-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathDeconvOptim.jl
65 lines (48 loc) · 1.22 KB
/
DeconvOptim.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
module DeconvOptim
export gpu_or_cpu
# to check whether CUDA is enabled
using Requires
# for fast array regularizers
using Tullio
# optional CUDA dependency
include("requires.jl")
# for optimization
using Optim
#mean
using Statistics
using StatsBase
using FFTW
FFTW.set_num_threads(12)
using LineSearches
# possible up_sampling
using Interpolations
# for defining custom derivatives
using ChainRulesCore
using LinearAlgebra
using FillArrays
using PrecompileTools
include("forward_models.jl")
include("lossfunctions.jl")
include("mappings.jl")
# special CUDA regularizers
include("regularizer_cuda.jl")
include("regularizer.jl")
include("utils.jl")
include("conv.jl")
include("generic_invert.jl")
include("lucy_richardson.jl")
include("deconvolution.jl")
include("analysis_tools.jl")
# refresh Zygote to load the custom rrules defined with ChainRulesCore
using Zygote: gradient
# doesn't save too much but a little
@setup_workload begin
img = abs.(randn((4,4,2)))
psf = abs.(randn((4,4,2)))
@compile_workload begin
deconvolution(Float32.(img), Float32.(psf), regularizer=TV(num_dims=3), iterations=2)
deconvolution(img, psf, regularizer=TV(num_dims=3), iterations=2)
end
end
# end module
end