1- % \documentclass[extra]{gji}
2- \documentclass [extra, referee ]{gji }
1+ \documentclass [twocolumn ]{article }
32
3+ \newcommand {\Title }{
4+ Gravitational field calculation in spherical coordinates using variable
5+ densities in depth
6+ }
7+ \newcommand {\Author }{S.R. Soler, A. Pesce, M.E. Gimenez, L. Uieda}
8+ \newcommand {\AuthorAffil }{
9+ {\large
10+ Santiago R. Soler$ ^{1,2,*}$ , Agustina Pesce$ ^{1,2}$ ,
11+ Mario E. Gimenez$ ^{1,2}$ , and Leonardo Uieda$ ^3 $
12+ }
13+ \\ [0.4cm]
14+ {\small $ ^1 $ CONICET, Argentina}
15+ \\
16+ {\small $ ^2 $ Instituto Geofísico Sismológico Volponi, Universidad Nacional de San Juan, Argentina}
17+ \\
18+ {\small $ ^3 $ Department of Earth Sciences, SOEST, University of Hawai'i at M\= {a}noa, USA}
19+ \\
20+ {
\small $ ^*$ e-mail:
[email protected] }
21+ }
22+ \newcommand {\DOI }{doi:\href {https://doi.org/10.1093/gji/ggz277}{10.1093/gji/ggz277}}
23+ \newcommand {\DOILink }{\href {https://doi.org/10.1093/gji/ggz277}{doi.org/10.1093/gji/ggz277}}
24+
25+
26+ \usepackage [left=0.7in,right=0.7in,top=1in,bottom=1in ]{geometry }
27+ \setlength {\columnsep }{2\columnsep }
428\usepackage [utf8 ]{inputenc }
529\usepackage {timet }
630\usepackage {amsmath }
731\usepackage {graphicx }
8-
32+ \usepackage [round ]{natbib }
33+ \usepackage {fixltx2e }
934\usepackage {url }
1035\usepackage [pdftex,colorlinks=true ]{hyperref }
1136\hypersetup {
1237 allcolors=blue,
38+ pdftitle={\Title },
39+ pdfauthor={\Author },
1340}
14-
41+ \usepackage {fancyhdr }
42+ \pagestyle {fancy}
43+ \fancyhf {}
44+ \lhead {
45+ \fontsize {9pt}{12pt}\selectfont
46+ \Author {}, 2019. \DOI {}
47+ }
48+ \rhead {\fontsize {9pt}{12pt}\selectfont \thepage }
49+ \renewcommand {\headrulewidth }{0pt}
1550
1651\begin {document }
1752
18- \title [Variable Density Tesseroids]{
19- Gravitational field calculation in spherical coordinates using variable
20- densities in depth
53+ \title {\Title }
54+ \author {\AuthorAffil }
55+ \date {
56+ \normalsize
57+ Accepted 2019 June 05. Received 2019 May 10; in original form 2018 December 29
58+ \\ [0.4cm]
59+ This is a pre-copyedited, author-produced PDF of an article accepted for
60+ publication in \textit {Geophysical Journal International } following peer review.
61+ The version of record
62+ `` \textit {Soler, S. R., Pesce, A., Gimenez, M. E., \& Uieda, L., 2019.
63+ \Title {}, Geophysical Journal International, \DOI {} }\ ''
64+ is available online at: \DOILink {}
2165}
22- \author [S.R. Soler, A. Pesce, M.E. Gimenez, and L. Uieda]{
23- Santiago R. Soler$ ^{1,2}$ , Agustina Pesce$ ^{1,2}$ ,
24- Mario E. Gimenez$ ^{1,2}$ , and Leonardo Uieda$ ^3 $ \\
25- $ ^1 $ CONICET, Argentina.~e-mail:
[email protected] \\ 26- $ ^2 $ Instituto Geofísico Sismológico Volponi, Universidad Nacional de
27- San Juan, Argentina\\
28- $ ^3 $ Department of Earth Sciences, SOEST, University of Hawai‘i at
29- M\= {a}noa, Honolulu, Hawaii, USA
30- }
31-
32-
3366\maketitle
3467
35- \begin {summary }
68+ \begin {abstract }
3669We present a new methodology to compute the gravitational fields generated by
3770tesseroids (spherical prisms) whose density varies with depth according to
3871an arbitrary continuous function.
6396the accuracy of the results at the expense of computational speed.
6497Lastly, we apply this new methodology to model the Neuqu\' en Basin, a foreland basin in
6598Argentina with a maximum depth of over 5000~m, using an exponential density function.
