-
Notifications
You must be signed in to change notification settings - Fork 6.4k
/
Copy pathllama3.py
510 lines (405 loc) · 19.6 KB
/
llama3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
# Source for "Build a Large Language Model From Scratch"
# - https://www.manning.com/books/build-a-large-language-model-from-scratch
# Code: https://github.com/rasbt/LLMs-from-scratch
import os
from pathlib import Path
import torch
import torch.nn as nn
import tiktoken
from tiktoken.load import load_tiktoken_bpe
LLAMA32_CONFIG_1B = {
"vocab_size": 128_256, # Vocabulary size
"context_length": 8192, # Maximum context length to use (reduced to save memory)
"orig_context_length": 131_072, # Context length that was used to train the model
"emb_dim": 2048, # Embedding dimension
"n_heads": 32, # Number of attention heads
"n_layers": 16, # Number of layers
"hidden_dim": 8192, # Size of the intermediate dimension in FeedForward
"n_kv_groups": 8, # Key-Value groups for grouped-query attention
"rope_base": 500_000.0, # The base in RoPE's "theta"
"dtype": torch.bfloat16, # Lower-precision dtype to reduce memory usage
"rope_freq": { # RoPE frequency scaling
"factor": 32.0,
"low_freq_factor": 1.0,
"high_freq_factor": 4.0,
"original_context_length": 8192,
}
}
LLAMA32_CONFIG_3B = {
"vocab_size": 128_256, # Vocabulary size
"context_length": 8192, # Maximum context length to use (reduced to save memory)
"orig_context_length": 131_072, # Context length that was used to train the model
"emb_dim": 3072, # Embedding dimension
"n_heads": 24, # Number of attention heads
"n_layers": 28, # Number of layers
"hidden_dim": 8192, # Size of the intermediate dimension in FeedForward
"n_kv_groups": 8, # Key-Value groups for grouped-query attention
"rope_base": 500_000.0, # The base in RoPE's "theta"
"dtype": torch.bfloat16, # Lower-precision dtype to reduce memory usage
"rope_freq": { # RoPE frequency scaling
"factor": 32.0,
"low_freq_factor": 1.0,
"high_freq_factor": 4.0,
"original_context_length": 8192,
}
}
class Llama3Model(nn.Module):
def __init__(self, cfg):
super().__init__()
# Main model parameters
self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"], dtype=cfg["dtype"])
self.trf_blocks = nn.ModuleList( # ModuleList since Sequential can only accept one input, and we need `x, mask, cos, sin`
[TransformerBlock(cfg) for _ in range(cfg["n_layers"])]
)
self.final_norm = nn.RMSNorm(cfg["emb_dim"], eps=1e-5, dtype=cfg["dtype"])
self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False, dtype=cfg["dtype"])
# Reusuable utilities
self.register_buffer(
"mask", torch.triu(torch.ones(cfg["context_length"], cfg["context_length"]), diagonal=1).bool(),
persistent=False
)
if cfg["orig_context_length"] != cfg["context_length"]:
cfg["rope_base"] = rescale_theta(
cfg["rope_base"],
cfg["orig_context_length"],
cfg["context_length"]
)
cos, sin = compute_rope_params(
head_dim=cfg["emb_dim"] // cfg["n_heads"],
theta_base=cfg["rope_base"],
context_length=cfg["context_length"],
freq_config=cfg["rope_freq"]
)
self.register_buffer("cos", cos, persistent=False)
self.register_buffer("sin", sin, persistent=False)
self.cfg = cfg
def forward(self, in_idx):
tok_embeds = self.tok_emb(in_idx)
x = tok_embeds
