Skip to content

Commit 79b9be0

Browse files
committed
deleted and moved non-used files, updated benchmarking scripts, ran some new benchmarks
1 parent 03b1bf4 commit 79b9be0

8 files changed

+758
-203
lines changed

Rakefile

-139
This file was deleted.

TODO.md design/TODO.md

File renamed without changes.

examples/benchmarking/benchmark_runs_210516.csv

+691
Large diffs are not rendered by default.

examples/benchmarking/compare_optimizers.jl

+47-46
Original file line numberDiff line numberDiff line change
@@ -267,33 +267,34 @@ function multitest_opt(problemDescriptions, method; NumRepetitions = 3)
267267

268268
start_time = time()
269269
ftn, dur = fitness_for_opt(prob, numdims, popsize, ceil(Int, numfevals), method)
270-
df[:ElapsedTime] = dur
271-
df[:StartTime] = Libc.strftime("%Y-%m-%d %H:%M:%S", start_time)
272-
df[:Fitness] = ftn
270+
df[!, :ElapsedTime] = [dur]
271+
df[!, :StartTime] = [Libc.strftime("%Y-%m-%d %H:%M:%S", start_time)]
272+
df[!, :Fitness] = [ftn]
273273

274274
push!(dfs, df)
275275
end
276276
end
277277

278-
vcat(dfs)
278+
vcat(dfs...)
279279
end
280280

281281
using CSV
282282

283283
function read_benchmark_db(filename)
284284
if isfile(filename)
285-
return CSV.read(filename)
285+
return CSV.read(filename, DataFrame)
286286
else
287287
@warn "Benchmark results file $filename not found, returning empty frame"
288288
return DataFrame()
289289
end
290290
end
291291

292292
function add_rank_per_group(df, groupcols, rankcol, resultcol)
293-
by(df, groupcols) do subdf
294-
orderedsubdf = subdf[sortperm(subdf[:,rankcol]), :]
295-
orderedsubdf[resultcol] = collect(1:size(orderedsubdf,1))
296-
return orderedsubdf
293+
gdf = groupby(df, groupcols)
294+
combine(gdf) do subdf
295+
ordered = subdf[sortperm(subdf[:, rankcol]), :]
296+
ordered[!, resultcol] = collect(1:size(ordered,1))
297+
return ordered
297298
end
298299
end
299300

@@ -303,45 +304,45 @@ function list_benchmark_db(db, saveResultCsvFile = nothing)
303304

304305
if numrows > 1
305306
# Find min fitness per problem
306-
minfitpp = by(db, [:Problem, :NumDims]) do df
307-
DataFrame(
308-
MinFitness = minimum(df[:Fitness])
309-
)
307+
minfitpp = combine(groupby(db, [:Problem, :NumDims])) do df
308+
DataFrame(MinFitness = minimum(df.Fitness))
310309
end
311310

312311
# Add col with order of magnitude worse than min fitness for each run
313-
db = join(db, minfitpp, on = [:Problem, :NumDims])
314-
db[:LogTimesWorseFitness] = log10.(db[:Fitness] ./ db[:MinFitness])
312+
db = leftjoin(db, minfitpp, on = [:Problem, :NumDims])
313+
db[:, :LogTimesWorseFitness] = log10.(db.Fitness ./ db.MinFitness)
315314

316315
# Calc median fitness and time per problem and method.
317-
sumdf = by(db, [:Problem, :NumDims, :Method]) do df
316+
sumdf = combine(groupby(db, [:Problem, :NumDims, :Method])) do df
318317
DataFrame(N = size(df, 1),
319-
MedianFitness = median(df[:,:Fitness]),
320-
MedianTime = median(df[:,:ElapsedTime]))
318+
MedianFitness = median(df.Fitness),
319+
MedianTime = median(df.ElapsedTime))
321320
end
322321

323322
# Rank on median fitness and median time for each problem.
324323
sumdf = add_rank_per_group(sumdf, [:Problem, :NumDims], :MedianFitness, :RankFitness)
325324
sumdf = add_rank_per_group(sumdf, [:Problem, :NumDims], :MedianTime, :RankTime)
326325

