-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
51 lines (37 loc) · 1.62 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
from keras.models import load_model
import cv2
import numpy as np
import matplotlib.pyplot as plt
model1 = load_model('/home/pranjal/Downloads/Building_footprint_segmentation/models/model5.h5')
# model1.summary()
# import tensorflow as tf
# model2 = tf.keras.models.load_model('/home/pranjal/Downloads/Building_footprint_segmentation/models/model6.keras')
# model2.summary()
# def plot_prediction(test_image_gray, predicted_mask_binary):
# # Plot the original image
# plt.figure(figsize=(10, 5))
# plt.subplot(1, 2, 1)
# plt.imshow(test_image_gray, cmap='gray')
# plt.title('Original Image')
# # Plot the predicted mask
# plt.subplot(1, 2, 2)
# plt.imshow(predicted_mask_binary, cmap='binary')
# plt.title('Predicted Mask')
# plt.show()
def prediction_plot(predicted_mask_binary):
plt.subplot(1, 2, 2)
plt.imshow(predicted_mask_binary, cmap='binary')
plt.title('Predicted Mask')
plt.show()
image_path = '/home/pranjal/Downloads/Building_footprint_segmentation/Data/segmentation_data/src/S008.png'
img = cv2.imread(image_path)
image_height, image_width = 256, 256
test_image_resized = cv2.resize(img, (image_height, image_width))
test_image_gray = cv2.cvtColor(test_image_resized, cv2.COLOR_BGR2GRAY)
test_image_normalized = test_image_gray / 255.0
test_image_input = np.expand_dims(test_image_normalized, axis=-1)
test_image_input = np.expand_dims(test_image_input, axis=0)
predicted_mask = model1.predict(test_image_input)
predicted_mask = predicted_mask.reshape(image_height, image_width)
predicted_mask_binary = np.where(predicted_mask > 0.5, 1, 0)
prediction_plot(predicted_mask_binary)