-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path03_circle_sinosoidal.py
executable file
·643 lines (564 loc) · 18.2 KB
/
03_circle_sinosoidal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
from operator import itemgetter
from enum import Enum
import numpy as np
from ipywidgets import Box, interactive_output, Layout, ToggleButtons, VBox
from IPython.display import display
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import matplotlib.animation as animation
from utils.state import State
from utils.ui.constants import UIContainerProp
from utils.ui.slider import SliderProp, define_slider
from utils.maths.trigonometry import TWO_PI, period, wave
NOTEBOOK_FILE_NAME = '03_circle_sinosoidal'
FOUR_PI = TWO_PI * 2 # A value we use in a number of places.
MIN_X = TWO_PI * -1
MAX_X = TWO_PI * 2
MIN_Y = -3
MAX_Y = 3
MIN_FULL_RANGE = MIN_X
MAX_FULL_RANGE = MAX_X
MIN_PERIOD_RANGE = 0
MAX_PERIOD_RANGE = TWO_PI
class StateProp(Enum):
MODIFIED = 'modified'
TRIG_FUNCTION = 'trig_function'
PHASE_SHIFT = 'phase_shift'
VERTICAL_SHIFT = 'vertical_shift'
HORIZONTAL_SCALAR = 'horizontal_scalar'
VERTICAL_SCALAR = 'vertical_scalar'
# UI
SLIDER_DECIMAL_PRECISION = 2
class ToggleButtonOption(Enum):
SINE = 'Sine'
COSINE = 'Cosine'
# Plot and animation
THETA_CIRCLE_FACTOR = 0.3
ANIMATION_INTERVAL = 50
ANIMATION_SAVE_COUNT = 1500
ANIMATION_STEP_FACTOR = 25
ANIMATION_FRAME_STEP_FACTOR = 0.1
class PlotPart(Enum):
PLT = 'plt'
FIG = 'fig'
AXES = 'axes'
ANIMATED_PARTS = 'animated_parts'
class AnimatedPart(Enum):
CIRCLE = 'circle'
THETA_CIRCLE = 'theta_circle'
PERIOD_WAVE = 'period_wave'
FULL_WAVE = 'full_wave'
POINT = 'point'
TERMINAL_ARM = 'terminal_arm'
CONNECTING_ARM = 'connecting_arm'
class FrameField(Enum):
I = 'i'
X = 'x'
CHANGED = 'changed'
# Display
class Color(Enum):
BLACK = '#000022'
OFF_WHITE = '#ffffe8'
GRAY = '#555555'
LIGHT_GRAY = '#888888'
BLUE = '#1b9ce5'
LIGHT_BLUE = '#36a8e8'
class LineWidth(Enum):
THIN = 0.5
THICK = 4.0
def update_state(state):
def fn(trig_function, phase_shift, vertical_shift, horizontal_scalar, vertical_scalar):
state.set_multiple({
StateProp.TRIG_FUNCTION: trig_function,
StateProp.PHASE_SHIFT: phase_shift,
StateProp.VERTICAL_SHIFT: vertical_shift,
StateProp.HORIZONTAL_SCALAR: horizontal_scalar,
StateProp.VERTICAL_SCALAR: vertical_scalar,
})
return fn
def define_wave_functions(values):
trig_function, phase_shift, vertical_shift, horizontal_scalar, vertical_scalar = itemgetter(
StateProp.TRIG_FUNCTION,
StateProp.PHASE_SHIFT,
StateProp.VERTICAL_SHIFT,
StateProp.HORIZONTAL_SCALAR,
StateProp.VERTICAL_SCALAR,
)(values)
# Set up our basic wave equation functions.
sine_wave = wave(np.sin)
cosine_wave = wave(np.cos)