327326
# Get number of runs and median magnitude worse per method
328-
permethod = by(db, [:Method]) do df
327+
permethod = combine(groupby(db, [:Method])) do df
329328
DataFrame(
330329
NumRuns = size(df, 1),
331-
MedianLogTimesWorseFitness = round(median(df[:, :LogTimesWorseFitness]), digits=1)
330+
MedianLogTimesWorseFitness = round(median(df.LogTimesWorseFitness), digits=1)
332331
)
333332
end
334333

335334
# and merge with table with mean ranks of fitness and time.
336-
summarydf = by(sumdf, [:Method]) do df
335+
summarydf = combine(groupby(sumdf, [:Method])) do df
336+
rfs = df.RankFitness
337+
rts = df.RankTime
337338
DataFrame(
338-
MeanRank = round(mean(df[:RankFitness]), digits=3),
339-
Num1sFitness = sum(r -> (r == 1) ? 1 : 0, df[:RankFitness]),
340-
MeanRankTime = round(mean(df[:RankTime]), digits=3),
341-
Num1sTime = sum(r -> (r == 1) ? 1 : 0, df[:RankTime]),
339+
MeanRank = round(mean(rfs), digits=3),
340+
Num1sFitness = sum(r -> (r == 1) ? 1 : 0, rfs),
341+
MeanRankTime = round(mean(rts), digits=3),
342+
Num1sTime = sum(r -> (r == 1) ? 1 : 0, rts),
342343
)
343344
end
344-
df = join(summarydf, permethod, on = :Method)
345+
df = leftjoin(summarydf, permethod, on = :Method)
345346

346347
# Now sort and print
347348
sort!(df, [:MeanRank, :MeanRankTime, :Num1sFitness])
@@ -381,14 +382,14 @@ function compare_optimizers_to_benchmarks(benchmarkfile, pset, optimizers, nreps
381382
totalruns = length(optimizers) * nreps * length(pset)
382383
runnum = 0
383384
for optmethod in optimizers
384-
optsel = db[:Method] .== string(optmethod)
385+
optsel = db.Method .== string(optmethod)
385386
for pd in pset
386387
probname, numdims, popsize, numfevals = pd
387-
psel = db[:Problem] .== probname
388-
dsel = db[:NumDims] .== numdims
388+
psel = db.Problem .== probname
389+
dsel = db.NumDims .== numdims
389390
df = db[optsel .& psel .& dsel, :]
390-
benchfitnesses = convert(Vector{Float64}, df[:Fitness])
391-
benchtimes = convert(Vector{Float64}, df[:ElapsedTime])
391+
benchfitnesses = convert(Vector{Float64}, df.Fitness)
392+
benchtimes = convert(Vector{Float64}, df.ElapsedTime)
392393
newfs = Float64[]
393394
newtimes = Float64[]
394395
prob = BlackBoxOptim.example_problems[probname]
@@ -437,19 +438,19 @@ function compare_optimizers_to_benchmarks(benchmarkfile, pset, optimizers, nreps
437438

438439
# Use Benjamini-Hochberg to judge which pvalues are significant given we did
439440
# many comparisons.
440-
ftn_pvs = convert(Vector{Float64}, df[:FitnessPvalue])
441-
df[:FitnessSignificantBH001] = benjamini_hochberg(ftn_pvs, 0.01)
442-
df[:FitnessSignificantBH005] = benjamini_hochberg(ftn_pvs, 0.05)
443-
df[:FitnessSignificantBH010] = benjamini_hochberg(ftn_pvs, 0.10)
441+
ftn_pvs = convert(Vector{Float64}, df.FitnessPvalue)
442+
df[!, :FitnessSignificantBH001] = benjamini_hochberg(ftn_pvs, 0.01)
443+
df[!, :FitnessSignificantBH005] = benjamini_hochberg(ftn_pvs, 0.05)
444+
df[!, :FitnessSignificantBH010] = benjamini_hochberg(ftn_pvs, 0.10)
444445

