-
Notifications
You must be signed in to change notification settings - Fork 6.6k
/
Copy pathtests.py
101 lines (82 loc) · 3.28 KB
/
tests.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
# Source for "Build a Large Language Model From Scratch"
# - https://www.manning.com/books/build-a-large-language-model-from-scratch
# Code: https://github.com/rasbt/LLMs-from-scratch
# File for internal use (unit tests)
import pytest
from gpt_train import main
import http.client
from urllib.parse import urlparse
@pytest.fixture
def gpt_config():
return {
"vocab_size": 50257,
"context_length": 12, # small for testing efficiency
"emb_dim": 32, # small for testing efficiency
"n_heads": 4, # small for testing efficiency
"n_layers": 2, # small for testing efficiency
"drop_rate": 0.1,
"qkv_bias": False
}
@pytest.fixture
def other_settings():
return {
"learning_rate": 5e-4,
"num_epochs": 1, # small for testing efficiency
"batch_size": 2,
"weight_decay": 0.1
}
def test_main(gpt_config, other_settings):
train_losses, val_losses, tokens_seen, model = main(gpt_config, other_settings)
assert len(train_losses) == 39, "Unexpected number of training losses"
assert len(val_losses) == 39, "Unexpected number of validation losses"
assert len(tokens_seen) == 39, "Unexpected number of tokens seen"
def check_file_size(url, expected_size):
parsed_url = urlparse(url)
if parsed_url.scheme == "https":
conn = http.client.HTTPSConnection(parsed_url.netloc)
else:
conn = http.client.HTTPConnection(parsed_url.netloc)
conn.request("HEAD", parsed_url.path)
response = conn.getresponse()
if response.status != 200:
return False, f"{url} not accessible"
size = response.getheader("Content-Length")
if size is None:
return False, "Content-Length header is missing"
size = int(size)
if size != expected_size:
return False, f"{url} file has expected size {expected_size}, but got {size}"
return True, f"{url} file size is correct"
def test_model_files():
def check_model_files(base_url):
model_size = "124M"
files = {
"checkpoint": 77,
"encoder.json": 1042301,
"hparams.json": 90,
"model.ckpt.data-00000-of-00001": 497759232,
"model.ckpt.index": 5215,
"model.ckpt.meta": 471155,
"vocab.bpe": 456318
}
for file_name, expected_size in files.items():
url = f"{base_url}/{model_size}/{file_name}"
valid, message = check_file_size(url, expected_size)
assert valid, message
model_size = "355M"
files = {
"checkpoint": 77,
"encoder.json": 1042301,
"hparams.json": 91,
"model.ckpt.data-00000-of-00001": 1419292672,
"model.ckpt.index": 10399,
"model.ckpt.meta": 926519,
"vocab.bpe": 456318
}
for file_name, expected_size in files.items():
url = f"{base_url}/{model_size}/{file_name}"
valid, message = check_file_size(url, expected_size)
assert valid, message
check_model_files(base_url="https://openaipublic.blob.core.windows.net/gpt-2/models")
check_model_files(base_url="https://f001.backblazeb2.com/file/LLMs-from-scratch/gpt2")