30
30
*************************************************************************/
31
31
32
32
#include "bcmath.h"
33
+ #include "convert.h"
34
+ #include "private.h"
33
35
#include <assert.h>
34
36
#include <stdbool.h>
35
37
#include <stddef.h>
36
38
37
- void bc_square_ex (bc_num n1 , bc_num * result , size_t scale_min ) {
38
- bc_num square_ex = bc_square (n1 , scale_min );
39
- bc_free_num (result );
40
- * (result ) = square_ex ;
39
+ static inline size_t bc_multiply_vector_ex (
40
+ BC_VECTOR * * n1_vector , size_t n1_arr_size , BC_VECTOR * n2_vector , size_t n2_arr_size , BC_VECTOR * * result_vector )
41
+ {
42
+ size_t result_arr_size = n1_arr_size + n2_arr_size ;
43
+ bc_multiply_vector (* n1_vector , n1_arr_size , n2_vector , n2_arr_size , * result_vector , result_arr_size );
44
+
45
+ /* Eliminate extra zeros because they increase the number of calculations. */
46
+ while ((* result_vector )[result_arr_size - 1 ] == 0 ) {
47
+ result_arr_size -- ;
48
+ }
49
+
50
+ /* Swap n1_vector and result_vector. */
51
+ BC_VECTOR * tmp = * n1_vector ;
52
+ * n1_vector = * result_vector ;
53
+ * result_vector = tmp ;
54
+
55
+ return result_arr_size ;
56
+ }
57
+
58
+ static inline size_t bc_square_vector_ex (BC_VECTOR * * base_vector , size_t base_arr_size , BC_VECTOR * * result_vector )
59
+ {
60
+ return bc_multiply_vector_ex (base_vector , base_arr_size , * base_vector , base_arr_size , result_vector );
61
+ }
62
+
63
+ /* Use "exponentiation by squaring". This is the fast path when the results are small. */
64
+ static inline bc_num bc_fast_raise (
65
+ const char * base_end , long exponent , size_t base_len , size_t power_len , size_t power_scale , size_t power_full_len )
66
+ {
67
+ BC_VECTOR base_vector = 0 ;
68
+
69
+ /* Convert to BC_VECTOR[] */
70
+ bc_convert_to_vector (& base_vector , base_end , base_len );
71
+
72
+ while ((exponent & 1 ) == 0 ) {
73
+ base_vector *= base_vector ;
74
+ exponent >>= 1 ;
75
+ }
76
+
77
+ /* copy base to power */
78
+ BC_VECTOR power_vector = base_vector ;
79
+ exponent >>= 1 ;
80
+
81
+ while (exponent > 0 ) {
82
+ base_vector *= base_vector ;
83
+ if ((exponent & 1 ) == 1 ) {
84
+ power_vector *= base_vector ;
85
+ }
86
+ exponent >>= 1 ;
87
+ }
88
+
89
+ bc_num power = bc_new_num_nonzeroed (power_len , power_scale );
90
+ char * pptr = power -> n_value ;
91
+ char * pend = pptr + power_full_len - 1 ;
92
+
93
+ while (pend >= pptr ) {
94
+ * pend -- = power_vector % BASE ;
95
+ power_vector /= BASE ;
96
+ }
97
+ return power ;
98
+ }
99
+
100
+ /* Use "exponentiation by squaring". This is the standard path. */
101
+ static bc_num bc_standard_raise (
102
+ const char * base_end , long exponent , size_t base_len , size_t power_len , size_t power_scale , size_t power_full_len )
103
+ {
104
+ size_t base_arr_size = (base_len + BC_VECTOR_SIZE - 1 ) / BC_VECTOR_SIZE ;
105
+ size_t power_arr_size = base_arr_size * exponent ;
106
+
107
+ /* The allocated memory area is reused on a rotational basis, so the same size is required. */
108
+ BC_VECTOR * buf = safe_emalloc (power_arr_size * 3 , sizeof (BC_VECTOR ), 0 );
109
+ BC_VECTOR * base_vector = buf ;
110
+ BC_VECTOR * power_vector = base_vector + power_arr_size ;
111
+ BC_VECTOR * tmp_result_vector = power_vector + power_arr_size ;
112
+
113
+ /* Convert to BC_VECTOR[] */
114
+ bc_convert_to_vector (base_vector , base_end , base_len );
115
+
116
+ while ((exponent & 1 ) == 0 ) {
117
+ base_arr_size = bc_square_vector_ex (& base_vector , base_arr_size , & tmp_result_vector );
118
+ exponent >>= 1 ;
119
+ }
120
+
121
+ /* copy base to power */
122
+ size_t tmp_power_arr_size = base_arr_size ;
123
+ for (size_t i = 0 ; i < base_arr_size ; i ++ ) {
124
+ power_vector [i ] = base_vector [i ];
125
+ }
126
+ exponent >>= 1 ;
127
+
128
+ while (exponent > 0 ) {
129
+ base_arr_size = bc_square_vector_ex (& base_vector , base_arr_size , & tmp_result_vector );
130
+ if ((exponent & 1 ) == 1 ) {
131
+ tmp_power_arr_size = bc_multiply_vector_ex (& power_vector , tmp_power_arr_size , base_vector , base_arr_size , & tmp_result_vector );
132
+ }
133
+ exponent >>= 1 ;
134
+ }
135
+ power_arr_size = tmp_power_arr_size ;
136
+
137
+ /* Convert to bc_num */
138
+ size_t calc_power_full_len = power_arr_size * BC_VECTOR_SIZE ;
139
