assertEqual(type(torch.sparse_csr), torch.layout)
def test_sparse_csr_constructor_shape_inference(self):
crow_indices = [0, 2, 4]
col_indices = [0, 1, 0, 1]
values = [1, 2, 3, 4]
sparse = torch.sparse_csr_tensor(torch.tensor(crow_indices, dtype=torch.int64),
torch.tensor(col_indices, dtype=torch.int64),
torch.tensor(values), dtype=torch.double)
self.assertEqual(torch.tensor(crow_indices, dtype=torch.int64), sparse.crow_indices())
self.assertEqual((len(crow_indices) - 1, max(col_indices) + 1), sparse.shape)
def test_sparse_csr_constructor(self):
crow_indices = [0, 2, 4]
col_indices = [0, 1, 0, 1]
values = [1, 2, 3, 4]
sparse = torch.sparse_csr_tensor(torch.tensor(crow_indices, dtype=torch.int32),
torch.tensor(col_indices, dtype=torch.int32),
torch.tensor(values), size=(2, 10), dtype=torch.float)
self.assertEqual((2, 10), sparse.shape)
self.assertEqual(torch.tensor(crow_indices, dtype=torch.int32), sparse.crow_indices())
def test_sparse_csr_print(self):
shape_nnz = [
((1000, 10), 10)
]
printed = []
for shape, nnz in shape_nnz:
values_shape = torch.Size((nnz,))
col_indices_shape = torch.Size((nnz,))
crow_indices_shape = torch.Size((shape[0] + 1,))
printed.append("# shape: {}".format(torch.Size(shape)))
printed.append("# nnz: {}".format(nnz))
printed.append("# crow_indices shape: {}".format(crow_indices_shape))
printed.append("# col_indices shape: {}".format(col_indices_shape))
printed.append("# values_shape: {}".format(values_shape))
x = self.gen_sparse_csr(shape, nnz)
printed.append("# sparse tensor")
printed.append(str(x))
printed.append("# _crow_indices")
printed.append(str(x.crow_indices()))
printed.append("# _col_indices")
printed.append(str(x.col_indices()))
printed.append("# _values")
printed.append(str(x.values()))
printed.append('')
self.assertEqual(len(printed) > 0, True)
def test_sparse_csr_from_dense(self):
sp = torch.tensor([[1, 2], [3, 4]]).to_sparse_csr()
self.assertEqual(torch.tensor([0, 2, 4], dtype=torch.int64), sp.crow_indices())
self.assertEqual(torch.tensor([0, 1, 0, 1], dtype=torch.int64), sp.col_indices())
self.assertEqual(torch.tensor([1, 2, 3, 4], dtype=torch.int64), sp.values())
dense = torch.tensor([[4, 5, 0], [0, 0, 0], [1, 0, 0]])
sparse = dense.to_sparse_csr()
self.assertEqual(torch.tensor([0, 2, 2, 3], dtype=torch.int64), sparse.crow_indices())
self.assertEqual(torch.tensor([0, 1, 0], dtype=torch.int64), sparse.col_indices())
self.assertEqual(torch.tensor([4, 5, 1]), sparse.values())
dense = torch.tensor([[0, 0, 0], [0, 0, 1], [1, 0, 0]])
sparse = dense.to_sparse_csr()
self.assertEqual(torch.tensor([0, 0, 1, 2], dtype=torch.int64), sparse.crow_indices())
self.assertEqual(torch.tensor([2, 0], dtype=torch.int64), sparse.col_indices())
self.assertEqual(torch.tensor([1, 1]), sparse.values())
dense = torch.tensor([[2, 2, 2], [2, 2, 2], [2, 2, 2]])
sparse = dense.to_sparse_csr()
self.assertEqual(torch.tensor([0, 3, 6, 9], dtype=torch.int64), sparse.crow_indices())
self.assertEqual(torch.tensor([0, 1, 2] * 3, dtype=torch.int64), sparse.col_indices())
self.assertEqual(torch.tensor([2] * 9), sparse.values())
def test_dense_convert(self):
size = (5, 5)
dense = torch.randn(size)
sparse = dense.to_sparse_csr()
self.assertEqual(sparse.to_dense(), dense)
size = (4, 6)
dense = torch.randn(size)
sparse = dense.to_sparse_csr()
self.assertEqual(sparse.to_dense(), dense)
crow_indices = torch.tensor([0, 3, 5])
col_indices = torch.tensor([0, 1, 2, 0, 1])
values = torch.tensor([1, 2, 1, 3, 4])
csr = torch.sparse_csr_tensor(crow_indices, col_indices,
values, dtype=torch.double)
dense = torch.tensor([[1, 2, 1], [3, 4, 0]], dtype=torch.double)
self.assertEqual(csr.to_dense(), dense)
def test_coo_to_csr_convert(self):
size = (5, 5)
dense = torch.randn(size)
sparse_coo = dense.to_sparse()
sparse_csr = sparse_coo.to_sparse_csr()
self.assertTrue(sparse_csr.is_sparse_csr)
self.assertEqual(sparse_csr.to_dense(), dense)
vec = torch.randn((5, 1))
coo_product = sparse_coo.matmul(vec)
csr_product = sparse_csr.matmul(vec)
self.assertEqual(coo_product, csr_product)
vec = torch.randn((100, 1))
index = self.index_tensor([
[1, 0, 35, 14, 39, 6, 71, 66, 40, 27],
[92, 31, 62, 50, 22, 65, 89, 74, 56, 34],
])
values = self.value_tensor([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
coo = torch.sparse_coo_tensor(index, values, torch.Size([100, 100]))
csr = coo.to_sparse_csr()
self.assertEqual(coo.matmul(vec), csr.matmul(vec))
def test_mkl_matvec_warnings(self):
if torch.has_mkl:
sp = torch.sparse_csr_tensor(torch.tensor([0, 2, 4]),
torch.tensor([0, 1, 0, 1]),
torch.tensor([1, 2, 3, 4], dtype=torch.double))
vec = torch.randn((2, 1))
with warnings.catch_warnings(record=True) as w:
sp.matmul(vec)
self.assertEqual(len(w), 2)
def test_dense_convert_error(self):
size = (4, 2, 4)
dense = torch.randn(size)
with self.assertRaisesRegex(RuntimeError, "Only 2D"):
sparse = dense.to_sparse_csr()
def test_csr_matvec(self):
side = 100
csr = self.gen_sparse_csr((side, side), 1000)
vec = torch.randn(side, dtype=torch.double)
res = csr.matmul(vec)
expected = csr.to_dense().matmul(vec)
self.assertEqual(res, expected)
bad_vec = torch.randn(side + 10, dtype=torch.double)
with self.assertRaisesRegex(RuntimeError, "mv: expected"):
csr.matmul(bad_vec)
def test_coo_csr_conversion(self):
size = (5, 5)
dense = torch.randn(size)
coo_sparse = dense.to_sparse()
csr_sparse = coo_sparse.to_sparse_csr()
self.assertEqual(csr_sparse.to_dense(), dense)
if __name__ == '__main__':
run_tests()