66- \end {summary }
67-
68- \begin {keywords }
99+ \\ [0.5cm]
100+ \textbf {Keywords: }
69101Numerical modelling, Numerical approximations and analysis, Gravity anomalies
70102and Earth structure, Satellite gravity
71- \end {keywords }
103+ \end {abstract }
72104
73105
74106\section {Introduction }
@@ -112,7 +144,7 @@ \section{Introduction}
112144
113145\begin {figure }
114146\centering
115- \includegraphics [width=0.6 \linewidth ]{figures/tesseroid-uieda.pdf}
147+ \includegraphics [width=\linewidth ]{figures/tesseroid-uieda.pdf}
116148\caption {
117149 A tesseroid (spherical prism) in a geocentric spherical coordinate system, with a
118150 computation point $ P$ and its local north oriented Cartesian coordinate system.
@@ -267,7 +299,7 @@ \subsection{Gauss-Legendre Quadrature integration}
267299included in the integration and evaluated on the Legendre polynomial roots
268300(i.e.~quadrature nodes).
269301
270- \iftwocol {
302+ % \iftwocol{
271303\begin {equation }
272304 \begin {split }
273305 \int\limits _{\lambda _1}^{\lambda _2}
@@ -284,21 +316,21 @@ \subsection{Gauss-Legendre Quadrature integration}
284316 \end {split }
285317\label {eq:glq-var-dens }
286318\end {equation }
287- }{
288- \begin {equation }
289- \int\limits _{\lambda _1}^{\lambda _2}
290- \int\limits _{\phi _1}^{\phi _2}
291- \int\limits _{r_1}^{r_2}
292- \rho (r') f(r', \phi ', \lambda ')
293- dr' d\phi ' d\lambda ' \approx
294- A
295- \sum\limits _{i=1}^{N^r}
296- \sum\limits _{j=1}^{N^\phi }
297- \sum\limits _{k=1}^{N^\lambda }
298- W_i^r W_j^\phi W_k^\lambda \rho (r_i) f(r_i, \phi _j, \lambda _k),
299- \label {eq:glq-var-dens }
300- \end {equation }
301- }
319+ % }{
320+ % \begin{equation}
321+ % \int\limits_{\lambda_1}^{\lambda_2}
322+ % \int\limits_{\phi_1}^{\phi_2}
323+ % \int\limits_{r_1}^{r_2}
324+ % \rho(r') f(r', \phi', \lambda')
325+ % dr' d\phi' d\lambda' \approx
326+ % A
327+ % \sum\limits_{i=1}^{N^r}
328+ % \sum\limits_{j=1}^{N^\phi}
329+ % \sum\limits_{k=1}^{N^\lambda}
330+ % W_i^r W_j^\phi W_k^\lambda \rho(r_i) f(r_i, \phi_j, \lambda_k),
331+ % \label{eq:glq-var-dens}
332+ % \end{equation}
333+ % }
302334
303335\noindent where
304336
@@ -679,8 +711,10 @@ \section{Determination of the distance-size and delta ratios}
679711 The horizontal dimensions of the tesseroids and the total number of
680712 tesseroids in the shell model are given in the latitudinal and longitudinal
681713 dimensions, respectively.
714+ \newline
682715}
683716\label {tab:shell-models }
717+ \centering
684718\begin {tabular }{rccccc}
685719 Thickness & Tesseroid size & Number of tesseroids \\ \hline
686720 0.1 km & $ 30 ^\circ \times 30 ^\circ $ & $ 6 \times 12 = 72 $ \\
@@ -691,13 +725,15 @@ \section{Determination of the distance-size and delta ratios}
691725\end {tabular }
692726\end {table }
693727
694- \begin {table }
728+ \begin {table* }
695729\caption {
696730 Description of the computation grids used to characterize the accuracy of the
697731 numerical integration.
698732 Grid height is defined above the mean Earth radius.
733+ \newline
699734}
700735\label {tab:grids }
736+ \centering
701737\begin {tabular }{lccc}
702738 Name & Grid spacing & Grid region (degrees) & Grid height (km)
703739 \\ \hline
@@ -706,7 +742,7 @@ \section{Determination of the distance-size and delta ratios}
706742 Global & $ 10 ^\circ $ & 180W / 180E / 90S / 90N & 0 \\
707743 Satellite & $ 10 ^\circ $ & 180W / 180E / 90S / 90N & 260 \\
708744\end {tabular }
709- \end {table }
745+ \end {table* }
710746
711747
712748\subsection {Linear Density }
@@ -821,11 +857,11 @@ \subsection{Exponential Density}
821857
822858\begin {figure }
823859\centering
824- \iftwocol {
860+ % \iftwocol{
825861\includegraphics [width=\linewidth ]{figures/exponential-densities.pdf}
826- }{
827- \includegraphics [width=0.5\linewidth ]{figures/exponential-densities.pdf}
828- }
862+ % }{
863+ % \includegraphics[width=0.5\linewidth]{figures/exponential-densities.pdf}
864+ % }
829865\caption {
830866 Exponential density functions assigned to the spherical shell models for
831867 $ \delta $ ratio determination.
