|
| 1 | +import importlib |
| 2 | +import itertools |
| 3 | +import operator |
| 4 | +import os |
| 5 | + |
| 6 | +import sparse |
| 7 | + |
| 8 | +import pytest |
| 9 | + |
| 10 | +import numpy as np |
| 11 | +import scipy.sparse as sps |
| 12 | + |
| 13 | +DENSITY = 0.001 |
| 14 | + |
| 15 | + |
| 16 | +def get_test_id(side): |
| 17 | + return f"{side=}" |
| 18 | + |
| 19 | + |
| 20 | +@pytest.fixture(params=[100, 500, 1000], ids=get_test_id) |
| 21 | +def elemwise_args(request, seed, max_size): |
| 22 | + side = request.param |
| 23 | + if side**2 >= max_size: |
| 24 | + pytest.skip() |
| 25 | + rng = np.random.default_rng(seed=seed) |
| 26 | + s1_sps = sps.random(side, side, format="csr", density=DENSITY, random_state=rng) * 10 |
| 27 | + s1_sps.sum_duplicates() |
| 28 | + s2_sps = sps.random(side, side, format="csr", density=DENSITY, random_state=rng) * 10 |
| 29 | + s2_sps.sum_duplicates() |
| 30 | + return s1_sps, s2_sps |
| 31 | + |
| 32 | + |
| 33 | +def get_elemwise_id(param): |
| 34 | + f, backend = param |
| 35 | + return f"{f=}-{backend=}" |
| 36 | + |
| 37 | + |
| 38 | +@pytest.fixture( |
| 39 | + params=itertools.product([operator.add, operator.mul, operator.gt], ["SciPy", "Numba", "Finch"]), |
| 40 | + scope="function", |
| 41 | + ids=get_elemwise_id, |
| 42 | +) |
| 43 | +def backend(request): |
| 44 | + f, backend = request.param |
| 45 | + os.environ[sparse._ENV_VAR_NAME] = backend |
| 46 | + importlib.reload(sparse) |
| 47 | + yield f, sparse, backend |
| 48 | + del os.environ[sparse._ENV_VAR_NAME] |
| 49 | + importlib.reload(sparse) |
| 50 | + |
| 51 | + |
| 52 | +def test_elemwise(benchmark, backend, elemwise_args): |
| 53 | + s1_sps, s2_sps = elemwise_args |
| 54 | + f, sparse, backend = backend |
| 55 | + |
| 56 | + if backend == "SciPy": |
| 57 | + s1 = s1_sps |
| 58 | + s2 = s2_sps |
| 59 | + elif backend == "Numba": |
| 60 | + s1 = sparse.asarray(s1_sps) |
| 61 | + s2 = sparse.asarray(s2_sps) |
| 62 | + elif backend == "Finch": |
| 63 | + s1 = sparse.asarray(s1_sps.asformat("csc"), format="csc") |
| 64 | + s2 = sparse.asarray(s2_sps.asformat("csc"), format="csc") |
| 65 | + |
| 66 | + f(s1, s2) |
| 67 | + |
| 68 | + @benchmark |
| 69 | + def bench(): |
| 70 | + f(s1, s2) |
0 commit comments