Skip to content

Commit d62c479

Browse files
leouiedasantisoler
authored andcommitted
Format a version for the EarthArxiv (#63)
Use the Latex article class instead of GJI and insert the self-archiving text from the publisher. Add citation information for version of record and its DOI. Add DOI link and citation to README. Better formatting for citation in README.
1 parent 39ce45c commit d62c479

File tree

2 files changed

+118
-70
lines changed

2 files changed

+118
-70
lines changed

README.md

Lines changed: 13 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -7,8 +7,18 @@ Mario E. Gimenez,
77
Leonardo Uieda
88

99
This paper has been accepted for publication in *Geophysical Journal International*.
10+
The version of record
1011

11-
An archived version of this repository is available at
12+
> Soler, S. R., Pesce, A., Gimenez, M. E., & Uieda, L., 2019. Gravitational field
13+
> calculation in spherical coordinates using variable densities in depth,
14+
> *Geophysical Journal International*,
15+
> doi:[10.1093/gji/ggz277](https://doi.org/10.1093/gji/ggz277)
16+
17+
is available online at: [doi.org/10.1093/gji/ggz277](https://doi.org/10.1093/gji/ggz277)
18+
19+
**This repository contains the data and code used to produce all results and figures shown
20+
in the paper.**
21+
An archived version of this repository is available at
1222
[doi.org/10.6084/m9.figshare.8239622](https://doi.org/10.6084/m9.figshare.8239622)
1323

1424
We introduce a novel methodology for gravity forward modeling in spherical coordinates
@@ -148,9 +158,9 @@ All source code is made available under a BSD 3-clause license. You can freely
148158
use and modify the code, without warranty, so long as you provide attribution
149159
to the authors. See `LICENSE.md` for the full license text.
150160
151-
Data and the results of numerical tests are available under the
161+
Data and the results of numerical tests are available under the
152162
[Creative Commons Attribution 4.0 License (CC-BY)](https://creativecommons.org/licenses/by/4.0/).
153163
154-
The manuscript text and figures are not open source. The authors reserve the
164+
The manuscript text and figures are not open source. The authors reserve the
155165
rights to the article content, which has been accepted for publication in
156166
Geophysical Journal International.

manuscript/manuscript.tex

Lines changed: 105 additions & 67 deletions
Original file line numberDiff line numberDiff line change
@@ -1,38 +1,71 @@
1-
%\documentclass[extra]{gji}
2-
\documentclass[extra, referee]{gji}
1+
\documentclass[twocolumn]{article}
32

3+
\newcommand{\Title}{
4+
Gravitational field calculation in spherical coordinates using variable
5+
densities in depth
6+
}
7+
\newcommand{\Author}{S.R. Soler, A. Pesce, M.E. Gimenez, L. Uieda}
8+
\newcommand{\AuthorAffil}{
9+
{\large
10+
Santiago R. Soler$^{1,2,*}$, Agustina Pesce$^{1,2}$,
11+
Mario E. Gimenez$^{1,2}$, and Leonardo Uieda$^3$
12+
}
13+
\\[0.4cm]
14+
{\small $^1$ CONICET, Argentina}
15+
\\
16+
{\small $^2$ Instituto Geofísico Sismológico Volponi, Universidad Nacional de San Juan, Argentina}
17+
\\
18+
{\small $^3$ Department of Earth Sciences, SOEST, University of Hawai'i at M\={a}noa, USA}
19+
\\
20+
{\small $^*$ e-mail: [email protected]}
21+
}
22+
\newcommand{\DOI}{doi:\href{https://doi.org/10.1093/gji/ggz277}{10.1093/gji/ggz277}}
23+
\newcommand{\DOILink}{\href{https://doi.org/10.1093/gji/ggz277}{doi.org/10.1093/gji/ggz277}}
24+
25+
26+
\usepackage[left=0.7in,right=0.7in,top=1in,bottom=1in]{geometry}
27+
\setlength{\columnsep}{2\columnsep}
428
\usepackage[utf8]{inputenc}
529
\usepackage{timet}
630
\usepackage{amsmath}
731
\usepackage{graphicx}
8-
32+
\usepackage[round]{natbib}
33+
\usepackage{fixltx2e}
934
\usepackage{url}
1035
\usepackage[pdftex,colorlinks=true]{hyperref}
1136
\hypersetup{
1237
allcolors=blue,
38+
pdftitle={\Title},
39+
pdfauthor={\Author},
1340
}
14-
41+
\usepackage{fancyhdr}
42+
\pagestyle{fancy}
43+
\fancyhf{}
44+
\lhead{
45+
\fontsize{9pt}{12pt}\selectfont
46+
\Author{}, 2019. \DOI{}
47+
}
48+
\rhead{\fontsize{9pt}{12pt}\selectfont \thepage}
49+
\renewcommand{\headrulewidth}{0pt}
1550

