|
| 1 | +from copy import deepcopy |
| 2 | + |
| 3 | +import numpy as np |
| 4 | +import torch |
| 5 | +from torch.testing._internal.common_utils import TestCase, run_tests |
| 6 | +from torch_tensorrt.dynamo import partitioning |
| 7 | + |
| 8 | + |
| 9 | +class TestHierarchicalAdjacencyPartitioning(TestCase): |
| 10 | + def test_hierarchical_adjacency_partition_fully_supported_one_op(self): |
| 11 | + class FullySupportedOneOp(torch.nn.Module): |
| 12 | + def __init__(self, *args, **kwargs) -> None: |
| 13 | + super().__init__(*args, **kwargs) |
| 14 | + |
| 15 | + def forward(self, x, y): |
| 16 | + return torch.ops.aten.add.Tensor(x, y) |
| 17 | + |
| 18 | + fx_graph = torch.fx.symbolic_trace(FullySupportedOneOp()) |
| 19 | + partitioned_graph, _ = partitioning.hierarchical_adjacency_partition( |
| 20 | + deepcopy(fx_graph), |
| 21 | + ) |
| 22 | + self.assertEqual( |
| 23 | + len( |
| 24 | + [ |
| 25 | + 1 |
| 26 | + for submod in list(partitioned_graph.named_children()) |
| 27 | + if "_run_on_acc" in submod[0] |
| 28 | + ] |
| 29 | + ), |
| 30 | + 0, |
| 31 | + "Single operators should not be segmented", |
| 32 | + ) |
| 33 | + |
| 34 | + def test_hierarchical_adjacency_partition_fully_supported_one_op_require_full_compilation( |
| 35 | + self, |
| 36 | + ): |
| 37 | + class FullySupportedOneOp(torch.nn.Module): |
| 38 | + def __init__(self, *args, **kwargs) -> None: |
| 39 | + super().__init__(*args, **kwargs) |
| 40 | + |
| 41 | + def forward(self, x, y): |
| 42 | + return torch.ops.aten.add.Tensor(x, y) |
| 43 | + |
| 44 | + fx_graph = torch.fx.symbolic_trace(FullySupportedOneOp()) |
| 45 | + partitioned_graph, _ = partitioning.hierarchical_adjacency_partition( |
| 46 | + deepcopy(fx_graph), require_full_compilation=True |
| 47 | + ) |
| 48 | + self.assertEqual( |
| 49 | + len( |
| 50 | + [ |
| 51 | + 1 |
| 52 | + for submod in list(partitioned_graph.named_children()) |
| 53 | + if "_run_on_acc" in submod[0] |
| 54 | + ] |
| 55 | + ), |
| 56 | + 1, |
| 57 | + "Single operators can be segmented if full compilation is required", |
| 58 | + ) |
| 59 | + |
| 60 | + def test_hierarchical_adjacency_partition_fully_supported_multi_op(self): |
| 61 | + class FullySupportedMultiOp(torch.nn.Module): |
| 62 | + def __init__(self, *args, **kwargs) -> None: |
| 63 | + super().__init__(*args, **kwargs) |
| 64 | + |
| 65 | + def forward(self, x, y): |
| 66 | + sum_ = torch.ops.aten.sub.Tensor(x, y) |
| 67 | + concat_ = torch.ops.aten.cat.default(x, sum_) |
| 68 | + relu_ = torch.ops.aten.relu.default(concat_) |
| 69 | + pow_ = torch.ops.aten.pow.Tensor_Scalar(relu_, 2) |
| 70 | + return pow_ |
| 71 | + |
| 72 | + fx_graph = torch.fx.symbolic_trace(FullySupportedMultiOp()) |
| 73 | + partitioned_graph, _ = partitioning.hierarchical_adjacency_partition( |
| 74 | + deepcopy(fx_graph), min_block_size=2 |
| 75 | + ) |
| 76 | + self.assertEqual( |
| 77 | + len( |
| 78 | + [ |
| 79 | + 1 |
| 80 | + for submod in list(partitioned_graph.named_children()) |
| 81 | + if "_run_on_acc" in submod[0] |
| 82 | + ] |
| 83 | + ), |
| 84 | + 1, |
| 85 | + "All operators are supported, there should be one segment", |
| 86 | + ) |
| 87 | + |
| 88 | + def test_hierarchical_adjacency_partition_partially_supported_multi_op(self): |
| 89 | + class PartiallySupportedMultiOp(torch.nn.Module): |
| 90 | + def __init__(self, *args, **kwargs) -> None: |
| 91 | + super().__init__(*args, **kwargs) |
| 92 | + |
| 93 | + def forward(self, x, y): |
| 94 | + sum_1 = torch.ops.aten.add.Tensor(x, y) |
| 95 | + sum_2 = torch.ops.aten.add.Tensor(x, sum_1) |
| 96 | + sum_ = np.sum(sum_1) + np.sum(sum_2) |
| 97 | + relu_ = torch.ops.aten.relu.default(sum_) |
| 98 | + pow_ = torch.ops.aten.pow.Tensor_Scalar(relu_, 2) |
| 99 | + return pow_ |
| 100 | + |
| 101 | + fx_graph = torch.fx.symbolic_trace(PartiallySupportedMultiOp()) |