# Formulate the equation that we'll use for this frame and the current state.
if trig_function == ToggleButtonOption.COSINE:
fnc = cosine_wave
else:
fnc = sine_wave
wave_equation = fnc(
vertical_scalar,
horizontal_scalar,
phase_shift,
vertical_shift,
)
return {
'sine_wave': sine_wave,
'cosine_wave': cosine_wave,
'wave_equation': wave_equation
}
def calculate_range_steps(scaled_x):
return abs(int(scaled_x* ANIMATION_STEP_FACTOR))
def calculate_full_wave_data(values):
wave_equation, horizontal_scalar, vertical_scalar = itemgetter(
'wave_equation',
StateProp.HORIZONTAL_SCALAR,
StateProp.VERTICAL_SCALAR,
)(values)
max_full_range_adjusted = MAX_FULL_RANGE if horizontal_scalar < 1 else MAX_FULL_RANGE * horizontal_scalar
steps = calculate_range_steps(max_full_range_adjusted * vertical_scalar)
range = np.linspace(MIN_FULL_RANGE, max_full_range_adjusted, steps)
ys = wave_equation(range)
return {
'range': range,
'ys': ys,
}
def calculate_period_wave_data(values):
wave_equation, step_x, phase_shift, vertical_scalar = itemgetter(
'wave_equation',
'step_x',
StateProp.PHASE_SHIFT,
StateProp.VERTICAL_SCALAR,
)(values)
start = phase_shift
x = start + step_x
steps = calculate_range_steps(x * vertical_scalar)
range = np.linspace(start, x, steps)
ys = wave_equation(range)
y = 0 if np.size(ys) == 0 else ys[-1]
return {
'x': x,
'y': y,
'range': range,
'ys': ys,
}
def calculate_terminal_arm_data(values):
cosine_wave, sine_wave, period_x, vertical_scalar, horizontal_scalar, origin_x, origin_y, theta_x, theta_y = itemgetter(
'cosine_wave',
'sine_wave',
'period_x',
StateProp.VERTICAL_SCALAR,
StateProp.HORIZONTAL_SCALAR,
'origin_x',
'origin_y',
'theta_x',
'theta_y',
)(values)
latest_x = cosine_wave(vertical_scalar, horizontal_scalar)(period_x)
latest_y = sine_wave(vertical_scalar, horizontal_scalar)(period_x)
x1 = 0 if np.size(theta_x) == 0 else theta_x[-1]
x2 = origin_x + latest_x
y1 = 0 if np.size(theta_y) == 0 else theta_y[-1]
y2 = origin_y + latest_y
return {
'x1': x1,
'x2': x2,
'y1': y1,
'y2': y2,
}
def define_toggle_buttons():
toggle_buttons = ToggleButtons(options=[
ToggleButtonOption.SINE.value,
ToggleButtonOption.COSINE.value,
])
return {
UIContainerProp.CONTROLS: {
StateProp.TRIG_FUNCTION: toggle_buttons,
},
UIContainerProp.CONTAINER: Box(
children=[toggle_buttons],
layout=Layout(margin='0 0 1rem 0'),
)
}
def define_sliders(default_values):
phase_shift, vertical_shift, horizontal_scalar, vertical_scalar = itemgetter(
StateProp.PHASE_SHIFT,
StateProp.VERTICAL_SHIFT,
StateProp.HORIZONTAL_SCALAR,
StateProp.VERTICAL_SCALAR,
)(default_values)
slider_specs = {
StateProp.PHASE_SHIFT: {
SliderProp.DESCRIPTION: "Phase",
SliderProp.VALUE: phase_shift,
SliderProp.MIN: -2,
SliderProp.MAX: 2,
SliderProp.STEP: 0.05,
},
StateProp.VERTICAL_SHIFT: {
SliderProp.DESCRIPTION: "Vertical Shift",
SliderProp.VALUE:vertical_shift,
SliderProp.MIN: -2,
SliderProp.MAX: 2,
SliderProp.STEP: 0.05,
},
StateProp.HORIZONTAL_SCALAR: {
SliderProp.DESCRIPTION: "Frequency",
SliderProp.VALUE: horizontal_scalar,
SliderProp.MIN: 0.5,
SliderProp.MAX: 2,
SliderProp.STEP: 0.05,
},
StateProp.VERTICAL_SCALAR: {