1651
\begin{document}
1752

18-
\title[Variable Density Tesseroids]{
19-
Gravitational field calculation in spherical coordinates using variable
20-
densities in depth
53+
\title{\Title}
54+
\author{\AuthorAffil}
55+
\date{
56+
\normalsize
57+
Accepted 2019 June 05. Received 2019 May 10; in original form 2018 December 29
58+
\\[0.4cm]
59+
This is a pre-copyedited, author-produced PDF of an article accepted for
60+
publication in \textit{Geophysical Journal International} following peer review.
61+
The version of record
62+
``\textit{Soler, S. R., Pesce, A., Gimenez, M. E., \& Uieda, L., 2019.
63+
\Title{}, Geophysical Journal International, \DOI{}}\ ''
64+
is available online at: \DOILink{}
2165
}
22-
\author[S.R. Soler, A. Pesce, M.E. Gimenez, and L. Uieda]{
23-
Santiago R. Soler$^{1,2}$, Agustina Pesce$^{1,2}$,
24-
Mario E. Gimenez$^{1,2}$, and Leonardo Uieda$^3$ \\
25-
$^1$CONICET, Argentina.~e-mail: [email protected]\\
26-
$^2$Instituto Geofísico Sismológico Volponi, Universidad Nacional de
27-
San Juan, Argentina\\
28-
$^3$Department of Earth Sciences, SOEST, University of Hawai‘i at
29-
M\={a}noa, Honolulu, Hawaii, USA
30-
}
31-
32-
3366
\maketitle
3467

35-
\begin{summary}
68+
\begin{abstract}
3669
We present a new methodology to compute the gravitational fields generated by
3770
tesseroids (spherical prisms) whose density varies with depth according to
3871
an arbitrary continuous function.
@@ -63,12 +96,11 @@
6396
the accuracy of the results at the expense of computational speed.
6497
Lastly, we apply this new methodology to model the Neuqu\'en Basin, a foreland basin in
6598
Argentina with a maximum depth of over 5000~m, using an exponential density function.
66-
\end{summary}
67-
68-
\begin{keywords}
99+
\\[0.5cm]
100+
\textbf{Keywords:}
69101
Numerical modelling, Numerical approximations and analysis, Gravity anomalies
70102
and Earth structure, Satellite gravity
71-
\end{keywords}
103+
\end{abstract}
72104

73105

74106
\section{Introduction}
@@ -112,7 +144,7 @@ \section{Introduction}
112144

113145
\begin{figure}
114146
\centering
115-
\includegraphics[width=0.6\linewidth]{figures/tesseroid-uieda.pdf}
147+
\includegraphics[width=\linewidth]{figures/tesseroid-uieda.pdf}
116148
\caption{
117149
A tesseroid (spherical prism) in a geocentric spherical coordinate system, with a
118150
computation point $P$ and its local north oriented Cartesian coordinate system.
@@ -267,7 +299,7 @@ \subsection{Gauss-Legendre Quadrature integration}
267299
included in the integration and evaluated on the Legendre polynomial roots
268300
(i.e.~quadrature nodes).
269301