for block in self.trf_blocks:
x = block(x, self.mask, self.cos, self.sin)
x = self.final_norm(x)
logits = self.out_head(x.to(self.cfg["dtype"]))
return logits
class TransformerBlock(nn.Module):
def __init__(self, cfg):
super().__init__()
self.att = GroupedQueryAttention(
d_in=cfg["emb_dim"],
d_out=cfg["emb_dim"],
num_heads=cfg["n_heads"],
num_kv_groups=cfg["n_kv_groups"],
dtype=cfg["dtype"]
)
self.ff = FeedForward(cfg)
self.norm1 = nn.RMSNorm(cfg["emb_dim"], eps=1e-5, dtype=cfg["dtype"])
self.norm2 = nn.RMSNorm(cfg["emb_dim"], eps=1e-5, dtype=cfg["dtype"])
def forward(self, x, mask, cos, sin):
# Shortcut connection for attention block
shortcut = x
x = self.norm1(x)
x = self.att(x, mask, cos, sin) # Shape [batch_size, num_tokens, emb_size]
x = x + shortcut # Add the original input back
# Shortcut connection for feed-forward block
shortcut = x
x = self.norm2(x)
x = self.ff(x)
x = x + shortcut # Add the original input back
return x
class FeedForward(nn.Module):
def __init__(self, cfg):
super().__init__()
self.fc1 = nn.Linear(cfg["emb_dim"], cfg["hidden_dim"], dtype=cfg["dtype"], bias=False)
self.fc2 = nn.Linear(cfg["emb_dim"], cfg["hidden_dim"], dtype=cfg["dtype"], bias=False)
self.fc3 = nn.Linear(cfg["hidden_dim"], cfg["emb_dim"], dtype=cfg["dtype"], bias=False)
def forward(self, x):
x_fc1 = self.fc1(x)
x_fc2 = self.fc2(x)
x = nn.functional.silu(x_fc1) * x_fc2
return self.fc3(x)
class GroupedQueryAttention(nn.Module):
def __init__(
self, d_in, d_out, num_heads, num_kv_groups, dtype=None
):
super().__init__()
assert d_out % num_heads == 0, "d_out must be divisible by num_heads"
assert num_heads % num_kv_groups == 0, "num_heads must be divisible by num_kv_groups"
self.d_out = d_out
self.num_heads = num_heads
self.head_dim = d_out // num_heads
self.W_key = nn.Linear(d_in, num_kv_groups * self.head_dim, bias=False, dtype=dtype)
self.W_value = nn.Linear(d_in, num_kv_groups * self.head_dim, bias=False, dtype=dtype)
self.num_kv_groups = num_kv_groups
self.group_size = num_heads // num_kv_groups
self.W_query = nn.Linear(d_in, d_out, bias=False, dtype=dtype)
self.out_proj = nn.Linear(d_out, d_out, bias=False, dtype=dtype)
def forward(self, x, mask, cos, sin):
b, num_tokens, d_in = x.shape
queries = self.W_query(x) # Shape: (b, num_tokens, d_out)
keys = self.W_key(x) # Shape: (b, num_tokens, num_kv_groups * head_dim)
values = self.W_value(x) # Shape: (b, num_tokens, num_kv_groups * head_dim)
# Reshape queries, keys, and values
queries = queries.view(b, num_tokens, self.num_heads, self.head_dim)
keys = keys.view(b, num_tokens, self.num_kv_groups, self.head_dim)
values = values.view(b, num_tokens, self.num_kv_groups, self.head_dim)
# Transpose keys, values, and queries
keys = keys.transpose(1, 2) # Shape: (b, num_heads, num_tokens, head_dim)
values = values.transpose(1, 2) # Shape: (b, num_heads, num_tokens, head_dim)
queries = queries.transpose(1, 2) # Shape: (b, num_query_groups, num_tokens, head_dim)
# Apply RoPE
keys = apply_rope(keys, cos, sin)
queries = apply_rope(queries, cos, sin)
# Expand keys and values to match the number of heads
# Shape: (b, num_heads, num_tokens, head_dim)
keys = keys.repeat_interleave(self.group_size, dim=1) # Shape: (b, num_heads, num_tokens, head_dim)
