generated from roboflow/template-python
-
Notifications
You must be signed in to change notification settings - Fork 2k
/
Copy pathprecision.py
666 lines (561 loc) · 25.4 KB
/
precision.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
from __future__ import annotations
from copy import deepcopy
from dataclasses import dataclass
from typing import TYPE_CHECKING, List, Optional, Tuple, Union
import numpy as np
from matplotlib import pyplot as plt
from supervision.config import ORIENTED_BOX_COORDINATES
from supervision.detection.core import Detections
from supervision.detection.utils import (
box_iou_batch,
mask_iou_batch,
oriented_box_iou_batch,
)
from supervision.draw.color import LEGACY_COLOR_PALETTE
from supervision.metrics.core import AveragingMethod, Metric, MetricResult, MetricTarget
from supervision.metrics.utils.object_size import (
ObjectSizeCategory,
get_detection_size_category,
)
from supervision.metrics.utils.utils import ensure_pandas_installed
if TYPE_CHECKING:
import pandas as pd
class Precision(Metric):
"""
Precision is a metric used to evaluate object detection models. It is the ratio of
true positive detections to the total number of predicted detections. We calculate
it at different IoU thresholds.
In simple terms, Precision is a measure of a model's accuracy, calculated as:
`Precision = TP / (TP + FP)`
Here, `TP` is the number of true positives (correct detections), and `FP` is the
number of false positive detections (detected, but incorrectly).
Example:
```python
import supervision as sv
from supervision.metrics import Precision
predictions = sv.Detections(...)
targets = sv.Detections(...)
precision_metric = Precision()
precision_result = precision_metric.update(predictions, targets).compute()
print(precision_result.precision_at_50)
# 0.8099
print(precision_result)
# PrecisionResult:
# Metric target: MetricTarget.BOXES
# Averaging method: AveragingMethod.WEIGHTED
# P @ 50: 0.8099
# P @ 75: 0.7969
# P @ thresh: [0.80992 0.80905 0.80905 ...]
# IoU thresh: [0.5 0.55 0.6 ...]
# Precision per class:
# 0: [0.64706 0.64706 0.64706 ...]
# ...
# Small objects: ...
# Medium objects: ...
# Large objects: ...
print(precision_result.small_objects.precision_at_50)
```
{ align=center width="800" }
"""
def __init__(
self,
metric_target: MetricTarget = MetricTarget.BOXES,
averaging_method: AveragingMethod = AveragingMethod.WEIGHTED,
):
"""
Initialize the Precision metric.
Args:
metric_target (MetricTarget): The type of detection data to use.
averaging_method (AveragingMethod): The averaging method used to compute the
precision. Determines how the precision is aggregated across classes.
"""
self._metric_target = metric_target
self.averaging_method = averaging_method
self._predictions_list: List[Detections] = []
self._targets_list: List[Detections] = []
def reset(self) -> None:
"""
Reset the metric to its initial state, clearing all stored data.
"""
self._predictions_list = []
self._targets_list = []
def update(
self,
predictions: Union[Detections, List[Detections]],
targets: Union[Detections, List[Detections]],
) -> Precision:
"""
Add new predictions and targets to the metric, but do not compute the result.
Args:
predictions (Union[Detections, List[Detections]]): The predicted detections.
targets (Union[Detections, List[Detections]]): The target detections.
Returns:
(Precision): The updated metric instance.
"""
if not isinstance(predictions, list):
predictions = [predictions]
if not isinstance(targets, list):
targets = [targets]
if len(predictions) != len(targets):
raise ValueError(
f"The number of predictions ({len(predictions)}) and"
f" targets ({len(targets)}) during the update must be the same."
)
self._predictions_list.extend(predictions)
self._targets_list.extend(targets)
return self
def compute(self) -> PrecisionResult:
"""
Calculate the precision metric based on the stored predictions and ground-truth
data, at different IoU thresholds.
Returns:
(PrecisionResult): The precision metric result.
