forked from andypinxinliu/GestureLSM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdiffuser_rvqvae_trainer.py
574 lines (482 loc) · 27.9 KB
/
diffuser_rvqvae_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
import train
import os
import time
import csv
import sys
import warnings
import random
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.tensorboard import SummaryWriter
from torch.nn.parallel import DistributedDataParallel as DDP
import numpy as np
import time
import pprint
from loguru import logger
from utils import rotation_conversions as rc
from typing import Dict
from utils import config, logger_tools, other_tools, metric, data_transfer
from utils.joints import upper_body_mask, hands_body_mask, lower_body_mask
from dataloaders import data_tools
from optimizers.optim_factory import create_optimizer
from optimizers.scheduler_factory import create_scheduler
from optimizers.loss_factory import get_loss_func
from dataloaders.data_tools import joints_list
import librosa
from models.vq.model import RVQVAE
import wandb
class CustomTrainer(train.BaseTrainer):
'''
Multi-Modal AutoEncoder
'''
def __init__(self, args, cfg):
super().__init__(args, cfg)
self.args = args
self.joints = self.train_data.joints
self.ori_joint_list = joints_list[self.args.ori_joints]
self.tar_joint_list_face = joints_list["beat_smplx_face"]
self.tar_joint_list_upper = joints_list["beat_smplx_upper"]
self.tar_joint_list_hands = joints_list["beat_smplx_hands"]
self.tar_joint_list_lower = joints_list["beat_smplx_lower"]
self.joint_mask_face = np.zeros(len(list(self.ori_joint_list.keys()))*3)
self.joints = 55
for joint_name in self.tar_joint_list_face:
self.joint_mask_face[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1
self.joint_mask_upper = np.zeros(len(list(self.ori_joint_list.keys()))*3)
for joint_name in self.tar_joint_list_upper:
self.joint_mask_upper[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1
self.joint_mask_hands = np.zeros(len(list(self.ori_joint_list.keys()))*3)
for joint_name in self.tar_joint_list_hands:
self.joint_mask_hands[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1
self.joint_mask_lower = np.zeros(len(list(self.ori_joint_list.keys()))*3)
for joint_name in self.tar_joint_list_lower:
self.joint_mask_lower[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1
self.tracker = other_tools.EpochTracker(["fid", "l1div", "bc", "rec", "trans", "vel", "transv", 'dis', 'gen', 'acc', 'transa', 'exp', 'lvd', 'mse', "cls", "rec_face", "latent", "cls_full", "cls_self", "cls_word", "latent_word","latent_self","predict_x0_loss"], [False,True,True, False, False, False, False, False, False, False, False, False, False, False, False, False, False,False, False, False,False,False,False])
##### Model #####
model_module = __import__(f"models.{cfg.model.model_name}", fromlist=["something"])
if args.ddp:
self.model = getattr(model_module, cfg.model.g_name)(cfg).to(self.rank)
process_group = torch.distributed.new_group()
self.model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(self.model, process_group)
self.model = DDP(self.model, device_ids=[self.rank], output_device=self.rank,
broadcast_buffers=False, find_unused_parameters=False)
else:
self.model = torch.nn.DataParallel(getattr(model_module, cfg.model.g_name)(cfg), args.gpus).cuda()
if self.rank == 0:
logger.info(self.model)
logger.info(f"init {args.g_name} success")
if args.stat == "wandb":
wandb.watch(self.model)
self.opt = create_optimizer(args, self.model)
self.opt_s = create_scheduler(args, self.opt)
##### VQ-VAE models #####
"""Initialize and load VQ-VAE models for different body parts."""