+ size_t power_leading_zeros = 0 ;
140
+ if (calc_power_full_len > power_scale ) {
141
+ power_len = calc_power_full_len - power_scale ;
142
+ power_full_len = calc_power_full_len ;
143
+ } else {
144
+ power_len = 1 ;
145
+ power_full_len = power_scale + 1 ;
146
+ power_leading_zeros = power_scale - calc_power_full_len + 1 ;
147
+ }
148
+ bc_num power = bc_new_num_nonzeroed (power_len , power_scale );
149
+
150
+ char * pptr = power -> n_value ;
151
+ char * pend = pptr + power_full_len - 1 ;
152
+
153
+ /* Pad with leading zeros if necessary. */
154
+ while (power_leading_zeros > sizeof (uint32_t )) {
155
+ bc_write_bcd_representation (0 , pptr );
156
+ pptr += sizeof (uint32_t );
157
+ power_leading_zeros -= sizeof (uint32_t );
158
+ }
159
+ for (size_t i = 0 ; i < power_leading_zeros ; i ++ ) {
160
+ * pptr ++ = 0 ;
161
+ }
162
+
163
+ size_t i = 0 ;
164
+ while (i < power_arr_size - 1 ) {
165
+ #if BC_VECTOR_SIZE == 4
166
+ bc_write_bcd_representation (power_vector [i ], pend - 3 );
167
+ pend -= 4 ;
168
+ #else
169
+ bc_write_bcd_representation (power_vector [i ] / 10000 , pend - 7 );
170
+ bc_write_bcd_representation (power_vector [i ] % 10000 , pend - 3 );
171
+ pend -= 8 ;
172
+ #endif
173
+ i ++ ;
174
+ }
175
+
176
+ while (pend >= pptr ) {
177
+ * pend -- = power_vector [i ] % BASE ;
178
+ power_vector [i ] /= BASE ;
179
+ }
180
+
181
+ efree (buf );
182
+
183
+ return power ;
41
184
}
42
185
43
186
/* Raise "base" to the "exponent" power. The result is placed in RESULT.
44
187
Maximum exponent is LONG_MAX. If a "exponent" is not an integer,
45
188
only the integer part is used. */
46
189
bool bc_raise (bc_num base , long exponent , bc_num * result , size_t scale ) {
47
- bc_num temp , power ;
48
190
size_t rscale ;
49
- size_t pwrscale ;
50
- size_t calcscale ;
51
191
bool is_neg ;
52
192
53
193
/* Special case if exponent is a zero. */
@@ -74,43 +214,47 @@ bool bc_raise(bc_num base, long exponent, bc_num *result, size_t scale) {
74
214
return !is_neg ;
75
215
}
76
216
77
- /* Set initial value of temp. */
78
- power = bc_copy_num (base );
79
- pwrscale = base -> n_scale ;
80
- while ((exponent & 1 ) == 0 ) {
81
- pwrscale = 2 * pwrscale ;
82
- bc_square_ex (power , & power , pwrscale );
83
- exponent = exponent >> 1 ;
217
+ size_t base_len = base -> n_len + base -> n_scale ;
218
+ size_t power_len = base -> n_len * exponent ;
219
+ size_t power_scale = base -> n_scale * exponent ;
220
+ size_t power_full_len = power_len + power_scale ;
221
+
222
+ sign power_sign ;
223
+ if (base -> n_sign == MINUS && (exponent & 1 ) == 1 ) {
224
+ power_sign = MINUS ;
225
+ } else {
226
+ power_sign = PLUS ;
84
227
}
85
- temp = bc_copy_num (power );
86
- calcscale = pwrscale ;
87
- exponent = exponent >> 1 ;
88
228
89
- /* Do the calculation. */
90
- while (exponent > 0 ) {
91
- pwrscale = 2 * pwrscale ;
92
- bc_square_ex (power , & power , pwrscale );
93
- if ((exponent & 1 ) == 1 ) {
94
- calcscale = pwrscale + calcscale ;
95
- bc_multiply_ex (temp , power , & temp , calcscale );
96
- }
97
- exponent = exponent >> 1 ;
229
+ const char * base_end = base -> n_value + base_len - 1 ;
230
+
231
+ bc_num power ;
232
+ if (base_len <= BC_VECTOR_SIZE && power_full_len <= BC_VECTOR_SIZE * 2 ) {
233
+ power = bc_fast_raise (base_end , exponent , base_len , power_len , power_scale , power_full_len );
234
+ } else {
235
+ power = bc_standard_raise (base_end , exponent , base_len , power_len , power_scale , power_full_len );
236
+ }
237
+
238
+ _bc_rm_leading_zeros (power );
239
+ if (bc_is_zero (power )) {
240
+ power -> n_sign = PLUS ;
241
+ power -> n_scale = 0 ;
242
+ } else {
243
+ power -> n_sign = power_sign ;
98
244
}
99
245
100
246
/* Assign the value. */
101
247
if (is_neg ) {
102
- if (bc_divide (BCG (_one_ ), temp , result , rscale ) == false) {
103
- bc_free_num (& temp );
248
+ if (bc_divide (BCG (_one_ ), power , result , rscale ) == false) {
104
249
bc_free_num (& power );
105
250
return false;
106
251
}
107
- bc_free_num (& temp );
252
+ bc_free_num (& power );
108
253
} else {
109
254
bc_free_num (result );
110
- * result = temp ;
255
+ * result = power ;
111
256
(* result )-> n_scale = MIN (scale , (* result )-> n_scale );
112
257
}
113
- bc_free_num (& power );
114
258
return true;
115
259
}
116
260
0 commit comments