"""
result = self._compute(self._predictions_list, self._targets_list)
small_predictions, small_targets = self._filter_predictions_and_targets_by_size(
self._predictions_list, self._targets_list, ObjectSizeCategory.SMALL
)
result.small_objects = self._compute(small_predictions, small_targets)
medium_predictions, medium_targets = (
self._filter_predictions_and_targets_by_size(
self._predictions_list, self._targets_list, ObjectSizeCategory.MEDIUM
)
)
result.medium_objects = self._compute(medium_predictions, medium_targets)
large_predictions, large_targets = self._filter_predictions_and_targets_by_size(
self._predictions_list, self._targets_list, ObjectSizeCategory.LARGE
)
result.large_objects = self._compute(large_predictions, large_targets)
return result
def _compute(
self, predictions_list: List[Detections], targets_list: List[Detections]
) -> PrecisionResult:
iou_thresholds = np.linspace(0.5, 0.95, 10)
stats = []
for predictions, targets in zip(predictions_list, targets_list):
prediction_contents = self._detections_content(predictions)
target_contents = self._detections_content(targets)
if len(targets) > 0:
if len(predictions) == 0:
stats.append(
(
np.zeros((0, iou_thresholds.size), dtype=bool),
np.zeros((0,), dtype=np.float32),
np.zeros((0,), dtype=int),
targets.class_id,
)
)
else:
if self._metric_target == MetricTarget.BOXES:
iou = box_iou_batch(target_contents, prediction_contents)
elif self._metric_target == MetricTarget.MASKS:
iou = mask_iou_batch(target_contents, prediction_contents)
elif self._metric_target == MetricTarget.ORIENTED_BOUNDING_BOXES:
iou = oriented_box_iou_batch(
target_contents, prediction_contents
)
else:
raise ValueError(
"Unsupported metric target for IoU calculation"
)
matches = self._match_detection_batch(
predictions.class_id, targets.class_id, iou, iou_thresholds
)
stats.append(
(
matches,
predictions.confidence,
predictions.class_id,
targets.class_id,
)
)
if not stats:
return PrecisionResult(
metric_target=self._metric_target,
averaging_method=self.averaging_method,
precision_scores=np.zeros(iou_thresholds.shape[0]),
precision_per_class=np.zeros((0, iou_thresholds.shape[0])),
iou_thresholds=iou_thresholds,
matched_classes=np.array([], dtype=int),
small_objects=None,
medium_objects=None,
large_objects=None,
)
concatenated_stats = [np.concatenate(items, 0) for items in zip(*stats)]
precision_scores, precision_per_class, unique_classes = (
self._compute_precision_for_classes(*concatenated_stats)
)
return PrecisionResult(
metric_target=self._metric_target,
averaging_method=self.averaging_method,
precision_scores=precision_scores,
precision_per_class=precision_per_class,
iou_thresholds=iou_thresholds,
matched_classes=unique_classes,
small_objects=None,
medium_objects=None,
large_objects=None,
)
def _compute_precision_for_classes(
self,
matches: np.ndarray,
prediction_confidence: np.ndarray,
prediction_class_ids: np.ndarray,
true_class_ids: np.ndarray,
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
sorted_indices = np.argsort(-prediction_confidence)
matches = matches[sorted_indices]
prediction_class_ids = prediction_class_ids[sorted_indices]
unique_classes, class_counts = np.unique(true_class_ids, return_counts=True)
# Shape: PxTh,P,C,C -> CxThx3
confusion_matrix = self._compute_confusion_matrix(
matches, prediction_class_ids, unique_classes, class_counts
)
# Shape: CxThx3 -> CxTh
precision_per_class = self._compute_precision(confusion_matrix)
# Shape: CxTh -> Th
if self.averaging_method == AveragingMethod.MACRO:
precision_scores = np.mean(precision_per_class, axis=0)
elif self.averaging_method == AveragingMethod.MICRO:
confusion_matrix_merged = confusion_matrix.sum(0)
precision_scores = self._compute_precision(confusion_matrix_merged)
elif self.averaging_method == AveragingMethod.WEIGHTED:
class_counts = class_counts.astype(np.float32)
precision_scores = np.average(
precision_per_class, axis=0, weights=class_counts
)
return precision_scores, precision_per_class, unique_classes
@staticmethod
def _match_detection_batch(
predictions_classes: np.ndarray,
target_classes: np.ndarray,
iou: np.ndarray,
iou_thresholds: np.ndarray,
) -> np.ndarray:
num_predictions, num_iou_levels = (
predictions_classes.shape[0],
iou_thresholds.shape[0],
)
correct = np.zeros((num_predictions, num_iou_levels), dtype=bool)
correct_class = target_classes[:, None] == predictions_classes
for i, iou_level in enumerate(iou_thresholds):
matched_indices = np.where((iou >= iou_level) & correct_class)
if matched_indices[0].shape[0]:
combined_indices = np.stack(matched_indices, axis=1)
iou_values = iou[matched_indices][:, None]
matches = np.hstack([combined_indices, iou_values])
if matched_indices[0].shape[0] > 1:
matches = matches[matches[:, 2].argsort()[::-1]]
matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
correct[matches[:, 1].astype(int), i] = True
return correct
@staticmethod
def _compute_confusion_matrix(
sorted_matches: np.ndarray,
sorted_prediction_class_ids: np.ndarray,
unique_classes: np.ndarray,
class_counts: np.ndarray,
) -> np.ndarray:
"""
Compute the confusion matrix for each class and IoU threshold.