# Face VQ model
vq_model_module = __import__("models.motion_representation", fromlist=["something"])
self.vq_model_face = self._create_face_vq_model(vq_model_module)
# Body part VQ models
self.vq_models = self._create_body_vq_models()
# Set all VQ models to eval mode
self.vq_model_face.eval().to(self.rank)
for model in self.vq_models.values():
model.eval().to(self.rank)
self.vq_model_upper, self.vq_model_hands, self.vq_model_lower = self.vq_models.values()
self.vqvae_latent_scale = self.args.vqvae_latent_scale
self.args.vae_length = 240
##### Loss functions #####
self.reclatent_loss = nn.MSELoss().to(self.rank)
self.vel_loss = torch.nn.L1Loss(reduction='mean').to(self.rank)
##### Normalization #####
self.use_trans = self.args.use_trans
self.mean = np.load(args.mean_pose_path)
self.std = np.load(args.std_pose_path)
# Extract body part specific normalizations
for part in ['upper', 'hands', 'lower']:
mask = globals()[f'{part}_body_mask']
setattr(self, f'mean_{part}', torch.from_numpy(self.mean[mask]).cuda())
setattr(self, f'std_{part}', torch.from_numpy(self.std[mask]).cuda())
# Translation normalization if needed
if self.args.use_trans:
self.trans_mean = torch.from_numpy(np.load(self.args.mean_trans_path)).cuda()
self.trans_std = torch.from_numpy(np.load(self.args.std_trans_path)).cuda()
def _create_face_vq_model(self, module):
"""Create and initialize face VQ model."""
self.args.vae_layer = 2
self.args.vae_length = 256
self.args.vae_test_dim = 106
model = getattr(module, "VQVAEConvZero")(self.args).to(self.rank)
other_tools.load_checkpoints(model, "./datasets/hub/pretrained_vq/face_vertex_1layer_790.bin",
self.args.e_name)
return model
def _create_body_vq_models(self) -> Dict[str, RVQVAE]:
"""Create VQ-VAE models for body parts."""
vq_configs = {
'upper': {'dim_pose': 78},
'hands': {'dim_pose': 180},
'lower': {'dim_pose': 54 if not self.args.use_trans else 57}
}
vq_models = {}
for part, config in vq_configs.items():
model = self._create_rvqvae_model(config['dim_pose'], part)
vq_models[part] = model
return vq_models
def _create_rvqvae_model(self, dim_pose: int, body_part: str) -> RVQVAE:
"""Create a single RVQVAE model with specified configuration."""
args = self.args
model = RVQVAE(
args, dim_pose, args.nb_code, args.code_dim, args.code_dim,
args.down_t, args.stride_t, args.width, args.depth,
args.dilation_growth_rate, args.vq_act, args.vq_norm
)
# Load pretrained weights
checkpoint_path = getattr(args, f'vqvae_{body_part}_path')
model.load_state_dict(torch.load(checkpoint_path)['net'])
return model
def inverse_selection(self, filtered_t, selection_array, n):
original_shape_t = np.zeros((n, selection_array.size))
selected_indices = np.where(selection_array == 1)[0]
for i in range(n):
original_shape_t[i, selected_indices] = filtered_t[i]
return original_shape_t
def inverse_selection_tensor(self, filtered_t, selection_array, n):
selection_array = torch.from_numpy(selection_array).cuda()
original_shape_t = torch.zeros((n, 165)).cuda()
selected_indices = torch.where(selection_array == 1)[0]
for i in range(n):
original_shape_t[i, selected_indices] = filtered_t[i]
return original_shape_t
def _load_data(self, dict_data):