445-
time_pvs = convert(Vector{Float64}, df[:TimePvalue])
446-
df[:TimeSignificantBH001] = benjamini_hochberg(time_pvs, 0.01)
447-
df[:TimeSignificantBH005] = benjamini_hochberg(time_pvs, 0.05)
448-
df[:TimeSignificantBH010] = benjamini_hochberg(time_pvs, 0.10)
446+
time_pvs = convert(Vector{Float64}, df.TimePvalue)
447+
df[!, :TimeSignificantBH001] = benjamini_hochberg(time_pvs, 0.01)
448+
df[!, :TimeSignificantBH005] = benjamini_hochberg(time_pvs, 0.05)
449+
df[!, :TimeSignificantBH010] = benjamini_hochberg(time_pvs, 0.10)
449450

450451
CSV.write(Libc.strftime("comparison_%Y%m%d_%H%M%S.csv", time()), df)
451452
else
452-
df = CSV.read(comparisonfile)
453+
df = CSV.read(comparisonfile, DataFrame)
453454
end
454455
sort!(df, [:FitnessPvalue])
455456
report_below_pvalue(df, col_prefix="Fitness", pvalue=1.00)
@@ -461,14 +462,14 @@ function compare_optimizers_to_benchmarks(benchmarkfile, pset, optimizers, nreps
461462

462463
# Report (in color) on number of significant differences after Benjamini-Hochberg
463464
# correction.
464-
n_ftn_reg = sum(df[:FitnessSignificantBH005] .& (df[:FitnessOrder] .== "<"))
465-
n_ftn_imp = sum(df[:FitnessSignificantBH005] .& (df[:FitnessOrder] .== ">"))
465+
n_ftn_reg = sum(df.FitnessSignificantBH005 .& (df.FitnessOrder .== "<"))
466+
n_ftn_imp = sum(df.FitnessSignificantBH005 .& (df.FitnessOrder .== ">"))
466467
printstyled("\n$n_ftn_reg significant fitness regressions at Benjamini-Hochberg 0.05 level\n",
467468
color=n_ftn_reg > 0 ? :red : :green)
468469
printstyled("\n$n_ftn_imp significant fitness improvments at Benjamini-Hochberg 0.05 level\n",
469470
color=n_ftn_imp > 0 ? :green : :white)
470-
n_time_reg = sum(df[:TimeSignificantBH005] .& (df[:TimeOrder] .== "<"))
471-
n_time_imp = sum(df[:TimeSignificantBH005] .& (df[:TimeOrder] .== ">"))
471+
n_time_reg = sum(df.TimeSignificantBH005 .& (df.TimeOrder .== "<"))
472+
n_time_imp = sum(df.TimeSignificantBH005 .& (df.TimeOrder .== ">"))
472473
printstyled("\n$n_time_reg significant time regressions at Benjamini-Hochberg 0.05 level\n",
473474
color=n_time_reg > 0 ? :red : :green)
474475
printstyled("\n$n_time_imp significant time improvments at Benjamini-Hochberg 0.05 level\n",
@@ -491,7 +492,7 @@ function benjamini_hochberg(pvals, alpha = 0.05)
491492
end
492493

493494
function report_below_pvalue(df; col_prefix="Fitness", pvalue = 0.05)
494-
selection = df[Symbol(col_prefix, "Pvalue")] .< pvalue
495+
selection = df[:, Symbol(col_prefix, "Pvalue")] .< pvalue
495496
log("Num problems with $col_prefix p-values < $(pvalue): $(sum(selection))\n")
496497
# workaround sum(isequal, []) throws
497498
num_new_worse = sum(df[selection, Symbol(col_prefix, "Order")] .== "<")
@@ -502,4 +503,4 @@ function report_below_pvalue(df; col_prefix="Fitness", pvalue = 0.05)
502503
any(selection) && println(df[selection, :])
503504
end
504505