| 102 | + partitioned_graph, _ = partitioning.hierarchical_adjacency_partition( |
| 103 | + deepcopy(fx_graph), min_block_size=2 |
| 104 | + ) |
| 105 | + self.assertEqual( |
| 106 | + len( |
| 107 | + [ |
| 108 | + 1 |
| 109 | + for submod in list(partitioned_graph.named_children()) |
| 110 | + if "_run_on_acc" in submod[0] |
| 111 | + ] |
| 112 | + ), |
| 113 | + 2, |
| 114 | + "Unsupported operators interleave supported ones, expected 2 segments", |
| 115 | + ) |
| 116 | + |
| 117 | + def test_hierarchical_adjacency_partition_partially_supported_with_torch_executed_ops( |
| 118 | + self, |
| 119 | + ): |
| 120 | + class PartiallySupportedMultiOp(torch.nn.Module): |
| 121 | + def __init__(self, *args, **kwargs) -> None: |
| 122 | + super().__init__(*args, **kwargs) |
| 123 | + |
| 124 | + def forward(self, x, y): |
| 125 | + sum_1 = torch.ops.aten.add.Tensor(x, y) |
| 126 | + sum_2 = torch.ops.aten.add.Tensor(x, sum_1) |
| 127 | + sum_ = torch.ops.aten.add.Tensor(sum_1, sum_2) |
| 128 | + relu_ = torch.ops.aten.relu.default(sum_) |
| 129 | + pow_ = torch.ops.aten.pow.Tensor_Scalar(relu_, 2) |
| 130 | + return pow_ |
| 131 | + |
| 132 | + torch_executed_ops = {torch.ops.aten.add.Tensor} |
| 133 | + |
| 134 | + fx_graph = torch.fx.symbolic_trace(PartiallySupportedMultiOp()) |
| 135 | + partitioned_graph, _ = partitioning.hierarchical_adjacency_partition( |
| 136 | + deepcopy(fx_graph), |
| 137 | + min_block_size=1, |
| 138 | + torch_executed_ops=torch_executed_ops, |
| 139 | + ) |
| 140 | + |
| 141 | + unexpected_ops = torch_executed_ops |
| 142 | + expected_ops = {torch.ops.aten.relu.default, torch.ops.aten.pow.Tensor_Scalar} |
| 143 | + |
| 144 | + unexpected_ops_seen = set() |
| 145 | + expected_ops_seen = set() |
| 146 | + |
| 147 | + for name, gm in partitioned_graph.named_children(): |
| 148 | + if "_run_on_acc" in name: |
| 149 | + for node in gm.graph.nodes: |
| 150 | + if node.op == "call_function": |
| 151 | + if node.target in unexpected_ops: |
| 152 | + unexpected_ops_seen.add(node.target) |
| 153 | + elif node.target in expected_ops: |
| 154 | + expected_ops_seen.add(node.target) |
| 155 | + |
| 156 | + expected_ops_unseen = expected_ops.difference(expected_ops_seen) |
| 157 | + |
| 158 | + self.assertEqual( |
| 159 | + len(unexpected_ops_seen), |
| 160 | + 0, |
| 161 | + f"The following unexpected ops were encountered: {unexpected_ops_seen}", |
| 162 | + ) |
| 163 | + self.assertEqual( |
| 164 | + len(expected_ops_unseen), |
| 165 | + 0, |
| 166 | + f"The following expected ops were not encountered: {expected_ops_unseen}", |
| 167 | + ) |
| 168 | + |
| 169 | + class SimpleModel(torch.nn.Module): |
| 170 | + def __init__(self): |
| 171 | + super().__init__() |
| 172 | + self.conv1 = torch.nn.Conv2d(3, 64, kernel_size=3, padding=1) |
| 173 | + self.conv2 = torch.nn.Conv2d(64, 128, kernel_size=3, padding=1) |
| 174 | + self.bn1 = torch.nn.BatchNorm2d(64) |
| 175 | + self.bn2 = torch.nn.BatchNorm2d(128) |
| 176 | + |
| 177 | + def forward(self, x): |
| 178 | + x = self.conv1(x) |
| 179 | + x = self.bn1(x) |
| 180 | + x = torch.relu(x) |
| 181 | + x = self.conv2(x) |
| 182 | + x = self.bn2(x) |
| 183 | + x = torch.relu(x) |
| 184 | + return x |
| 185 | + |
| 186 | + def test_hierarchical_adjacency_partition_with_two_backends(self): |
| 187 | + from torch_tensorrt.dynamo.conversion._ConverterRegistry import ( |
| 188 | + DYNAMO_CONVERTERS as CONVERTERS, |
| 189 | + ) |
| 190 | + from torch_tensorrt.dynamo.lowering import ( |
| 191 | + get_decompositions, |
| 192 | + pre_export_lowering, |
| 193 | + ) |
| 194 | + |
| 195 | + model = self.SimpleModel().cuda().eval() |
| 196 | + example_input = torch.randn(1, 3, 224, 224).cuda() |
| 197 | + |
| 198 | + exported_program = torch.export.export(model, (example_input,)) |