tar_pose_raw = dict_data["pose"]
tar_pose = tar_pose_raw[:, :, :165].to(self.rank)
tar_contact = tar_pose_raw[:, :, 165:169].to(self.rank)
tar_trans = dict_data["trans"].to(self.rank)
tar_trans_v = dict_data["trans_v"].to(self.rank)
tar_exps = dict_data["facial"].to(self.rank)
in_audio = dict_data["audio"].to(self.rank)
if 'wavlm' in dict_data:
wavlm = dict_data["wavlm"].to(self.rank)
else:
wavlm = None
in_word = dict_data["word"].to(self.rank)
tar_beta = dict_data["beta"].to(self.rank)
tar_id = dict_data["id"].to(self.rank).long()
bs, n, j = tar_pose.shape[0], tar_pose.shape[1], self.joints
tar_pose_hands = tar_pose[:, :, 25*3:55*3]
tar_pose_hands = rc.axis_angle_to_matrix(tar_pose_hands.reshape(bs, n, 30, 3))
tar_pose_hands = rc.matrix_to_rotation_6d(tar_pose_hands).reshape(bs, n, 30*6)
tar_pose_upper = tar_pose[:, :, self.joint_mask_upper.astype(bool)]
tar_pose_upper = rc.axis_angle_to_matrix(tar_pose_upper.reshape(bs, n, 13, 3))
tar_pose_upper = rc.matrix_to_rotation_6d(tar_pose_upper).reshape(bs, n, 13*6)
tar_pose_leg = tar_pose[:, :, self.joint_mask_lower.astype(bool)]
tar_pose_leg = rc.axis_angle_to_matrix(tar_pose_leg.reshape(bs, n, 9, 3))
tar_pose_leg = rc.matrix_to_rotation_6d(tar_pose_leg).reshape(bs, n, 9*6)
tar_pose_lower = tar_pose_leg
if self.args.pose_norm:
tar_pose_upper = (tar_pose_upper - self.mean_upper) / self.std_upper
tar_pose_hands = (tar_pose_hands - self.mean_hands) / self.std_hands
tar_pose_lower = (tar_pose_lower - self.mean_lower) / self.std_lower
if self.use_trans:
tar_trans_v = (tar_trans_v - self.trans_mean)/self.trans_std
tar_pose_lower = torch.cat([tar_pose_lower,tar_trans_v], dim=-1)
latent_upper_top = self.vq_model_upper.map2latent(tar_pose_upper)
latent_hands_top = self.vq_model_hands.map2latent(tar_pose_hands)
latent_lower_top = self.vq_model_lower.map2latent(tar_pose_lower)
latent_in = torch.cat([latent_upper_top, latent_hands_top, latent_lower_top], dim=2)/self.args.vqvae_latent_scale
style_feature = None
return {
"in_audio": in_audio,
"wavlm": wavlm,
"in_word": in_word,
"tar_trans": tar_trans,
"tar_exps": tar_exps,
"tar_beta": tar_beta,
"tar_pose": tar_pose,
"latent_in": latent_in,
"tar_id": tar_id,
"tar_contact": tar_contact,
"style_feature":style_feature,
}
def _g_test(self, loaded_data):
mode = 'test'
bs, n, j = loaded_data["tar_pose"].shape[0], loaded_data["tar_pose"].shape[1], self.joints
tar_pose = loaded_data["tar_pose"]
tar_beta = loaded_data["tar_beta"]
tar_exps = loaded_data["tar_exps"]
tar_contact = loaded_data["tar_contact"]
tar_trans = loaded_data["tar_trans"]
in_word = loaded_data["in_word"]
in_audio = loaded_data["in_audio"]
wavlm = loaded_data["wavlm"]
in_x0 = loaded_data['latent_in']
in_seed = loaded_data['latent_in']
remain = n%8
if remain != 0:
tar_pose = tar_pose[:, :-remain, :]
tar_beta = tar_beta[:, :-remain, :]
tar_trans = tar_trans[:, :-remain, :]
in_word = in_word[:, :-remain]
tar_exps = tar_exps[:, :-remain, :]
tar_contact = tar_contact[:, :-remain, :]
in_x0 = in_x0[:, :in_x0.shape[1]-(remain//self.args.vqvae_squeeze_scale), :]
in_seed = in_seed[:, :in_x0.shape[1]-(remain//self.args.vqvae_squeeze_scale), :]
n = n - remain
tar_pose_jaw = tar_pose[:, :, 66:69]