Assumes the matches and prediction_class_ids are sorted by confidence
in descending order.
Arguments:
sorted_matches: np.ndarray, bool, shape (P, Th), that is True
if the prediction is a true positive at the given IoU threshold.
sorted_prediction_class_ids: np.ndarray, int, shape (P,), containing
the class id for each prediction.
unique_classes: np.ndarray, int, shape (C,), containing the unique
class ids.
class_counts: np.ndarray, int, shape (C,), containing the number
of true instances for each class.
Returns:
np.ndarray, shape (C, Th, 3), containing the true positives, false
positives, and false negatives for each class and IoU threshold.
"""
num_thresholds = sorted_matches.shape[1]
num_classes = unique_classes.shape[0]
confusion_matrix = np.zeros((num_classes, num_thresholds, 3))
for class_idx, class_id in enumerate(unique_classes):
is_class = sorted_prediction_class_ids == class_id
num_true = class_counts[class_idx]
num_predictions = is_class.sum()
if num_predictions == 0:
true_positives = np.zeros(num_thresholds)
false_positives = np.zeros(num_thresholds)
false_negatives = np.full(num_thresholds, num_true)
elif num_true == 0:
true_positives = np.zeros(num_thresholds)
false_positives = np.full(num_thresholds, num_predictions)
false_negatives = np.zeros(num_thresholds)
else:
true_positives = sorted_matches[is_class].sum(0)
false_positives = (1 - sorted_matches[is_class]).sum(0)
false_negatives = num_true - true_positives
confusion_matrix[class_idx] = np.stack(
[true_positives, false_positives, false_negatives], axis=1
)
return confusion_matrix
@staticmethod
def _compute_precision(confusion_matrix: np.ndarray) -> np.ndarray:
"""
Broadcastable function, computing the precision from the confusion matrix.
Arguments:
confusion_matrix: np.ndarray, shape (N, ..., 3), where the last dimension
contains the true positives, false positives, and false negatives.
Returns:
np.ndarray, shape (N, ...), containing the precision for each element.
"""
if not confusion_matrix.shape[-1] == 3:
raise ValueError(
f"Confusion matrix must have shape (..., 3), got "
f"{confusion_matrix.shape}"
)
true_positives = confusion_matrix[..., 0]
false_positives = confusion_matrix[..., 1]
denominator = true_positives + false_positives
precision = np.where(denominator == 0, 0, true_positives / denominator)
return precision
def _detections_content(self, detections: Detections) -> np.ndarray:
"""Return boxes, masks or oriented bounding boxes from detections."""
if self._metric_target == MetricTarget.BOXES:
return detections.xyxy
if self._metric_target == MetricTarget.MASKS:
return (
detections.mask
if detections.mask is not None
else self._make_empty_content()
)
if self._metric_target == MetricTarget.ORIENTED_BOUNDING_BOXES:
obb = detections.data.get(ORIENTED_BOX_COORDINATES)
if obb is not None and len(obb) > 0:
return np.array(obb, dtype=np.float32)
return self._make_empty_content()
raise ValueError(f"Invalid metric target: {self._metric_target}")
def _make_empty_content(self) -> np.ndarray:
if self._metric_target == MetricTarget.BOXES:
return np.empty((0, 4), dtype=np.float32)
if self._metric_target == MetricTarget.MASKS:
return np.empty((0, 0, 0), dtype=bool)
if self._metric_target == MetricTarget.ORIENTED_BOUNDING_BOXES:
return np.empty((0, 4, 2), dtype=np.float32)
raise ValueError(f"Invalid metric target: {self._metric_target}")
def _filter_detections_by_size(
self, detections: Detections, size_category: ObjectSizeCategory
) -> Detections:
"""Return a copy of detections with contents filtered by object size."""