SliderProp.DESCRIPTION: "Amplitude",
SliderProp.VALUE: vertical_scalar,
SliderProp.MIN: -2,
SliderProp.MAX: 2,
SliderProp.STEP: 0.05,
},
}
sliders = {}
layout_children = []
for k, v in slider_specs.items():
definition = define_slider(v, key=k, label_precision=SLIDER_DECIMAL_PRECISION)
sliders[k] = definition[UIContainerProp.CONTROLS][k]
layout_children.append(definition[UIContainerProp.CONTAINER])
return {
UIContainerProp.CONTROLS: sliders,
UIContainerProp.CONTAINER: VBox(
children=layout_children,
layout=Layout(
padding='0.5rem',
border=f'1px solid {Color.LIGHT_GRAY.value}',
width='fit-content',
),
),
}
def define_ui(state):
phase_shift = state.get(StateProp.PHASE_SHIFT)
vertical_shift = state.get(StateProp.VERTICAL_SHIFT)
horizontal_scalar = state.get(StateProp.HORIZONTAL_SCALAR)
vertical_scalar = state.get(StateProp.VERTICAL_SCALAR)
toggle_buttons = define_toggle_buttons()
sliders = define_sliders({
StateProp.PHASE_SHIFT: phase_shift,
StateProp.VERTICAL_SHIFT: vertical_shift,
StateProp.HORIZONTAL_SCALAR: horizontal_scalar,
StateProp.VERTICAL_SCALAR: vertical_scalar,
})
controls = {}
# Create a dictionary with the string value of the enum as key.
for k, v in (toggle_buttons[UIContainerProp.CONTROLS] | sliders[UIContainerProp.CONTROLS]).items():
controls[k.value] = v
interactive_output(
update_state(state),
controls,
)
return Box(
children=[
toggle_buttons[UIContainerProp.CONTAINER],
sliders[UIContainerProp.CONTAINER],
],
layout=Layout(
display='flex',
flex_flow='column',
align_items='stretch',
)
)
def define_plot(plt):
fig, ax = plt.subplots()
# Set visual qualities of the figure itself.
fig.canvas.toolbar_visible = False
fig.canvas.header_visible = False
fig.canvas.footer_visible = False
fig.canvas.resizable = False
fig.tight_layout(pad=0)
fig.subplots_adjust(top=1.25)
# Set some visual qualities of the axis.
ax.set_aspect('equal', adjustable='box')
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['bottom'].set_visible(False)
ax.spines['left'].set_visible(False)
# Assign the desired axis values. These will remain constant throughout
# the animation.
ax.tick_params(axis='both', which='both', length=0)
ax.set_xticks([])
ax.set_xticks([], minor=True)
ax.set_yticks([])
ax.set_yticks([], minor=True)
ax.margins(y=0.02)
ax.set_xlim(-TWO_PI, FOUR_PI)
ax.set_ylim(MIN_Y, MAX_Y)
# Draw the Cartesian axes.
x_axis_x = [-TWO_PI, TWO_PI * 2]
x_axis_y = [0, 0]
y_axis_x = [0, 0]
y_axis_y = [MIN_Y, MAX_Y]
ax.plot(
x_axis_x, x_axis_y,
lw=LineWidth.THIN.value,
color=Color.LIGHT_GRAY.value,
)
ax.plot(
y_axis_x, y_axis_y,
lw=LineWidth.THIN.value,
color=Color.LIGHT_GRAY.value,
)
# Render the unit circle and inner (theta/angle) circle. We'll animate
# these elsewhere.
theta_circle, = ax.plot(
0, 0,
lw=LineWidth.THIN.value,
color=Color.GRAY.value,
)
circle = patches.Circle((0, 0), 1, fill=False)
ax.add_patch(circle)
# Render the "full" sinosoidal wave and its period wave. We'll animate
# these elsewhere.
period_wave, = ax.plot(
0, 0,
lw=LineWidth.THICK.value,
color=Color.BLUE.value,
)
full_wave, = ax.plot(
0, 0,
lw=LineWidth.THIN.value,
color=Color.LIGHT_BLUE.value,
)
point, = ax.plot(-1, 0, ".")