tar_pose_jaw = rc.axis_angle_to_matrix(tar_pose_jaw.reshape(bs, n, 1, 3))
tar_pose_jaw = rc.matrix_to_rotation_6d(tar_pose_jaw).reshape(bs, n, 1*6)
tar_pose_face = torch.cat([tar_pose_jaw, tar_exps], dim=2)
tar_pose_hands = tar_pose[:, :, 25*3:55*3]
tar_pose_hands = rc.axis_angle_to_matrix(tar_pose_hands.reshape(bs, n, 30, 3))
tar_pose_hands = rc.matrix_to_rotation_6d(tar_pose_hands).reshape(bs, n, 30*6)
tar_pose_upper = tar_pose[:, :, self.joint_mask_upper.astype(bool)]
tar_pose_upper = rc.axis_angle_to_matrix(tar_pose_upper.reshape(bs, n, 13, 3))
tar_pose_upper = rc.matrix_to_rotation_6d(tar_pose_upper).reshape(bs, n, 13*6)
tar_pose_leg = tar_pose[:, :, self.joint_mask_lower.astype(bool)]
tar_pose_leg = rc.axis_angle_to_matrix(tar_pose_leg.reshape(bs, n, 9, 3))
tar_pose_leg = rc.matrix_to_rotation_6d(tar_pose_leg).reshape(bs, n, 9*6)
tar_pose_lower = torch.cat([tar_pose_leg, tar_trans, tar_contact], dim=2)
tar_pose_6d = rc.axis_angle_to_matrix(tar_pose.reshape(bs, n, 55, 3))
tar_pose_6d = rc.matrix_to_rotation_6d(tar_pose_6d).reshape(bs, n, 55*6)
latent_all = torch.cat([tar_pose_6d, tar_trans, tar_contact], dim=-1)
rec_all_face = []
rec_all_upper = []
rec_all_lower = []
rec_all_hands = []
vqvae_squeeze_scale = self.args.vqvae_squeeze_scale
roundt = (n - self.args.pre_frames * vqvae_squeeze_scale) // (self.args.pose_length - self.args.pre_frames * vqvae_squeeze_scale)
remain = (n - self.args.pre_frames * vqvae_squeeze_scale) % (self.args.pose_length - self.args.pre_frames * vqvae_squeeze_scale)
round_l = self.args.pose_length - self.args.pre_frames * vqvae_squeeze_scale
for i in range(0, roundt):
in_word_tmp = in_word[:, i*(round_l):(i+1)*(round_l)+self.args.pre_frames * vqvae_squeeze_scale]
in_audio_tmp = in_audio[:, i*(16000//30*round_l):(i+1)*(16000//30*round_l)+16000//30*self.args.pre_frames * vqvae_squeeze_scale]
if wavlm is not None:
wavlm_tmp = wavlm[:, i*(round_l):(i+1)*(round_l)+self.args.pre_frames * vqvae_squeeze_scale]
else:
wavlm_tmp = None
in_id_tmp = loaded_data['tar_id'][:, i*(round_l):(i+1)*(round_l)+self.args.pre_frames]
in_seed_tmp = in_seed[:, i*(round_l)//vqvae_squeeze_scale:(i+1)*(round_l)//vqvae_squeeze_scale+self.args.pre_frames]
in_x0_tmp = in_x0[:, i*(round_l)//vqvae_squeeze_scale:(i+1)*(round_l)//vqvae_squeeze_scale+self.args.pre_frames]
mask_val = torch.ones(bs, self.args.pose_length, self.args.pose_dims+3+4).float().cuda()
mask_val[:, :self.args.pre_frames, :] = 0.0
if i == 0:
in_seed_tmp = in_seed_tmp[:, :self.args.pre_frames, :]
else:
in_seed_tmp = last_sample[:, -self.args.pre_frames:, :]
cond_ = {'y':{}}
cond_['y']['audio'] = in_audio_tmp
cond_['y']['wavlm'] = wavlm_tmp
cond_['y']['word'] = in_word_tmp
cond_['y']['id'] = in_id_tmp
cond_['y']['seed'] = in_seed_tmp
cond_['y']['mask'] = (torch.zeros([self.args.batch_size, 1, 1, self.args.pose_length]) < 1).cuda()
cond_['y']['style_feature'] = torch.zeros([bs, 512]).cuda()
sample = self.model(cond_)['latents']
sample = sample.squeeze().permute(1,0).unsqueeze(0)
last_sample = sample.clone()
code_dim = self.vq_model_upper.code_dim
rec_latent_upper = sample[...,:code_dim]
rec_latent_hands = sample[...,code_dim:code_dim*2]