values = values.repeat_interleave(self.group_size, dim=1) # Shape: (b, num_heads, num_tokens, head_dim)
# For example, before repeat_interleave along dim=1 (query groups):
# [K1, K2]
# After repeat_interleave (each query group is repeated group_size times):
# [K1, K1, K2, K2]
# If we used regular repeat instead of repeat_interleave, we'd get:
# [K1, K2, K1, K2]
# Compute scaled dot-product attention (aka self-attention) with a causal mask
# Shape: (b, num_heads, num_tokens, num_tokens)
attn_scores = queries @ keys.transpose(2, 3) # Dot product for each head
# Use the mask to fill attention scores
attn_scores = attn_scores.masked_fill(mask[:num_tokens, :num_tokens], -torch.inf)
attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1)
assert keys.shape[-1] == self.head_dim
# Shape: (b, num_tokens, num_heads, head_dim)
context_vec = (attn_weights @ values).transpose(1, 2)
# Combine heads, where self.d_out = self.num_heads * self.head_dim
context_vec = context_vec.reshape(b, num_tokens, self.d_out)
context_vec = self.out_proj(context_vec) # optional projection
return context_vec
def compute_rope_params(head_dim, theta_base=10_000, context_length=4096, freq_config=None, dtype=torch.float32):
assert head_dim % 2 == 0, "Embedding dimension must be even"
# Compute the inverse frequencies
inv_freq = 1.0 / (theta_base ** (torch.arange(0, head_dim, 2, dtype=dtype)[: (head_dim // 2)].float() / head_dim))
# Frequency adjustments
if freq_config is not None:
low_freq_wavelen = freq_config["original_context_length"] / freq_config["low_freq_factor"]
high_freq_wavelen = freq_config["original_context_length"] / freq_config["high_freq_factor"]
wavelen = 2 * torch.pi / inv_freq
inv_freq_llama = torch.where(
wavelen > low_freq_wavelen, inv_freq / freq_config["factor"], inv_freq
)
smooth_factor = (freq_config["original_context_length"] / wavelen - freq_config["low_freq_factor"]) / (
freq_config["high_freq_factor"] - freq_config["low_freq_factor"]
)
smoothed_inv_freq = (
(1 - smooth_factor) * (inv_freq / freq_config["factor"]) + smooth_factor * inv_freq
)
is_medium_freq = (wavelen <= low_freq_wavelen) & (wavelen >= high_freq_wavelen)
inv_freq_llama = torch.where(is_medium_freq, smoothed_inv_freq, inv_freq_llama)
inv_freq = inv_freq_llama
# Generate position indices
positions = torch.arange(context_length, dtype=dtype)
# Compute the angles
angles = positions[:, None] * inv_freq[None, :] # Shape: (context_length, head_dim // 2)
# Expand angles to match the head_dim
angles = torch.cat([angles, angles], dim=1) # Shape: (context_length, head_dim)
# Precompute sine and cosine
cos = torch.cos(angles)
sin = torch.sin(angles)
return cos, sin
def apply_rope(x, cos, sin):
# x: (batch_size, num_heads, seq_len, head_dim)
batch_size, num_heads, seq_len, head_dim = x.shape
assert head_dim % 2 == 0, "Head dimension must be even"
# Split x into first half and second half
x1 = x[..., : head_dim // 2] # First half
x2 = x[..., head_dim // 2:] # Second half
# Adjust sin and cos shapes
cos = cos[:seq_len, :].unsqueeze(0).unsqueeze(0) # Shape: (1, 1, seq_len, head_dim)
sin = sin[:seq_len, :].unsqueeze(0).unsqueeze(0)
# Apply the rotary transformation
rotated = torch.cat((-x2, x1), dim=-1)
