-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
31 lines (24 loc) · 916 Bytes
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import os
import sys
import glob
import torch
import numpy as np
from PIL import Image
from torch.utils.data import Dataset
class Dataset(Dataset):
def __init__(self, root, phase='train', transform=None):
self.transform = transform
self.imagesA = sorted(glob.glob(os.path.join(root, phase + 'A', '*.jpg')))
self.imagesB = sorted(glob.glob(os.path.join(root, phase + 'B', '*.jpg')))
def __getitem__(self, index):
imageA = Image.open(self.imagesA[index % len(self.imagesA)])
imageB = Image.open(self.imagesB[index % len(self.imagesB)])
if self.transform is not None:
imageA = self.transform(imageA)
imageB = self.transform(imageB)
else:
imageA = np.array(imageA)
imageB = np.array(imageB)
return imageA, imageB
def __len__(self):
return max(len(self.imagesA), len(self.imagesB))