rec_latent_lower = sample[...,code_dim*2:]
if i == 0:
rec_all_upper.append(rec_latent_upper)
rec_all_hands.append(rec_latent_hands)
rec_all_lower.append(rec_latent_lower)
else:
rec_all_upper.append(rec_latent_upper[:, self.args.pre_frames:])
rec_all_hands.append(rec_latent_hands[:, self.args.pre_frames:])
rec_all_lower.append(rec_latent_lower[:, self.args.pre_frames:])
rec_all_upper = torch.cat(rec_all_upper, dim=1) * self.vqvae_latent_scale
rec_all_hands = torch.cat(rec_all_hands, dim=1) * self.vqvae_latent_scale
rec_all_lower = torch.cat(rec_all_lower, dim=1) * self.vqvae_latent_scale
rec_upper = self.vq_model_upper.latent2origin(rec_all_upper)[0]
rec_hands = self.vq_model_hands.latent2origin(rec_all_hands)[0]
rec_lower = self.vq_model_lower.latent2origin(rec_all_lower)[0]
if self.use_trans:
rec_trans_v = rec_lower[...,-3:]
rec_trans_v = rec_trans_v * self.trans_std + self.trans_mean
rec_trans = torch.zeros_like(rec_trans_v)
rec_trans = torch.cumsum(rec_trans_v, dim=-2)
rec_trans[...,1]=rec_trans_v[...,1]
rec_lower = rec_lower[...,:-3]
if self.args.pose_norm:
rec_upper = rec_upper * self.std_upper + self.mean_upper
rec_hands = rec_hands * self.std_hands + self.mean_hands
rec_lower = rec_lower * self.std_lower + self.mean_lower
n = n - remain
tar_pose = tar_pose[:, :n, :]
tar_exps = tar_exps[:, :n, :]
tar_trans = tar_trans[:, :n, :]
tar_beta = tar_beta[:, :n, :]
rec_exps = tar_exps
rec_pose_legs = rec_lower[:, :, :54]
bs, n = rec_pose_legs.shape[0], rec_pose_legs.shape[1]
rec_pose_upper = rec_upper.reshape(bs, n, 13, 6)
rec_pose_upper = rc.rotation_6d_to_matrix(rec_pose_upper)#
rec_pose_upper = rc.matrix_to_axis_angle(rec_pose_upper).reshape(bs*n, 13*3)
rec_pose_upper_recover = self.inverse_selection_tensor(rec_pose_upper, self.joint_mask_upper, bs*n)
rec_pose_lower = rec_pose_legs.reshape(bs, n, 9, 6)
rec_pose_lower = rc.rotation_6d_to_matrix(rec_pose_lower)
rec_pose_lower = rc.matrix_to_axis_angle(rec_pose_lower).reshape(bs*n, 9*3)
rec_pose_lower_recover = self.inverse_selection_tensor(rec_pose_lower, self.joint_mask_lower, bs*n)
rec_pose_hands = rec_hands.reshape(bs, n, 30, 6)
rec_pose_hands = rc.rotation_6d_to_matrix(rec_pose_hands)
rec_pose_hands = rc.matrix_to_axis_angle(rec_pose_hands).reshape(bs*n, 30*3)
rec_pose_hands_recover = self.inverse_selection_tensor(rec_pose_hands, self.joint_mask_hands, bs*n)
rec_pose = rec_pose_upper_recover + rec_pose_lower_recover + rec_pose_hands_recover
rec_pose[:, 66:69] = tar_pose.reshape(bs*n, 55*3)[:, 66:69]
rec_pose = rc.axis_angle_to_matrix(rec_pose.reshape(bs*n, j, 3))
rec_pose = rc.matrix_to_rotation_6d(rec_pose).reshape(bs, n, j*6)
tar_pose = rc.axis_angle_to_matrix(tar_pose.reshape(bs*n, j, 3))
tar_pose = rc.matrix_to_rotation_6d(tar_pose).reshape(bs, n, j*6)
return {
'rec_pose': rec_pose,
'rec_trans': rec_trans,
'tar_pose': tar_pose,
'tar_exps': tar_exps,
'tar_beta': tar_beta,
'tar_trans': tar_trans,
'rec_exps': rec_exps,
}
def test(self, epoch):
results_save_path = self.checkpoint_path + f"/{epoch}/"
if os.path.exists(results_save_path):
return 0
os.makedirs(results_save_path)
start_time = time.time()
total_length = 0
test_seq_list = self.test_data.selected_file