x_rotated = (x * cos) + (rotated * sin)
# It's ok to use lower-precision after applying cos and sin rotation
return x_rotated.to(dtype=x.dtype)
def rescale_theta(theta_old, context_length_old, context_length_new):
scaling_factor = context_length_new / context_length_old
theta_new = theta_old * scaling_factor
return theta_new
##########################################
# Tokenizer
##########################################
class Llama3Tokenizer:
def __init__(self, model_path):
assert os.path.isfile(model_path), f"Model file {model_path} not found"
mergeable_ranks = load_tiktoken_bpe(model_path)
self.special_tokens = {
"<|begin_of_text|>": 128000,
"<|end_of_text|>": 128001,
"<|start_header_id|>": 128006,
"<|end_header_id|>": 128007,
"<|eot_id|>": 128009,
}
self.special_tokens.update({
f"<|reserved_{i}|>": 128002 + i for i in range(256) if (128002 + i) not in self.special_tokens.values()
})
self.model = tiktoken.Encoding(
name=Path(model_path).name,
pat_str=r"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+",
mergeable_ranks=mergeable_ranks,
special_tokens=self.special_tokens
)
def encode(self, text, bos=False, eos=False, allowed_special=set(), disallowed_special=()):
if bos:
tokens = [self.special_tokens["<|begin_of_text|>"]]
else:
tokens = []
tokens += self.model.encode(text, allowed_special=allowed_special, disallowed_special=disallowed_special)
if eos:
tokens.append(self.special_tokens["<|end_of_text|>"])
return tokens
def decode(self, tokens):
return self.model.decode(tokens)
class ChatFormat:
def __init__(self, tokenizer):
self.tokenizer = tokenizer
def encode_header(self, message):
tokens = []
tokens.append(self.tokenizer.special_tokens["<|start_header_id|>"])
tokens.extend(self.tokenizer.encode(message["role"], bos=False, eos=False))
tokens.append(self.tokenizer.special_tokens["<|end_header_id|>"])
tokens.extend(self.tokenizer.encode("\n\n", bos=False, eos=False))
return tokens
def encode(self, text, allowed_special=None):
message = {
"role": "user",
"content": text
}
tokens = self.encode_header(message)
tokens.extend(
self.tokenizer.encode(
message["content"].strip(),
bos=False,
eos=False,
allowed_special=allowed_special
)
)
tokens.append(self.tokenizer.special_tokens["<|eot_id|>"])
return tokens
def decode(self, token_ids):
return self.tokenizer.decode(token_ids)
def clean_text(text, header_end="assistant<|end_header_id|>\n\n"):
# Find the index of the first occurrence of "<|end_header_id|>"
index = text.find(header_end)
if index != -1:
# Return the substring starting after "<|end_header_id|>"
return text[index + len(header_end):].strip() # Strip removes leading/trailing whitespace
else:
# If the token is not found, return the original text
return text
######################################################################
# Llama 3 fast (alternative code geared towards efficiency)
######################################################################
class GroupedQueryAttentionFast(nn.Module):
"""
Drop-in replacement for GroupedQueryAttention but using PyTorch's
scaled_dot_product_attention, which uses FlashAttention if run
on an Ampere GPU (like A100) or newer and uses float16/bfloat16 or lower.
