|
| 1 | +use core::str::FromStr; |
| 2 | +use std::collections::HashMap; |
| 3 | + |
| 4 | +use actual_rand; |
| 5 | +use actual_rand::RngCore; |
| 6 | +use bitcoin::hashes::{hash160, ripemd160, sha256}; |
| 7 | +use bitcoin::secp256k1::XOnlyPublicKey; |
| 8 | +use bitcoin::{self, secp256k1, Network}; |
| 9 | +use miniscript::{hash256, Descriptor, TranslatePk, Translator}; |
| 10 | +use secp256k1::{KeyPair, Secp256k1, SecretKey}; |
| 11 | +use secp256k1_zkp::{Message, MusigAggNonce, MusigKeyAggCache, MusigSession}; |
| 12 | + |
| 13 | +// xonly_keys generates a pair of vector containing public keys and secret keys |
| 14 | +fn xonly_keys(n: usize) -> (Vec<bitcoin::XOnlyPublicKey>, Vec<SecretKey>) { |
| 15 | + let mut pubkeys = Vec::with_capacity(n); |
| 16 | + let mut seckeys = Vec::with_capacity(n); |
| 17 | + let secp = secp256k1::Secp256k1::new(); |
| 18 | + for _ in 0..n { |
| 19 | + let key_pair = KeyPair::new(&secp, &mut secp256k1::rand::thread_rng()); |
| 20 | + let pk = XOnlyPublicKey::from_keypair(&key_pair); |
| 21 | + let sk = SecretKey::from_keypair(&key_pair); |
| 22 | + pubkeys.push(pk); |
| 23 | + seckeys.push(sk); |
| 24 | + } |
| 25 | + (pubkeys, seckeys) |
| 26 | +} |
| 27 | + |
| 28 | +// StrPkTranslator helps replacing string with actual keys in descriptor/miniscript |
| 29 | +struct StrPkTranslator { |
| 30 | + pk_map: HashMap<String, bitcoin::XOnlyPublicKey>, |
| 31 | +} |
| 32 | + |
| 33 | +impl Translator<String, bitcoin::XOnlyPublicKey, ()> for StrPkTranslator { |
| 34 | + fn pk(&mut self, pk: &String) -> Result<bitcoin::XOnlyPublicKey, ()> { |
| 35 | + self.pk_map.get(pk).copied().ok_or(()) |
| 36 | + } |
| 37 | + |
| 38 | + fn pkh(&mut self, _pkh: &String) -> Result<hash160::Hash, ()> { |
| 39 | + unreachable!("Policy doesn't contain any pkh fragment"); |
| 40 | + } |
| 41 | + |
| 42 | + fn sha256(&mut self, _sha256: &String) -> Result<sha256::Hash, ()> { |
| 43 | + unreachable!("Policy does not contain any sha256 fragment"); |
| 44 | + } |
| 45 | + |
| 46 | + fn hash256(&mut self, _sha256: &String) -> Result<hash256::Hash, ()> { |
| 47 | + unreachable!("Policy does not contain any hash256 fragment"); |
| 48 | + } |
| 49 | + |
| 50 | + fn ripemd160(&mut self, _ripemd160: &String) -> Result<ripemd160::Hash, ()> { |
| 51 | + unreachable!("Policy does not contain any ripemd160 fragment"); |
| 52 | + } |
| 53 | + |
| 54 | + fn hash160(&mut self, _hash160: &String) -> Result<hash160::Hash, ()> { |
| 55 | + unreachable!("Policy does not contain any hash160 fragment"); |
| 56 | + } |
| 57 | +} |
| 58 | +fn main() { |
| 59 | + let desc = |
| 60 | + Descriptor::<String>::from_str("tr(musig(E,F),{pk(A),multi_a(1,B,musig(C,D))})").unwrap(); |
| 61 | + |
| 62 | + // generate the public and secret keys |
| 63 | + let (pubkeys, seckeys) = xonly_keys(6); |
| 64 | + |
| 65 | + // create the hashMap (from String to XonlyPublicKey) |
| 66 | + let mut pk_map = HashMap::new(); |
| 67 | + pk_map.insert("A".to_string(), pubkeys[0]); |
| 68 | + pk_map.insert("B".to_string(), pubkeys[1]); |
