-
Notifications
You must be signed in to change notification settings - Fork 56
/
Copy pathprogressmeter_during_optimization.jl
31 lines (25 loc) · 1.08 KB
/
progressmeter_during_optimization.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
using BlackBoxOptim
using BlackBoxOptim: num_func_evals # We will update progress based on num func evals so far
using ProgressMeter
# Case 1: Optimization for a given number of function evaluations
MaxFuncEvals = 5000000
# Minimum update interval 0.5 seconds
const Prog = Progress(MaxFuncEvals, 0.5, "Optimizing...")
function callback_progress_stepper(optcontroller)
global Prog
ProgressMeter.update!(Prog, num_func_evals(optcontroller))
end
# Let's try this on 100-dimensional rosenbrock
function rosenbrock(x)
return( sum( 100*( x[2:end] .- x[1:end-1].^2 ).^2 .+ ( x[1:end-1] .- 1 ).^2 ) )
end
println("Starting optimization!")
res = bboptimize(rosenbrock;
SearchRange=(-5.0,5.0), NumDimensions = 100,
PopulationSize=10, MaxFuncEvals=MaxFuncEvals,
CallbackFunction = callback_progress_stepper,
CallbackInterval = 0.0,
TraceMode = :silent # So that output from BBO doesn't interfere with progress bar...
);
# We can adapt this to other use cases (such as max time etc) by keeping track of start time
# and then updating based on delta time etc.