new_detections = deepcopy(detections)
if detections.is_empty() or size_category == ObjectSizeCategory.ANY:
return new_detections
sizes = get_detection_size_category(new_detections, self._metric_target)
size_mask = sizes == size_category.value
new_detections.xyxy = new_detections.xyxy[size_mask]
if new_detections.mask is not None:
new_detections.mask = new_detections.mask[size_mask]
if new_detections.class_id is not None:
new_detections.class_id = new_detections.class_id[size_mask]
if new_detections.confidence is not None:
new_detections.confidence = new_detections.confidence[size_mask]
if new_detections.tracker_id is not None:
new_detections.tracker_id = new_detections.tracker_id[size_mask]
if new_detections.data is not None:
for key, value in new_detections.data.items():
new_detections.data[key] = np.array(value)[size_mask]
return new_detections
def _filter_predictions_and_targets_by_size(
self,
predictions_list: List[Detections],
targets_list: List[Detections],
size_category: ObjectSizeCategory,
) -> Tuple[List[Detections], List[Detections]]:
"""
Filter predictions and targets by object size category.
"""
new_predictions_list = []
new_targets_list = []
for predictions, targets in zip(predictions_list, targets_list):
new_predictions_list.append(
self._filter_detections_by_size(predictions, size_category)
)
new_targets_list.append(
self._filter_detections_by_size(targets, size_category)
)
return new_predictions_list, new_targets_list
@dataclass
class PrecisionResult(MetricResult):
"""
The results of the precision metric calculation.
Defaults to `0` if no detections or targets were provided.
Attributes:
metric_target (MetricTarget): the type of data used for the metric -
boxes, masks or oriented bounding boxes.
averaging_method (AveragingMethod): the averaging method used to compute the
precision. Determines how the precision is aggregated across classes.
precision_at_50 (float): the precision at IoU threshold of `0.5`.
precision_at_75 (float): the precision at IoU threshold of `0.75`.
precision_scores (np.ndarray): the precision scores at each IoU threshold.
Shape: `(num_iou_thresholds,)`
precision_per_class (np.ndarray): the precision scores per class and
IoU threshold. Shape: `(num_target_classes, num_iou_thresholds)`
iou_thresholds (np.ndarray): the IoU thresholds used in the calculations.
matched_classes (np.ndarray): the class IDs of all matched classes.
Corresponds to the rows of `precision_per_class`.
small_objects (Optional[PrecisionResult]): the Precision metric results
for small objects (area < 32²).
medium_objects (Optional[PrecisionResult]): the Precision metric results
for medium objects (32² ≤ area < 96²).
large_objects (Optional[PrecisionResult]): the Precision metric results
for large objects (area ≥ 96²).
"""
metric_target: MetricTarget
averaging_method: AveragingMethod
@property
def precision_at_50(self) -> float:
return self.precision_scores[0]
@property
def precision_at_75(self) -> float:
return self.precision_scores[5]
precision_scores: np.ndarray
precision_per_class: np.ndarray
iou_thresholds: np.ndarray
matched_classes: np.ndarray
small_objects: Optional[PrecisionResult]
medium_objects: Optional[PrecisionResult]
large_objects: Optional[PrecisionResult]
def __str__(self) -> str:
"""
Format as a pretty string.
Example:
```python
print(precision_result)