align = 0
latent_out = []
latent_ori = []
l2_all = 0
lvel = 0
self.model.eval()
self.smplx.eval()
self.eval_copy.eval()
with torch.no_grad():
for its, batch_data in enumerate(self.test_loader):
loaded_data = self._load_data(batch_data)
net_out = self._g_test(loaded_data)
tar_pose = net_out['tar_pose']
rec_pose = net_out['rec_pose']
tar_exps = net_out['tar_exps']
tar_beta = net_out['tar_beta']
rec_trans = net_out['rec_trans']
tar_trans = net_out['tar_trans']
rec_exps = net_out['rec_exps']
bs, n, j = tar_pose.shape[0], tar_pose.shape[1], self.joints
if (30/self.args.pose_fps) != 1:
assert 30%self.args.pose_fps == 0
n *= int(30/self.args.pose_fps)
tar_pose = torch.nn.functional.interpolate(tar_pose.permute(0, 2, 1), scale_factor=30/self.args.pose_fps, mode='linear').permute(0,2,1)
rec_pose = torch.nn.functional.interpolate(rec_pose.permute(0, 2, 1), scale_factor=30/self.args.pose_fps, mode='linear').permute(0,2,1)
rec_pose = rc.rotation_6d_to_matrix(rec_pose.reshape(bs*n, j, 6))
rec_pose = rc.matrix_to_rotation_6d(rec_pose).reshape(bs, n, j*6)
tar_pose = rc.rotation_6d_to_matrix(tar_pose.reshape(bs*n, j, 6))
tar_pose = rc.matrix_to_rotation_6d(tar_pose).reshape(bs, n, j*6)
remain = n%self.args.vae_test_len
latent_out.append(self.eval_copy.map2latent(rec_pose[:, :n-remain]).reshape(-1, self.args.vae_length).detach().cpu().numpy()) # bs * n/8 * 240
latent_ori.append(self.eval_copy.map2latent(tar_pose[:, :n-remain]).reshape(-1, self.args.vae_length).detach().cpu().numpy())
rec_pose = rc.rotation_6d_to_matrix(rec_pose.reshape(bs*n, j, 6))
rec_pose = rc.matrix_to_axis_angle(rec_pose).reshape(bs*n, j*3)
tar_pose = rc.rotation_6d_to_matrix(tar_pose.reshape(bs*n, j, 6))
tar_pose = rc.matrix_to_axis_angle(tar_pose).reshape(bs*n, j*3)
vertices_rec = self.smplx(
betas=tar_beta.reshape(bs*n, 300),
transl=rec_trans.reshape(bs*n, 3)-rec_trans.reshape(bs*n, 3),
expression=tar_exps.reshape(bs*n, 100)-tar_exps.reshape(bs*n, 100),
jaw_pose=rec_pose[:, 66:69],
global_orient=rec_pose[:,:3],
body_pose=rec_pose[:,3:21*3+3],
left_hand_pose=rec_pose[:,25*3:40*3],
right_hand_pose=rec_pose[:,40*3:55*3],
return_joints=True,
leye_pose=rec_pose[:, 69:72],
reye_pose=rec_pose[:, 72:75],
)
vertices_rec_face = self.smplx(
betas=tar_beta.reshape(bs*n, 300),
transl=rec_trans.reshape(bs*n, 3)-rec_trans.reshape(bs*n, 3),
expression=rec_exps.reshape(bs*n, 100),
jaw_pose=rec_pose[:, 66:69],
global_orient=rec_pose[:,:3]-rec_pose[:,:3],
body_pose=rec_pose[:,3:21*3+3]-rec_pose[:,3:21*3+3],
left_hand_pose=rec_pose[:,25*3:40*3]-rec_pose[:,25*3:40*3],
right_hand_pose=rec_pose[:,40*3:55*3]-rec_pose[:,40*3:55*3],
return_verts=True,
return_joints=True,
leye_pose=rec_pose[:, 69:72]-rec_pose[:, 69:72],
reye_pose=rec_pose[:, 72:75]-rec_pose[:, 72:75],
)
vertices_tar_face = self.smplx(
betas=tar_beta.reshape(bs*n, 300),
transl=tar_trans.reshape(bs*n, 3)-tar_trans.reshape(bs*n, 3),
expression=tar_exps.reshape(bs*n, 100),
jaw_pose=tar_pose[:, 66:69],
global_orient=tar_pose[:,:3]-tar_pose[:,:3],
body_pose=tar_pose[:,3:21*3+3]-tar_pose[:,3:21*3+3],
left_hand_pose=tar_pose[:,25*3:40*3]-tar_pose[:,25*3:40*3],
right_hand_pose=tar_pose[:,40*3:55*3]-tar_pose[:,40*3:55*3],