| 69 | + pk_map.insert("C".to_string(), pubkeys[2]); |
| 70 | + pk_map.insert("D".to_string(), pubkeys[3]); |
| 71 | + pk_map.insert("E".to_string(), pubkeys[4]); |
| 72 | + pk_map.insert("F".to_string(), pubkeys[5]); |
| 73 | + |
| 74 | + let mut t = StrPkTranslator { pk_map }; |
| 75 | + // replace with actual keys |
| 76 | + let real_desc = desc.translate_pk(&mut t).unwrap(); |
| 77 | + |
| 78 | + // bitcoin script for the descriptor |
| 79 | + let script = real_desc.script_pubkey(); |
| 80 | + println!("The script is {}", script); |
| 81 | + |
| 82 | + // address for the descriptor (bc1...) |
| 83 | + let address = real_desc.address(Network::Bitcoin).unwrap(); |
| 84 | + println!("The address is {}", address); |
| 85 | + |
| 86 | + let secp = Secp256k1::new(); |
| 87 | + // we are spending with the internal key (musig(E,F)) |
| 88 | + let key_agg_cache = MusigKeyAggCache::new(&secp, &[pubkeys[4], pubkeys[5]]); |
| 89 | + // aggregated publickey |
| 90 | + let agg_pk = key_agg_cache.agg_pk(); |
| 91 | + |
| 92 | + let mut session_id = [0; 32]; |
| 93 | + actual_rand::thread_rng().fill_bytes(&mut session_id); |
| 94 | + |
| 95 | + // msg should actually be the hash of the transaction, but we use some random |
| 96 | + // 32 byte array. |
| 97 | + let msg = Message::from_slice(&[3; 32]).unwrap(); |
| 98 | + let mut pub_nonces = Vec::with_capacity(2); |
| 99 | + let mut sec_nonces = Vec::with_capacity(2); |
| 100 | + match &real_desc { |
| 101 | + Descriptor::Tr(tr) => { |
| 102 | + let mut ind = 4; |
| 103 | + for _ in tr.internal_key().iter() { |
| 104 | + // generate public and secret nonces |
| 105 | + let (sec_nonce, pub_nonce) = key_agg_cache |
| 106 | + .nonce_gen(&secp, session_id, seckeys[ind], msg, None) |
| 107 | + .expect("Non zero session id"); |
| 108 | + pub_nonces.push(pub_nonce); |
| 109 | + sec_nonces.push(sec_nonce); |
| 110 | + ind += 1; |
| 111 | + } |
| 112 | + } |
| 113 | + _ => (), |
| 114 | + } |
| 115 | + |
| 116 | + // aggregate nonces |
| 117 | + let aggnonce = MusigAggNonce::new(&secp, pub_nonces.as_slice()); |
| 118 | + let session = MusigSession::new(&secp, &key_agg_cache, aggnonce, msg, None); |
| 119 | + let mut partial_sigs = Vec::with_capacity(2); |
| 120 | + match &real_desc { |
| 121 | + Descriptor::Tr(tr) => { |
| 122 | + let mut ind = 0; |
| 123 | + for _ in tr.internal_key().iter() { |
| 124 | + // generate the partial signature for this key |
| 125 | + let partial_sig = session |
| 126 | + .partial_sign( |
| 127 | + &secp, |
| 128 | + &mut sec_nonces[ind], |
| 129 | + &KeyPair::from_secret_key(&secp, seckeys[4 + ind]), |
| 130 | + &key_agg_cache, |
| 131 | + ) |
| 132 | + .unwrap(); |
| 133 | + partial_sigs.push(partial_sig); |
| 134 | + ind += 1; |
| 135 | + } |
| 136 | + } |
| 137 | + _ => (), |
| 138 | + } |
| 139 | + |
| 140 | + // aggregate the signature |
| 141 | + let signature = session.partial_sig_agg(partial_sigs.as_slice()); |
| 142 | + // now verify the signature |
| 143 | + assert!(secp.verify_schnorr(&signature, &msg, &agg_pk).is_ok()) |
| 144 | +} |
0 commit comments