505-
@CPUtime main(ARGS)
506+
@CPUtime main(ARGS)
+16-16
Original file line numberDiff line numberDiff line change
@@ -1,16 +1,16 @@
1-
"Method","MeanRank","Num1sFitness","MeanRankTime","Num1sTime","NumRuns","MedianLogTimesWorseFitness"
2-
"dxnes",3.87,5,8.087,2,230,0.3
3-
"adaptive_de_rand_1_bin_radiuslimited",4.913,1,9.304,0,230,0.9
4-
"xnes",5.087,4,13.13,0,230,2.2
5-
"de_rand_1_bin_radiuslimited",5.174,3,7.304,1,230,1.0
6-
"adaptive_de_rand_1_bin",5.478,1,9.087,0,230,1.7
7-
"generating_set_search",5.783,3,2.739,10,230,0.5
8-
"de_rand_1_bin",6.696,1,7.652,0,230,3.2
9-
"separable_nes",8.217,1,4.783,0,230,8.5
10-
"resampling_inheritance_memetic_search",8.304,2,5.739,1,230,8.4
11-
"probabilistic_descent",8.565,0,5.609,7,230,6.3
12-
"resampling_memetic_search",8.957,1,5.13,2,230,8.3
13-
"de_rand_2_bin_radiuslimited",8.957,1,11.217,0,230,5.7
14-
"de_rand_2_bin",11.565,0,9.696,0,230,8.8
15-
"random_search",14.13,0,13.435,0,230,11.7
16-
"simultaneous_perturbation_stochastic_approximation",14.304,0,7.087,0,230,11.6
1+
Method,MeanRank,Num1sFitness,MeanRankTime,Num1sTime,NumRuns,MedianLogTimesWorseFitness
2+
adaptive_de_rand_1_bin,4.609,3,9.261,0,46,1.6
3+
de_rand_1_bin_radiuslimited,4.826,2,6.478,0,46,0.5
4+
adaptive_de_rand_1_bin_radiuslimited,4.826,1,8.783,0,46,0.6
5+
xnes,5.261,6,14.565,0,46,1.8
6+
generating_set_search,5.565,5,4.304,8,46,0.3
7+
dxnes,6.13,0,14.304,0,46,0.5
8+
de_rand_1_bin,6.739,1,8.826,0,46,2.9
9+
separable_nes,8.087,2,4.261,1,46,8.6
10+
resampling_inheritance_memetic_search,8.261,1,4.522,6,46,7.9
11+
de_rand_2_bin_radiuslimited,8.522,0,9.174,0,46,5.3
12+
probabilistic_descent,8.826,0,5.739,5,46,7.2
13+
resampling_memetic_search,8.913,2,5.913,2,46,8.4
14+
de_rand_2_bin,11.13,0,9.696,0,46,8.9
15+
random_search,14.087,0,5.304,1,46,11.2
16+
simultaneous_perturbation_stochastic_approximation,14.217,0,8.87,0,46,11.8
+2
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,2 @@
1+
Circa 2015-2021: Apple MacBook Pro 13" 2015, different Julia versions
2+
20210516: Apple MacBook Air with Apple M1 processor, Julia 1.6.1

examples/benchmarking/runupdate.jl

+1-1
Original file line numberDiff line numberDiff line change
@@ -10,6 +10,6 @@ end
1010

1111
nreps = (length(ARGS) > 0 ? parse(Int, ARGS[2]) : 10)
1212

13-
cmd = `$(Sys.BINDIR)/julia --color=yes -L $scripts_dir/activate_pwd_env.jl -- $scripts_dir/compare_optimizers.jl update --benchmarkfile $nbfile --numreps $nreps`
13+
cmd = `$(Sys.BINDIR)/julia --color=yes -L $scripts_dir/activate_pwd_env.jl -- $scripts_dir/compare_optimizers.jl update --benchmarkfile $nbfile --numreps $nreps --optimizers all`
1414

1515
run(cmd)

examples/benchmarking/updatetoplist

+1-1
Original file line numberDiff line numberDiff line change
@@ -1 +1 @@
1-
julia --color=yes -L ../../src/BlackBoxOptim.jl compare_optimizers.jl list -o latest_toplist.csv --benchmarkfile benchmark_runs_150913.csv
1+
julia --color=yes compare_optimizers.jl list -o latest_toplist.csv --benchmarkfile benchmark_runs_210516.csv

0 commit comments

Comments
 (0)