# Render the arms that connect the angle to the wave. We'll animate
# these elsewhere.
x_terminal_arm = [0, 1]
y_terminal_arm = [0, 0]
terminal_arm, = ax.plot(
x_terminal_arm,
y_terminal_arm,
lw=LineWidth.THIN.value,
color=Color.GRAY.value,
)
connecting_arm, = ax.plot(
[0, 0], [0, 0],
lw=LineWidth.THIN.value,
color=Color.GRAY.value,
)
return {
PlotPart.PLT: plt,
PlotPart.FIG: fig,
PlotPart.AXES: [ax],
PlotPart.ANIMATED_PARTS: {
AnimatedPart.CIRCLE: circle,
AnimatedPart.THETA_CIRCLE: theta_circle,
AnimatedPart.POINT: point,
AnimatedPart.PERIOD_WAVE: period_wave,
AnimatedPart.FULL_WAVE: full_wave,
AnimatedPart.TERMINAL_ARM: terminal_arm,
AnimatedPart.CONNECTING_ARM: connecting_arm,
}
}
def update_title(values):
trig_function, vertical_scalar, horizontal_scalar, phase_shift, vertical_shift = itemgetter(
StateProp.TRIG_FUNCTION,
StateProp.VERTICAL_SCALAR,
StateProp.HORIZONTAL_SCALAR,
StateProp.PHASE_SHIFT,
StateProp.VERTICAL_SHIFT,
)(values)
ax = plt.gca()
function = "cos" if trig_function == ToggleButtonOption.COSINE.value else "sin"
equation = f"{vertical_scalar:.2f} × {function}({horizontal_scalar:.2f} × (x - {phase_shift:.2f})) + {vertical_shift:.2f}"
period = f"T = 2π/{horizontal_scalar:.2f}"
ax.set_title(
f"{equation}; {period}",
fontdict={'color': Color.LIGHT_GRAY.value, 'size': 10},
pad=15,
)
def update_full_wave(element, values):
range = values['range']
ys = values['ys']
element.set_data(range, ys)
def update_period_wave(element, values):
range = values['range']
ys = values['ys']
element.set_data(range, ys)
def update_point(element, values):
x = values['x']
y = values['y']
element.set_data([x], [y])
def update_circle(element, values):
x = values['x']
y = values['y']
radius = values['radius']
element.center = (x, y)
element.set_radius(radius)
def update_theta_circle(element, values):
x = values['x']
y = values['y']
element.set_data(x, y)
def update_terminal_arm(element, values):
x1 = values['x1']
x2 = values['x2']
y1 = values['y1']
y2 = values['y2']
element.set_data([x1, x2], [y1, y2])
def update_connecting_arm(element, values):
x1 = values['x1']
x2 = values['x2']
y1 = values['y1']
y2 = values['y2']
element.set_data([x1, x2], [y1, y2])
def generate_frames(state):
def fn():
i = 0
x = 0
direction = 1
changed = False
while True:
yield {
FrameField.I: i,
FrameField.X: x,
FrameField.CHANGED: changed
}
if state.has_changed():
x = 0
changed = True
state.acknowledge()
else:
changed = False
frequency = state.get(StateProp.HORIZONTAL_SCALAR)
period_length = period()(frequency)
if x <= 0:
direction = 1
elif x >= period_length:
direction = -1
x += direction * ANIMATION_FRAME_STEP_FACTOR
i += 1
return fn
def animate(animated_parts, state):
def fn(frame_data):
current_state = state.get_all()
# Get the elements of the plot that we want to animate.
circle, theta_circle, point, period_wave, full_wave, terminal_arm, connecting_arm = itemgetter(
AnimatedPart.CIRCLE,
AnimatedPart.THETA_CIRCLE,
AnimatedPart.POINT,
AnimatedPart.PERIOD_WAVE,
AnimatedPart.FULL_WAVE,
AnimatedPart.TERMINAL_ARM,
AnimatedPart.CONNECTING_ARM,
)(animated_parts)
