-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path4SumII.java
54 lines (46 loc) · 2.01 KB
/
4SumII.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
/**
Leetcode Question 454
Given four lists A, B, C, D of integer values, compute how many tuples (i, j, k, l) there are such that A[i] + B[j] + C[k] + D[l] is zero.
To make problem a bit easier, all A, B, C, D have same length of N where 0 ≤ N ≤ 500. All integers are in the range of -228 to 228 - 1 and the result is guaranteed to be at most 231 - 1.
Example:
Input:
A = [ 1, 2]
B = [-2,-1]
C = [-1, 2]
D = [ 0, 2]
Output:
2
Explanation:
The two tuples are:
1. (0, 0, 0, 1) -> A[0] + B[0] + C[0] + D[1] = 1 + (-2) + (-1) + 2 = 0
2. (1, 1, 0, 0) -> A[1] + B[1] + C[0] + D[0] = 2 + (-1) + (-1) + 0 = 0
**/
// Time Complexity : O(n^2)
// Space Complexity : O(n)
/** The solution considers 2 arrays at a time and finds all possible sum from the two arrays and stores the same in a map where
* sum is stored in key and value stores the frequency of occurence of that sum.Next, we take other two arrays and for all
* possible sums in those two arrays we check if the map contains a compliment key of the sum,if yes, we increase the count.
**/
class Solution {
public int fourSumCount(int[] A, int[] B, int[] C, int[] D) {
if(A.length == 0 && B.length == 0 && C.length == 0 && D.length == 0)
return 0;
int count = 0;
Map<Integer,Integer> sumAndOcurrences = new HashMap<>();
for(int aIndex = 0;aIndex<A.length;aIndex++){
for(int bIndex = 0;bIndex<B.length;bIndex++){
int sum = A[aIndex]+B[bIndex];
//creating a map to set the sum and frequency
sumAndOcurrences.put(sum,sumAndOcurrences.getOrDefault(sum,0)+1);
}
}
for(int cIndex = 0;cIndex<C.length;cIndex++){
for(int dIndex = 0;dIndex<D.length;dIndex++){
// suming the elements of rest two arrays and checking if the complement of that exists in the
//hashmap created above.
count += sumAndOcurrences.getOrDefault(-1 * (C[cIndex]+D[dIndex]),0);
}
}
return count;
}
}