270-
\iftwocol{
302+
%\iftwocol{
271303
\begin{equation}
272304
\begin{split}
273305
\int\limits_{\lambda_1}^{\lambda_2}
@@ -284,21 +316,21 @@ \subsection{Gauss-Legendre Quadrature integration}
284316
\end{split}
285317
\label{eq:glq-var-dens}
286318
\end{equation}
287-
}{
288-
\begin{equation}
289-
\int\limits_{\lambda_1}^{\lambda_2}
290-
\int\limits_{\phi_1}^{\phi_2}
291-
\int\limits_{r_1}^{r_2}
292-
\rho(r') f(r', \phi', \lambda')
293-
dr' d\phi' d\lambda' \approx
294-
A
295-
\sum\limits_{i=1}^{N^r}
296-
\sum\limits_{j=1}^{N^\phi}
297-
\sum\limits_{k=1}^{N^\lambda}
298-
W_i^r W_j^\phi W_k^\lambda \rho(r_i) f(r_i, \phi_j, \lambda_k),
299-
\label{eq:glq-var-dens}
300-
\end{equation}
301-
}
319+
%}{
320+
%\begin{equation}
321+
%\int\limits_{\lambda_1}^{\lambda_2}
322+
%\int\limits_{\phi_1}^{\phi_2}
323+
%\int\limits_{r_1}^{r_2}
324+
%\rho(r') f(r', \phi', \lambda')
325+
%dr' d\phi' d\lambda' \approx
326+
%A
327+
%\sum\limits_{i=1}^{N^r}
328+
%\sum\limits_{j=1}^{N^\phi}
329+
%\sum\limits_{k=1}^{N^\lambda}
330+
%W_i^r W_j^\phi W_k^\lambda \rho(r_i) f(r_i, \phi_j, \lambda_k),
331+
%\label{eq:glq-var-dens}
332+
%\end{equation}
333+
%}
302334

303335
\noindent where
304336

@@ -679,8 +711,10 @@ \section{Determination of the distance-size and delta ratios}
679711
The horizontal dimensions of the tesseroids and the total number of
680712
tesseroids in the shell model are given in the latitudinal and longitudinal
681713
dimensions, respectively.
714+
\newline
682715
}
683716
\label{tab:shell-models}
717+
\centering
684718
\begin{tabular}{rccccc}
685719
Thickness & Tesseroid size & Number of tesseroids \\ \hline
686720
0.1 km & $30^\circ \times 30^\circ$ & $6 \times 12 = 72$ \\
@@ -691,13 +725,15 @@ \section{Determination of the distance-size and delta ratios}
691725
\end{tabular}
692726
\end{table}
693727

694-
\begin{table}
728+
\begin{table*}
695729
\caption{
696730
Description of the computation grids used to characterize the accuracy of the
697731
numerical integration.
698732
Grid height is defined above the mean Earth radius.
733+
\newline
699734
}
700735
\label{tab:grids}
736+
\centering
701737
\begin{tabular}{lccc}
702738
Name & Grid spacing & Grid region (degrees) & Grid height (km)
703739
\\ \hline
@@ -706,7 +742,7 @@ \section{Determination of the distance-size and delta ratios}
706742
Global & $ 10^\circ$ & 180W / 180E / 90S / 90N & 0 \\
707743
Satellite & $ 10^\circ$ & 180W / 180E / 90S / 90N & 260 \\
708744
\end{tabular}
709-
\end{table}
745+
\end{table*}
710746

711747

712748
\subsection{Linear Density}
@@ -821,11 +857,11 @@ \subsection{Exponential Density}
821857

822858
\begin{figure}
823859
\centering
824-
\iftwocol{
860+
%\iftwocol{
825861
\includegraphics[width=\linewidth]{figures/exponential-densities.pdf}
826-
}{
827-
\includegraphics[width=0.5\linewidth]{figures/exponential-densities.pdf}
828-
}
862+
%}{
863+
%\includegraphics[width=0.5\linewidth]{figures/exponential-densities.pdf}
864+
%}
829865
\caption{
830866
Exponential density functions assigned to the spherical shell models for
831867
$\delta$ ratio determination.
@@ -878,13 +914,13 @@ \subsubsection{$D$-$\delta$ space exploration}
878914