"""
def __init__(self, d_in, d_out, num_heads, num_kv_groups, dtype=None):
super().__init__()
assert d_out % num_heads == 0, "d_out must be divisible by num_heads"
assert num_heads % num_kv_groups == 0, "num_heads must be divisible by num_kv_groups"
self.d_out = d_out
self.num_heads = num_heads
self.head_dim = d_out // num_heads
self.num_kv_groups = num_kv_groups
self.group_size = num_heads // num_kv_groups
self.W_key = nn.Linear(d_in, num_kv_groups * self.head_dim, bias=False, dtype=dtype)
self.W_value = nn.Linear(d_in, num_kv_groups * self.head_dim, bias=False, dtype=dtype)
self.W_query = nn.Linear(d_in, d_out, bias=False, dtype=dtype)
self.out_proj = nn.Linear(d_out, d_out, bias=False, dtype=dtype)
def forward(self, x, cos, sin):
b, num_tokens, _ = x.shape
# Project to queries, keys, values
q = self.W_query(x).view(b, num_tokens, self.num_heads, self.head_dim).transpose(1, 2)
k = self.W_key(x).view(b, num_tokens, self.num_kv_groups, self.head_dim).transpose(1, 2)
v = self.W_value(x).view(b, num_tokens, self.num_kv_groups, self.head_dim).transpose(1, 2)
# Apply Rotary Positional Embedding
q = apply_rope(q, cos, sin)
k = apply_rope(k, cos, sin)
# Expand key/value groups to full head count
k = k.repeat_interleave(self.group_size, dim=1)
v = v.repeat_interleave(self.group_size, dim=1)
# Efficient scaled dot-product attention
attn_output = torch.nn.functional.scaled_dot_product_attention(
q, k, v,
is_causal=True # Enables Flash/FlexAttention kernels
)
# Combine heads and project
attn_output = attn_output.transpose(1, 2).reshape(b, num_tokens, self.d_out)
return self.out_proj(attn_output)
class TransformerBlockFast(nn.Module):
"""
Same as original TransformerBlock but uses
GroupedQueryAttentionFast instead of GroupedQueryAttention.
"""
def __init__(self, cfg):
super().__init__()
self.att = GroupedQueryAttentionFast(
d_in=cfg["emb_dim"],
d_out=cfg["emb_dim"],
num_heads=cfg["n_heads"],
num_kv_groups=cfg["n_kv_groups"],
dtype=cfg["dtype"]
)
self.ff = FeedForward(cfg)
self.norm1 = nn.RMSNorm(cfg["emb_dim"], eps=1e-5, dtype=cfg["dtype"])
self.norm2 = nn.RMSNorm(cfg["emb_dim"], eps=1e-5, dtype=cfg["dtype"])
def forward(self, x, cos, sin):
# Shortcut connection for attention block
shortcut = x
x = self.norm1(x)
x = self.att(x, cos, sin) # Shape [batch_size, num_tokens, emb_size]
x = x + shortcut # Add the original input back
# Shortcut connection for feed-forward block
shortcut = x
x = self.norm2(x)
x = self.ff(x)
x = x + shortcut # Add the original input back
return x
class Llama3ModelFast(nn.Module):
"""
Same as original Llama3Model but uses TransformerBlockFast
instead of TransformerBlock, which in turn uses
GroupedQueryAttentionFast instead of GroupedQueryAttention.
"""
def __init__(self, cfg):
super().__init__()
# Main model parameters
self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"], dtype=cfg["dtype"])
self.trf_blocks = nn.ModuleList( # ModuleList since Sequential can only accept one input, and we need `x, cos, sin`
[TransformerBlockFast(cfg) for _ in range(cfg["n_layers"])]
)
self.final_norm = nn.RMSNorm(cfg["emb_dim"], eps=1e-5, dtype=cfg["dtype"])
self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False, dtype=cfg["dtype"])
if cfg["orig_context_length"] != cfg["context_length"]:
cfg["rope_base"] = rescale_theta(
cfg["rope_base"],
cfg["orig_context_length"],
cfg["context_length"]
)
cos, sin = compute_rope_params(
head_dim=cfg["emb_dim"] // cfg["n_heads"],
theta_base=cfg["rope_base"],
context_length=cfg["context_length"],
freq_config=cfg["rope_freq"]
)
self.register_buffer("cos", cos, persistent=False)
self.register_buffer("sin", sin, persistent=False)
self.cfg = cfg
def forward(self, in_idx):
tok_embeds = self.tok_emb(in_idx)
x = tok_embeds
for block in self.trf_blocks:
x = block(x, self.cos, self.sin)
x = self.final_norm(x)
logits = self.out_head(x.to(self.cfg["dtype"]))
return logits