-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNo104_Tree.cs
81 lines (77 loc) · 3.14 KB
/
No104_Tree.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
using LeetCode.ExtensionFunction;
using System;
using System.Collections.Generic;
using System.Text;
namespace LeetCode_104
{
//static void Main(string[] args)
//{
// var solution = new Solution();
// while (true)
// {
// //int input = int.Parse(Console.ReadLine());
// //int input2 = int.Parse(Console.ReadLine());
// //int input3 = int.Parse(Console.ReadLine());
// //string input = Console.ReadLine();
// //string input2 = Console.ReadLine();
// //int[] intArr = input.Split(',').Select(s => int.Parse(s)).ToArray();
// //int input2 = int.Parse(Console.ReadLine());
// //int[] intArr = new int[] { 1, 3, 2 };
// //int[] intArr = new int[] { 1, 3 };
// TreeNode tn1 = new TreeNode(1);
// TreeNode tn2 = new TreeNode(2);
// TreeNode tn3 = new TreeNode(3);
// tn1.left = tn2;
// tn2.left = tn3;
// var res = solution.MaxDepth(tn1);
// ConsoleX.WriteLine(res);
// }
//}
public class Solution
{
/// <summary>
/// 迭代,相比而言还是递归更优雅
/// 时间复杂度:O(n)
/// 空间复杂度:O(n)
/// 用到了一个新的数据结构KeyValuePair,struct,readonly
/// </summary>
/// <param name="root"></param>
/// <returns></returns>
public int MaxDepth(TreeNode root)
{
Queue<KeyValuePair<TreeNode, int>> queue = new Queue<KeyValuePair<TreeNode, int>>();
int maxDepth = 0;
queue.Enqueue(new KeyValuePair<TreeNode, int>(root, 0));
while (queue.Count > 0)
{
var cur_tree = queue.Dequeue();
if (cur_tree.Key != null)
{
maxDepth = Math.Max(maxDepth, cur_tree.Value + 1);
queue.Enqueue(new KeyValuePair<TreeNode, int>(cur_tree.Key.left, cur_tree.Value + 1));
queue.Enqueue(new KeyValuePair<TreeNode, int>(cur_tree.Key.right, cur_tree.Value + 1));
}
}
return maxDepth;
}
/// <summary>
/// 递归
/// 时间复杂度:我们每个结点只访问一次,因此时间复杂度为 O(n)
/// 空间复杂度:在最糟糕的情况下,树是完全不平衡的,例如每个结点只剩下左子结点,递归将会被调用 n 次(树的高度),
/// 因此保持调用栈的存储将是 O(n)。但在最好的情况下(树是完全平衡的),树的高度将是 log(n)。因此,在这种情况下的空间复杂度将是 O(log(n))。
/// </summary>
/// <param name="root"></param>
/// <returns></returns>
//public int MaxDepth(TreeNode root)
//{
// return SearchTree(root, 0);
//}
//private int SearchTree(TreeNode tree, int curDepth)
//{
// if (tree == null)
// return curDepth;
// else
// return Math.Max(SearchTree(tree.left, curDepth + 1), SearchTree(tree.right, curDepth + 1));
//}
}
}