# PrecisionResult:
# Metric target: MetricTarget.BOXES
# Averaging method: AveragingMethod.WEIGHTED
# P @ 50: 0.8099
# P @ 75: 0.7969
# P @ thresh: [0.80992 0.80905 0.80905 ...]
# IoU thresh: [0.5 0.55 0.6 ...]
# Precision per class:
# 0: [0.64706 0.64706 0.64706 ...]
# ...
# Small objects: ...
# Medium objects: ...
# Large objects: ...
```
"""
out_str = (
f"{self.__class__.__name__}:\n"
f"Metric target: {self.metric_target}\n"
f"Averaging method: {self.averaging_method}\n"
f"P @ 50: {self.precision_at_50:.4f}\n"
f"P @ 75: {self.precision_at_75:.4f}\n"
f"P @ thresh: {self.precision_scores}\n"
f"IoU thresh: {self.iou_thresholds}\n"
f"Precision per class:\n"
)
if self.precision_per_class.size == 0:
out_str += " No results\n"
for class_id, precision_of_class in zip(
self.matched_classes, self.precision_per_class
):
out_str += f" {class_id}: {precision_of_class}\n"
indent = " "
if self.small_objects is not None:
indented = indent + str(self.small_objects).replace("\n", f"\n{indent}")
out_str += f"\nSmall objects:\n{indented}"
if self.medium_objects is not None:
indented = indent + str(self.medium_objects).replace("\n", f"\n{indent}")
out_str += f"\nMedium objects:\n{indented}"
if self.large_objects is not None:
indented = indent + str(self.large_objects).replace("\n", f"\n{indent}")
out_str += f"\nLarge objects:\n{indented}"
return out_str
def to_pandas(self) -> "pd.DataFrame":
"""
Convert the result to a pandas DataFrame.
Returns:
(pd.DataFrame): The result as a DataFrame.
"""
ensure_pandas_installed()
import pandas as pd
pandas_data = {
"P@50": self.precision_at_50,
"P@75": self.precision_at_75,
}
if self.small_objects is not None:
small_objects_df = self.small_objects.to_pandas()
for key, value in small_objects_df.items():
pandas_data[f"small_objects_{key}"] = value
if self.medium_objects is not None:
medium_objects_df = self.medium_objects.to_pandas()
for key, value in medium_objects_df.items():
pandas_data[f"medium_objects_{key}"] = value
if self.large_objects is not None:
large_objects_df = self.large_objects.to_pandas()
for key, value in large_objects_df.items():
pandas_data[f"large_objects_{key}"] = value
return pd.DataFrame(pandas_data, index=[0])
def _get_plot_details(self) -> Tuple[List[str], List[float], str, List[str]]:
"""
Obtain the metric details for plotting them.
Returns:
Tuple[List[str], List[float], str, List[str]]: The details for plotting the
metric. It is a tuple of four elements: a list of labels, a list of
values, the title of the plot and the bar colors.
"""
labels = ["Precision@50", "Precision@75"]
values = [self.precision_at_50, self.precision_at_75]
colors = [LEGACY_COLOR_PALETTE[0]] * 2
if self.small_objects is not None:
small_objects = self.small_objects
labels += ["Small: P@50", "Small: P@75"]
values += [small_objects.precision_at_50, small_objects.precision_at_75]
colors += [LEGACY_COLOR_PALETTE[3]] * 2
if self.medium_objects is not None:
medium_objects = self.medium_objects
labels += ["Medium: P@50", "Medium: P@75"]
values += [medium_objects.precision_at_50, medium_objects.precision_at_75]
colors += [LEGACY_COLOR_PALETTE[2]] * 2
if self.large_objects is not None:
large_objects = self.large_objects
labels += ["Large: P@50", "Large: P@75"]
values += [large_objects.precision_at_50, large_objects.precision_at_75]
colors += [LEGACY_COLOR_PALETTE[4]] * 2
title = (
f"Precision, by Object Size"
f"\n(target: {self.metric_target.value},"
f" averaging: {self.averaging_method.value})"
)
return labels, values, title, colors
def plot(self):
"""
Plot the precision results.
{ align=center width="800" }
"""
labels, values, title, colors = self._get_plot_details()
plt.rcParams["font.family"] = "monospace"
_, ax = plt.subplots(figsize=(10, 6))
ax.set_ylim(0, 1)
ax.set_ylabel("Value", fontweight="bold")
ax.set_title(title, fontweight="bold")
x_positions = range(len(labels))
bars = ax.bar(x_positions, values, color=colors, align="center")
ax.set_xticks(x_positions)
ax.set_xticklabels(labels, rotation=45, ha="right")
for bar in bars:
y_value = bar.get_height()
ax.text(
bar.get_x() + bar.get_width() / 2,
y_value + 0.02,
f"{y_value:.2f}",
ha="center",
va="bottom",
)
plt.rcParams["font.family"] = "sans-serif"
plt.tight_layout()
plt.show()