| 199 | + exported_program = pre_export_lowering(exported_program) |
| 200 | + exported_program = exported_program.run_decompositions(get_decompositions()) |
| 201 | + gm = exported_program.module() |
| 202 | + |
| 203 | + partitioned_graph, _ = partitioning.hierarchical_adjacency_partition( |
| 204 | + gm, |
| 205 | + min_block_size=1, |
| 206 | + backend_priority=["inductor", "tensorrt"], |
| 207 | + backend_support_map={ |
| 208 | + "inductor": { |
| 209 | + "torch.ops.aten.convolution.default", |
| 210 | + }, |
| 211 | + "tensorrt": CONVERTERS.keys(), |
| 212 | + }, |
| 213 | + ) |
| 214 | + |
| 215 | + inductor_subgraphs_num = 0 |
| 216 | + tensorrt_subgraphs_num = 0 |
| 217 | + |
| 218 | + for name, gm in partitioned_graph.named_children(): |
| 219 | + if "_run_on_acc_inductor" in name: |
| 220 | + inductor_subgraphs_num += 1 |
| 221 | + elif "_run_on_acc_tensorrt" in name: |
| 222 | + tensorrt_subgraphs_num += 1 |
| 223 | + else: |
| 224 | + raise ValueError(f"Unknown backend: {name}") |
| 225 | + |
| 226 | + self.assertEqual( |
| 227 | + inductor_subgraphs_num, |
| 228 | + 2, |
| 229 | + "There should be 2 subgraphs running on inductor backend", |
| 230 | + ) |
| 231 | + self.assertEqual( |
| 232 | + tensorrt_subgraphs_num, |
| 233 | + 2, |
| 234 | + "There should be 2 subgraph running on tensorrt backend", |
| 235 | + ) |
| 236 | + |
| 237 | + def test_hierarchical_adjacency_partition_with_two_backends_with_torch_executed_ops( |
| 238 | + self, |
| 239 | + ): |
| 240 | + from torch_tensorrt.dynamo.conversion._ConverterRegistry import ( |
| 241 | + DYNAMO_CONVERTERS as CONVERTERS, |
| 242 | + ) |
| 243 | + from torch_tensorrt.dynamo.lowering import ( |
| 244 | + get_decompositions, |
| 245 | + pre_export_lowering, |
| 246 | + ) |
| 247 | + |
| 248 | + model = self.SimpleModel().cuda().eval() |
| 249 | + example_input = torch.randn(1, 3, 224, 224).cuda() |
| 250 | + |
| 251 | + exported_program = torch.export.export(model, (example_input,)) |
| 252 | + exported_program = pre_export_lowering(exported_program) |
| 253 | + exported_program = exported_program.run_decompositions(get_decompositions()) |
| 254 | + gm = exported_program.module() |
| 255 | + |
| 256 | + partitioned_graph, _ = partitioning.hierarchical_adjacency_partition( |
| 257 | + gm, |
| 258 | + min_block_size=1, |
| 259 | + backend_priority=["inductor", "tensorrt"], |
| 260 | + backend_support_map={ |
| 261 | + "inductor": { |
| 262 | + "torch.ops.aten.convolution.default", |
| 263 | + }, |
| 264 | + "tensorrt": CONVERTERS.keys(), |
| 265 | + }, |
| 266 | + torch_executed_ops={ |
| 267 | + "torch.ops.aten._native_batch_norm_legit_no_training.default" |
| 268 | + }, |
| 269 | + ) |
| 270 | + |
| 271 | + inductor_subgraphs_num = 0 |
| 272 | + tensorrt_subgraphs_num = 0 |
| 273 | + torch_gpu_subgraphs_num = 0 |
| 274 | + |
| 275 | + for name, gm in partitioned_graph.named_children(): |
| 276 | + if "_run_on_acc_inductor" in name: |
| 277 | + inductor_subgraphs_num += 1 |
| 278 | + elif "_run_on_acc_tensorrt" in name: |
| 279 | + tensorrt_subgraphs_num += 1 |
| 280 | + elif "_run_on_gpu" in name: |
| 281 | + torch_gpu_subgraphs_num += 1 |
| 282 | + else: |
| 283 | + raise ValueError(f"Unknown backend: {name}") |
| 284 | + |
| 285 | + self.assertEqual( |
| 286 | + torch_gpu_subgraphs_num, |
| 287 | + 2, |
| 288 | + "There should be 2 subgraphs running on torch gpu backend", |
| 289 | + ) |
| 290 | + self.assertEqual( |
| 291 | + inductor_subgraphs_num, |
| 292 | + 2, |
| 293 | + "There should be 2 subgraphs running on inductor backend", |
| 294 | + ) |
| 295 | + self.assertEqual( |
| 296 | + tensorrt_subgraphs_num, |
| 297 | + 2, |
| 298 | + "There should be 2 subgraph running on tensorrt backend", |
| 299 | + ) |
| 300 | + |
| 301 | + |
| 302 | +if __name__ == "__main__": |
| 303 | + run_tests() |
0 commit comments