-
-
Notifications
You must be signed in to change notification settings - Fork 269
/
Copy pathZeroSumNormal.py
298 lines (225 loc) · 9.08 KB
/
ZeroSumNormal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
<<<<<<< HEAD
<<<<<<< HEAD
=======
>>>>>>> cb0c201 (latest ZeroSumNormal code, pymc3 v3, random seed for sampling)
from typing import List
try:
import aesara.tensor as aet
except ImportError:
import theano.tensor as aet
<<<<<<< HEAD
import numpy as np
import pymc3 as pm
from scipy import stats
from pymc3.distributions.distribution import generate_samples, draw_values
def extend_axis_aet(array, axis):
n = array.shape[axis] + 1
sum_vals = array.sum(axis, keepdims=True)
norm = sum_vals / (np.sqrt(n) + n)
fill_val = norm - sum_vals / np.sqrt(n)
out = aet.concatenate([array, fill_val.astype(str(array.dtype))], axis=axis)
return out - norm.astype(str(array.dtype))
def extend_axis_rev_aet(array: np.ndarray, axis: int):
if axis < 0:
axis = axis % array.ndim
assert axis >= 0 and axis < array.ndim
n = array.shape[axis]
last = aet.take(array, [-1], axis=axis)
sum_vals = -last * np.sqrt(n)
norm = sum_vals / (np.sqrt(n) + n)
slice_before = (slice(None, None),) * axis
return array[slice_before + (slice(None, -1),)] + norm.astype(str(array.dtype))
def extend_axis(array, axis):
n = array.shape[axis] + 1
sum_vals = array.sum(axis, keepdims=True)
norm = sum_vals / (np.sqrt(n) + n)
fill_val = norm - sum_vals / np.sqrt(n)
out = np.concatenate([array, fill_val.astype(str(array.dtype))], axis=axis)
return out - norm.astype(str(array.dtype))
def extend_axis_rev(array, axis):
n = array.shape[axis]
last = np.take(array, [-1], axis=axis)
sum_vals = -last * np.sqrt(n)
norm = sum_vals / (np.sqrt(n) + n)
slice_before = (slice(None, None),) * len(array.shape[:axis])
return array[slice_before + (slice(None, -1),)] + norm.astype(str(array.dtype))
class ZeroSumTransform(pm.distributions.transforms.Transform):
name = "zerosum"
_active_dims: List[int]
def __init__(self, active_dims):
self._active_dims = active_dims
def forward(self, x):
for axis in self._active_dims:
x = extend_axis_rev_aet(x, axis=axis)
return x
def forward_val(self, x, point=None):
for axis in self._active_dims:
x = extend_axis_rev(x, axis=axis)
return x
def backward(self, z):
z = aet.as_tensor_variable(z)
for axis in self._active_dims:
z = extend_axis_aet(z, axis=axis)
return z
def jacobian_det(self, x):
return aet.constant(0.0)
class ZeroSumNormal(pm.Continuous):
def __init__(self, sigma=1, *, active_dims=None, active_axes=None, **kwargs):
shape = kwargs.get("shape", ())
dims = kwargs.get("dims", None)
if isinstance(shape, int):
shape = (shape,)
if isinstance(dims, str):
dims = (dims,)
self.mu = self.median = self.mode = aet.zeros(shape)
self.sigma = aet.as_tensor_variable(sigma)
if active_dims is None and active_axes is None:
if shape:
active_axes = (-1,)
else:
active_axes = ()
if isinstance(active_axes, int):
active_axes = (active_axes,)
if isinstance(active_dims, str):
active_dims = (active_dims,)
if active_axes is not None and active_dims is not None:
raise ValueError("Only one of active_axes and active_dims can be specified.")
if active_dims is not None:
model = pm.modelcontext(None)
print(model.RV_dims)
if dims is None:
raise ValueError("active_dims can only be used with the dims kwargs.")
