Open
Description
Hi :)
I want to use customized bio-word embedding to do some text classification.
And I can't find how.
Some old tutorial says there is 'wv_dir' keyword argument, which I tried and failed :
TypeError Traceback (most recent call last)
<ipython-input-48-ac09f554719e> in <module>()
1 test_field = data.Field()
2 lang_data = datasets.LanguageModelingDataset(path='pr_data/processed_neg.txt',text_field=test_field)
----> 3 voc = torchtext.vocab.Vocab(wv_dir='bio_wordemb/PubMed-and-PMC-w2v.txt')
4
5 # test_field.build_vocab(lang_data,wv_dir='bio_wordemb/PubMed-and-PMC-w2v.txt')
TypeError: __init__() got an unexpected keyword argument 'wv_dir'
Just like we can load pretrained GloVe embedding using TEXTFIELD.build_vocab(data, vectors='glove.6B.100d')
, is there similar way to load customized embedding?
Any help would be much appreciated. Thanks!