This repository was archived by the owner on Mar 20, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp1.py
86 lines (63 loc) · 2.43 KB
/
app1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
from __future__ import division, print_function
# coding=utf-8
import sys
import os
import glob
#import re
#import numpy as np
import tensorflow as tf
# Keras
#from keras.applications.imagenet_utils import preprocess_input, decode_predictions
from tensorflow.keras.models import Model , load_model
from keras.preprocessing import image
# Flask utils
from flask import Flask, redirect, url_for, request, render_template
from werkzeug.utils import secure_filename
#from gevent.pywsgi import WSGIServer
# Define a flask app
app = Flask(__name__,template_folder='templates')
#loading the model
Model = load_model('MMmodel.h5') # Necessary
#print('Model loaded. Starting service...')
#defining the classes to predict
classes_list_target =(['Action', 'Adventure', 'Animation', 'Biography',
'Comedy', 'Crime', 'Documentary', 'Drama', 'Family', 'Fantasy',
'History', 'Horror', 'Music', 'Musical', 'Mystery', 'News',
'Reality-TV', 'Romance', 'Sci-Fi', 'Short', 'Sport', 'Thriller', 'War',
'Western'])
#print('Model loaded. Check http://127.0.0.1:5000/')
def model_predict(img_path, Model):
img = image.load_img(img_path, target_size=(150, 150, 3))
# Preprocessing the image
x = image.img_to_array(img)
x = x/255
probs = Model.predict(x.reshape(1,150,150,3))
return probs
@app.route('/', methods=['GET'])
def index():
# Main page
return render_template('index.html')
@app.route('/predict', methods=['GET', 'POST'])
def upload():
if request.method == 'POST':
# Get the file from post request
f = request.files['file']
# Save the file to ./uploads
basepath = os.path.dirname(__file__)
file_path = os.path.join(
basepath, 'uploads', secure_filename(f.filename))
f.save(file_path)
# Make prediction
#probs = model_predict(file_path , model)
#pred_class = probs.argmax(axis=-1) # Simple argmax
#pr = classes[pred_class[0]]
#result =str(pr)
probs = model_predict(file_path , Model)
pred_class = probs.argmax(axis=-1) # Simple argmax
#pred_class = decode_predictions(preds, top=1)
pr = classes_list_target[pred_class[0]]
result =str(pr)
return result
return None
if __name__ == '__main__':
app.run(debug=True)