879915
\begin{figure}
880916
\centering
881-
\iftwocol{
917+
%\iftwocol{
882918
\includegraphics[width=\linewidth]
883919
{figures/grid-search.pdf}
884-
}{
885-
\includegraphics[width=0.5\linewidth]
886-
{figures/grid-search.pdf}
887-
}
920+
%}{
921+
%\includegraphics[width=0.5\linewidth]
922+
%{figures/grid-search.pdf}
923+
%}
888924
\caption{
889925
Numerical error exploration in the $D$-$\delta$ space.
890926
The percentage difference values were obtained from the comparison between the
@@ -988,11 +1024,11 @@ \subsection{Sinusoidal Density}
9881024

9891025
\begin{figure}
9901026
\centering
991-
\iftwocol{
1027+
%\iftwocol{
9921028
\includegraphics[width=\linewidth]{figures/sine-densities.pdf}
993-
}{
994-
\includegraphics[width=0.5\linewidth]{figures/sine-densities.pdf}
995-
}
1029+
%}{
1030+
%\includegraphics[width=0.5\linewidth]{figures/sine-densities.pdf}
1031+
%}
9961032
\caption{
9971033
Sinusoidal density functions assigned to the spherical shells in the $\delta$ ratio
9981034
determination.
@@ -1110,11 +1146,11 @@ \section{Application to the Neuqu\'en Basin}
11101146

11111147
\begin{figure}
11121148
\centering
1113-
\iftwocol{
1149+
%\iftwocol{
11141150
\includegraphics[width=\linewidth]{figures/neuquen-basin-densities.pdf}
1115-
}{
1116-
\includegraphics[width=0.5\linewidth]{figures/neuquen-basin-densities.pdf}
1117-
}
1151+
%}{
1152+
%\includegraphics[width=0.5\linewidth]{figures/neuquen-basin-densities.pdf}
1153+
%}
11181154
\caption{
11191155
Linear and exponential densities used to compute the gravitational fields generated
11201156
by a tesseroid model of the Neuqu\'en sedimentary basin.
@@ -1426,10 +1462,10 @@ \subsection{Exponential density}
14261462

14271463
\begin{equation}
14281464
\begin{split}
1429-
V_\text{exp}(r) = \frac{4\pi G}{r} \frac{A}{k^3} \Big[
1430-
& \left( R_1^2 k^2 + 2 R_1 k + 2 \right) e^{- k (R_1 - R)} - \\
1431-
& \left( R_2^2 k^2 + 2 R_2 k + 2 \right) e^{- k (R_2 - R)}
1432-
\Big].
1465+
V_\text{exp}(r) = \frac{4\pi G}{r} \frac{A}{k^3} \Big[
1466+
& \left( R_1^2 k^2 + 2 R_1 k + 2 \right) e^{- k (R_1 - R)} - \\
1467+
& \left( R_2^2 k^2 + 2 R_2 k + 2 \right) e^{- k (R_2 - R)}
1468+
\Big].
14331469
\end{split}
14341470
\end{equation}
14351471

@@ -1448,10 +1484,12 @@ \subsection{Sinusoidal density}
14481484

14491485
\begin{equation}
14501486
\begin{split}
1451-
V_\text{sine}(r) = \frac{4\pi G}{r} \frac{A}{k^3} \Big[
1452-
& (2 - k^2 R_2^2) \cos(k(R_2 - R)) + 2 k R_2 \sin(k(R_2 - R)) - \\
1453-
& (2 - k^2 R_1^2) \cos(k(R_1 - R)) - 2 k R_1 \sin(k(R_1 - R))
1454-
\Big].
1487+
V_\text{sine}(r) = \frac{4\pi G}{r} \frac{A}{k^3} \Big[
1488+
& (2 - k^2 R_2^2) \cos(k(R_2 - R)) + \\
1489+
& 2 k R_2 \sin(k(R_2 - R)) - \\
1490+
& (2 - k^2 R_1^2) \cos(k(R_1 - R)) - \\
1491+
& 2 k R_1 \sin(k(R_1 - R))
1492+
\Big].
14551493
\end{split}
14561494
\end{equation}
14571495

0 commit comments

Comments
 (0)