# Get the specifics for this particular frame.
x, changed = itemgetter(
FrameField.X,
FrameField.CHANGED,
)(frame_data)
sine_wave, cosine_wave, wave_equation = itemgetter(
'sine_wave',
'cosine_wave',
'wave_equation',
)(define_wave_functions(current_state))
# Update animated elements
if changed:
update_title(values=current_state)
update_full_wave(
element=full_wave,
values=calculate_full_wave_data({
'wave_equation': wave_equation,
StateProp.HORIZONTAL_SCALAR:
current_state[StateProp.HORIZONTAL_SCALAR],
StateProp.VERTICAL_SCALAR:
current_state[StateProp.VERTICAL_SCALAR],
})
)
period_wave_data = calculate_period_wave_data({
'wave_equation': wave_equation,
'step_x': x,
StateProp.PHASE_SHIFT: current_state[StateProp.PHASE_SHIFT],
StateProp.VERTICAL_SCALAR: current_state[StateProp.VERTICAL_SCALAR],
})
update_period_wave(
element=period_wave,
values={
'range': period_wave_data['range'],
'ys': period_wave_data['ys'],
}
)
update_point(
element=point,
values={
'x': period_wave_data['x'],
'y': period_wave_data['y'],
}
)
circle_origin_x = period_wave_data['x']
circle_origin_y = current_state[StateProp.VERTICAL_SHIFT]
theta_circle_x = circle_origin_x + (np.cos(period_wave_data['range']) * THETA_CIRCLE_FACTOR)
theta_circle_y = circle_origin_y + (np.sin(period_wave_data['range']) * THETA_CIRCLE_FACTOR)
update_circle(
element=circle,
values={
'x': circle_origin_x,
'y': circle_origin_y,
'radius': current_state[StateProp.VERTICAL_SCALAR],
}
)
update_theta_circle(
element=theta_circle,
values={
'x': theta_circle_x,
'y': theta_circle_y,
}
)
arm_data = calculate_terminal_arm_data({
'cosine_wave': cosine_wave,
'sine_wave': sine_wave,
'period_x': period_wave_data['x'],
StateProp.VERTICAL_SCALAR: current_state[StateProp.VERTICAL_SCALAR],
StateProp.HORIZONTAL_SCALAR: current_state[StateProp.HORIZONTAL_SCALAR],
'origin_x': circle_origin_x,
'origin_y': circle_origin_y,
'theta_x': theta_circle_x,
'theta_y': theta_circle_y,
})
update_terminal_arm(
element=terminal_arm,
values={
'x1': arm_data['x1'],
'x2': arm_data['x2'],
'y1': arm_data['y1'],
'y2': arm_data['y2'],
}
)
update_connecting_arm(
element=connecting_arm,
values={
'x1': arm_data['x2'],
'x2': period_wave_data['x'],
'y1': arm_data['y2'],
'y2': period_wave_data['y'],
},
)
return circle, theta_circle, point, period_wave, full_wave, terminal_arm, connecting_arm
return fn
state = State()
state.define({
StateProp.MODIFIED: False,
StateProp.TRIG_FUNCTION: ToggleButtonOption.SINE,
StateProp.PHASE_SHIFT: 0,
StateProp.VERTICAL_SHIFT: 0,
StateProp.HORIZONTAL_SCALAR: 1,
StateProp.VERTICAL_SCALAR: 1,
})
ui = define_ui(state)
fig, animated_parts = itemgetter(
PlotPart.FIG,
PlotPart.ANIMATED_PARTS
)(define_plot(plt))
ani = animation.FuncAnimation(
fig,
animate(animated_parts, state),
interval=ANIMATION_INTERVAL,
frames=generate_frames(state),
blit=True,
cache_frame_data=False,
repeat=False,
save_count=ANIMATION_SAVE_COUNT,
)
display(ui)
display(ani)