@@ -878,13 +914,13 @@ \subsubsection{$D$-$\delta$ space exploration}
878914
879915\begin {figure }
880916\centering
881- \iftwocol {
917+ % \iftwocol{
882918\includegraphics [width=\linewidth ]
883919 {figures/grid-search.pdf}
884- }{
885- \includegraphics [width=0.5\linewidth ]
886- {figures/grid-search.pdf}
887- }
920+ % }{
921+ % \includegraphics[width=0.5\linewidth]
922+ % {figures/grid-search.pdf}
923+ % }
888924\caption {
889925 Numerical error exploration in the $ D$ -$ \delta $ space.
890926 The percentage difference values were obtained from the comparison between the
@@ -988,11 +1024,11 @@ \subsection{Sinusoidal Density}
9881024
9891025\begin {figure }
9901026\centering
991- \iftwocol {
1027+ % \iftwocol{
9921028\includegraphics [width=\linewidth ]{figures/sine-densities.pdf}
993- }{
994- \includegraphics [width=0.5\linewidth ]{figures/sine-densities.pdf}
995- }
1029+ % }{
1030+ % \includegraphics[width=0.5\linewidth]{figures/sine-densities.pdf}
1031+ % }
9961032\caption {
9971033 Sinusoidal density functions assigned to the spherical shells in the $ \delta $ ratio
9981034 determination.
@@ -1110,11 +1146,11 @@ \section{Application to the Neuqu\'en Basin}
11101146
11111147\begin {figure }
11121148\centering
1113- \iftwocol {
1149+ % \iftwocol{
11141150\includegraphics [width=\linewidth ]{figures/neuquen-basin-densities.pdf}
1115- }{
1116- \includegraphics [width=0.5\linewidth ]{figures/neuquen-basin-densities.pdf}
1117- }
1151+ % }{
1152+ % \includegraphics[width=0.5\linewidth]{figures/neuquen-basin-densities.pdf}
1153+ % }
11181154\caption {
11191155 Linear and exponential densities used to compute the gravitational fields generated
11201156 by a tesseroid model of the Neuqu\' en sedimentary basin.
@@ -1426,10 +1462,10 @@ \subsection{Exponential density}
14261462
14271463\begin {equation }
14281464 \begin {split }
1429- V_\text {exp}(r) = \frac {4\pi G}{r} \frac {A}{k^3} \Big [
1430- & \left ( R_1^2 k^2 + 2 R_1 k + 2 \right ) e^{- k (R_1 - R)} - \\
1431- & \left ( R_2^2 k^2 + 2 R_2 k + 2 \right ) e^{- k (R_2 - R)}
1432- \Big ].
1465+ V_\text {exp}(r) = \frac {4\pi G}{r} \frac {A}{k^3} \Big [
1466+ & \left ( R_1^2 k^2 + 2 R_1 k + 2 \right ) e^{- k (R_1 - R)} - \\
1467+ & \left ( R_2^2 k^2 + 2 R_2 k + 2 \right ) e^{- k (R_2 - R)}
1468+ \Big ].
14331469 \end {split }
14341470\end {equation }
14351471
@@ -1448,10 +1484,12 @@ \subsection{Sinusoidal density}
14481484
14491485\begin {equation }
14501486 \begin {split }
1451- V_\text {sine}(r) = \frac {4\pi G}{r} \frac {A}{k^3} \Big [
1452- & (2 - k^2 R_2^2) \cos (k(R_2 - R)) + 2 k R_2 \sin (k(R_2 - R)) - \\
1453- & (2 - k^2 R_1^2) \cos (k(R_1 - R)) - 2 k R_1 \sin (k(R_1 - R))
1454- \Big ].
1487+ V_\text {sine}(r) = \frac {4\pi G}{r} \frac {A}{k^3} \Big [
1488+ & (2 - k^2 R_2^2) \cos (k(R_2 - R)) + \\
1489+ & 2 k R_2 \sin (k(R_2 - R)) - \\
1490+ & (2 - k^2 R_1^2) \cos (k(R_1 - R)) - \\
1491+ & 2 k R_1 \sin (k(R_1 - R))
1492+ \Big ].
14551493 \end {split }
14561494\end {equation }
14571495
0 commit comments