active_axes = []
for dim in active_dims:
active_axes.append(dims.index(dim))
super().__init__(**kwargs, transform=ZeroSumTransform(active_axes))
def logp(self, x):
return pm.Normal.dist(sigma=self.sigma).logp(x)
@staticmethod
def _random(scale, size):
samples = stats.norm.rvs(loc=0, scale=scale, size=size)
return samples - np.mean(samples, axis=-1, keepdims=True)
def random(self, point=None, size=None):
(sigma,) = draw_values([self.sigma], point=point, size=size)
return generate_samples(self._random, scale=sigma, dist_shape=self.shape, size=size)
def _distr_parameters_for_repr(self):
return ["sigma"]
def logcdf(self, value):
raise NotImplementedError()
=======
import pymc3 as pm
=======
>>>>>>> cb0c201 (latest ZeroSumNormal code, pymc3 v3, random seed for sampling)
import numpy as np
import pymc3 as pm
from scipy import stats
from pymc3.distributions.distribution import generate_samples, draw_values
def extend_axis_aet(array, axis):
n = array.shape[axis] + 1
sum_vals = array.sum(axis, keepdims=True)
norm = sum_vals / (np.sqrt(n) + n)
fill_val = norm - sum_vals / np.sqrt(n)
out = aet.concatenate([array, fill_val.astype(str(array.dtype))], axis=axis)
return out - norm.astype(str(array.dtype))
def extend_axis_rev_aet(array: np.ndarray, axis: int):
if axis < 0:
axis = axis % array.ndim
assert axis >= 0 and axis < array.ndim
n = array.shape[axis]
last = aet.take(array, [-1], axis=axis)
sum_vals = -last * np.sqrt(n)
norm = sum_vals / (np.sqrt(n) + n)
slice_before = (slice(None, None),) * axis
return array[slice_before + (slice(None, -1),)] + norm.astype(str(array.dtype))
def extend_axis(array, axis):
n = array.shape[axis] + 1
sum_vals = array.sum(axis, keepdims=True)
norm = sum_vals / (np.sqrt(n) + n)
fill_val = norm - sum_vals / np.sqrt(n)
out = np.concatenate([array, fill_val.astype(str(array.dtype))], axis=axis)
return out - norm.astype(str(array.dtype))
<<<<<<< HEAD
def make_sum_zero_hh(N: int) -> np.ndarray:
"""
Build a householder transformation matrix that maps e_1 to a vector of all 1s.
"""
e_1 = np.zeros(N)
e_1[0] = 1
a = np.ones(N)
a /= np.sqrt(a @ a)
v = a + e_1
v /= np.sqrt(v @ v)
return np.eye(N) - 2 * np.outer(v, v)
>>>>>>> 2da3052 (ZeroSumNormal: initial commit)
=======
def extend_axis_rev(array, axis):
n = array.shape[axis]
last = np.take(array, [-1], axis=axis)
sum_vals = -last * np.sqrt(n)
norm = sum_vals / (np.sqrt(n) + n)
slice_before = (slice(None, None),) * len(array.shape[:axis])
return array[slice_before + (slice(None, -1),)] + norm.astype(str(array.dtype))
class ZeroSumTransform(pm.distributions.transforms.Transform):
name = "zerosum"
_active_dims: List[int]
def __init__(self, active_dims):
self._active_dims = active_dims
def forward(self, x):
for axis in self._active_dims:
x = extend_axis_rev_aet(x, axis=axis)
return x
def forward_val(self, x, point=None):
for axis in self._active_dims:
x = extend_axis_rev(x, axis=axis)
return x
def backward(self, z):
z = aet.as_tensor_variable(z)
for axis in self._active_dims:
z = extend_axis_aet(z, axis=axis)
return z
def jacobian_det(self, x):
return aet.constant(0.)
class ZeroSumNormal(pm.Continuous):
def __init__(self, sigma=1, *, active_dims=None, active_axes=None, **kwargs):
shape = kwargs.get("shape", ())
dims = kwargs.get("dims", None)
if isinstance(shape, int):
shape = (shape,)
if isinstance(dims, str):
dims = (dims,)
self.mu = self.median = self.mode = aet.zeros(shape)
self.sigma = aet.as_tensor_variable(sigma)
if active_dims is None and active_axes is None:
if shape:
active_axes = (-1,)
else:
active_axes = ()
if isinstance(active_axes, int):
active_axes = (active_axes,)
if isinstance(active_dims, str):
active_dims = (active_dims,)
if active_axes is not None and active_dims is not None:
raise ValueError("Only one of active_axes and active_dims can be specified.")
if active_dims is not None:
model = pm.modelcontext(None)
print(model.RV_dims)
if dims is None:
raise ValueError("active_dims can only be used with the dims kwargs.")
active_axes = []
for dim in active_dims:
active_axes.append(dims.index(dim))
super().__init__(**kwargs, transform=ZeroSumTransform(active_axes))
def logp(self, x):
return pm.Normal.dist(sigma=self.sigma).logp(x)
@staticmethod
def _random(scale, size):
samples = stats.norm.rvs(loc=0, scale=scale, size=size)
return samples - np.mean(samples, axis=-1, keepdims=True)
def random(self, point=None, size=None):
sigma, = draw_values([self.sigma], point=point, size=size)
return generate_samples(self._random, scale=sigma, dist_shape=self.shape, size=size)
def _distr_parameters_for_repr(self):
return ["sigma"]
def logcdf(self, value):
raise NotImplementedError()
>>>>>>> cb0c201 (latest ZeroSumNormal code, pymc3 v3, random seed for sampling)