return_verts=True,
return_joints=True,
leye_pose=tar_pose[:, 69:72]-tar_pose[:, 69:72],
reye_pose=tar_pose[:, 72:75]-tar_pose[:, 72:75],
)
joints_rec = vertices_rec["joints"].detach().cpu().numpy().reshape(1, n, 127*3)[0, :n, :55*3]
# joints_tar = vertices_tar["joints"].detach().cpu().numpy().reshape(1, n, 127*3)[0, :n, :55*3]
facial_rec = vertices_rec_face['vertices'].reshape(1, n, -1)[0, :n]
facial_tar = vertices_tar_face['vertices'].reshape(1, n, -1)[0, :n]
face_vel_loss = self.vel_loss(facial_rec[1:, :] - facial_tar[:-1, :], facial_tar[1:, :] - facial_tar[:-1, :])
l2 = self.reclatent_loss(facial_rec, facial_tar)
l2_all += l2.item() * n
lvel += face_vel_loss.item() * n
_ = self.l1_calculator.run(joints_rec)
if self.alignmenter is not None:
in_audio_eval, sr = librosa.load(self.args.data_path+"wave16k/"+test_seq_list.iloc[its]['id']+".wav")
in_audio_eval = librosa.resample(in_audio_eval, orig_sr=sr, target_sr=self.args.audio_sr)
a_offset = int(self.align_mask * (self.args.audio_sr / self.args.pose_fps))
onset_bt = self.alignmenter.load_audio(in_audio_eval[:int(self.args.audio_sr / self.args.pose_fps*n)], a_offset, len(in_audio_eval)-a_offset, True)
beat_vel = self.alignmenter.load_pose(joints_rec, self.align_mask, n-self.align_mask, 30, True)
align += (self.alignmenter.calculate_align(onset_bt, beat_vel, 30) * (n-2*self.align_mask))
tar_pose_np = tar_pose.detach().cpu().numpy()
rec_pose_np = rec_pose.detach().cpu().numpy()
rec_trans_np = rec_trans.detach().cpu().numpy().reshape(bs*n, 3)
rec_exp_np = rec_exps.detach().cpu().numpy().reshape(bs*n, 100)
tar_exp_np = tar_exps.detach().cpu().numpy().reshape(bs*n, 100)
tar_trans_np = tar_trans.detach().cpu().numpy().reshape(bs*n, 3)
gt_npz = np.load(self.args.data_path+self.args.pose_rep +"/"+test_seq_list.iloc[its]['id']+".npz", allow_pickle=True)
np.savez(results_save_path+"gt_"+test_seq_list.iloc[its]['id']+'.npz',
betas=gt_npz["betas"],
poses=tar_pose_np,
expressions=tar_exp_np,
trans=tar_trans_np,
model='smplx2020',
gender='neutral',
mocap_frame_rate = 30 ,
)
np.savez(results_save_path+"res_"+test_seq_list.iloc[its]['id']+'.npz',
betas=gt_npz["betas"],
poses=rec_pose_np,
expressions=rec_exp_np,
trans=rec_trans_np,
model='smplx2020',
gender='neutral',
mocap_frame_rate = 30,
)
total_length += n
logger.info(f"l2 loss: {l2_all/total_length}")
logger.info(f"lvel loss: {lvel/total_length}")
latent_out_all = np.concatenate(latent_out, axis=0)
latent_ori_all = np.concatenate(latent_ori, axis=0)
fid = data_tools.FIDCalculator.frechet_distance(latent_out_all, latent_ori_all)
logger.info(f"fid score: {fid}")
self.test_recording("fid", fid, epoch)
align_avg = align/(total_length-2*len(self.test_loader)*self.align_mask)
logger.info(f"align score: {align_avg}")
self.test_recording("bc", align_avg, epoch)
l1div = self.l1_calculator.avg()
logger.info(f"l1div score: {l1div}")
self.test_recording("l1div", l1div, epoch)
#data_tools.result2target_vis(self.args.pose_version, results_save_path, results_save_path, self.test_demo, False)
end_time = time.time() - start_time
logger.info(f"total inference time: {int(end_time)} s for {int(total_length/self.args.pose_fps)} s motion")