-
-
Notifications
You must be signed in to change notification settings - Fork 295
/
Copy pathevaluator.py
198 lines (165 loc) · 7.64 KB
/
evaluator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import os
import abc
import json
import logging
import time
from tempfile import NamedTemporaryFile
import numpy as np
import torch
import torch.distributed as dist
from pycocotools.cocoeval import COCOeval
from .distributed import synchronize, is_main_process, all_gather_container
# FIXME experimenting with speedups for OpenImages eval, it's slow
#import pyximport; py_importer, pyx_importer = pyximport.install(pyimport=True)
import effdet.evaluation.detection_evaluator as tfm_eval
#pyximport.uninstall(py_importer, pyx_importer)
_logger = logging.getLogger(__name__)
__all__ = ['CocoEvaluator', 'PascalEvaluator', 'OpenImagesEvaluator', 'create_evaluator']
class Evaluator:
def __init__(self, distributed=False, pred_yxyx=False):
self.distributed = distributed
self.distributed_device = None
self.pred_yxyx = pred_yxyx
self.img_indices = []
self.predictions = []
def add_predictions(self, detections, target):
if self.distributed:
if self.distributed_device is None:
# cache for use later to broadcast end metric
self.distributed_device = detections.device
synchronize()
detections = all_gather_container(detections)
img_indices = all_gather_container(target['img_idx'])
if not is_main_process():
return
else:
img_indices = target['img_idx']
detections = detections.cpu().numpy()
img_indices = img_indices.cpu().numpy()
for img_idx, img_dets in zip(img_indices, detections):
self.img_indices.append(img_idx)
self.predictions.append(img_dets)
def _coco_predictions(self):
# generate coco-style predictions
coco_predictions = []
coco_ids = []
for img_idx, img_dets in zip(self.img_indices, self.predictions):
img_id = self._dataset.img_ids[img_idx]
coco_ids.append(img_id)
if self.pred_yxyx:
# to xyxy
img_dets[:, 0:4] = img_dets[:, [1, 0, 3, 2]]
# to xywh
img_dets[:, 2] -= img_dets[:, 0]
img_dets[:, 3] -= img_dets[:, 1]
for det in img_dets:
score = float(det[4])
if score < .001: # stop when below this threshold, scores in descending order
break
coco_det = dict(
image_id=int(img_id),
bbox=det[0:4].tolist(),
score=score,
category_id=int(det[5]))
coco_predictions.append(coco_det)
return coco_predictions, coco_ids
@abc.abstractmethod
def evaluate(self, output_result_file=''):
pass
def save(self, result_file):
# save results in coco style, override to save in a alternate form
if not self.distributed or dist.get_rank() == 0:
assert len(self.predictions)
coco_predictions, coco_ids = self._coco_predictions()
json.dump(coco_predictions, open(result_file, 'w'), indent=4)
class CocoEvaluator(Evaluator):
def __init__(self, dataset, distributed=False, pred_yxyx=False):
super().__init__(distributed=distributed, pred_yxyx=pred_yxyx)
self._dataset = dataset.parser
self.coco_api = dataset.parser.coco
def reset(self):
self.img_indices = []
self.predictions = []
def evaluate(self, output_result_file=''):
if not self.distributed or dist.get_rank() == 0:
assert len(self.predictions)
coco_predictions, coco_ids = self._coco_predictions()
if output_result_file:
json.dump(coco_predictions, open(output_result_file, 'w'), indent=4)
results = self.coco_api.loadRes(output_result_file)
else:
with NamedTemporaryFile(prefix='coco_', suffix='.json', delete=False, mode='w') as tmpfile:
json.dump(coco_predictions, tmpfile, indent=4)
results = self.coco_api.loadRes(tmpfile.name)
try:
os.unlink(tmpfile.name)
except OSError:
pass
coco_eval = COCOeval(self.coco_api, results, 'bbox')
coco_eval.params.imgIds = coco_ids # score only ids we've used
coco_eval.evaluate()
coco_eval.accumulate()
coco_eval.summarize()
metric = coco_eval.stats[0] # mAP 0.5-0.95
if self.distributed:
dist.broadcast(torch.tensor(metric, device=self.distributed_device), 0)
else:
metric = torch.tensor(0, device=self.distributed_device)
dist.broadcast(metric, 0)
metric = metric.item()
self.reset()
return metric
class TfmEvaluator(Evaluator):
""" Tensorflow Models Evaluator Wrapper """
def __init__(
self, dataset, distributed=False, pred_yxyx=False, evaluator_cls=tfm_eval.ObjectDetectionEvaluator):
super().__init__(distributed=distributed, pred_yxyx=pred_yxyx)
self._evaluator = evaluator_cls(categories=dataset.parser.cat_dicts)
self._eval_metric_name = self._evaluator._metric_names[0]
self._dataset = dataset.parser
def reset(self):
self._evaluator.clear()
self.img_indices = []
self.predictions = []
def evaluate(self, output_result_file=''):
if not self.distributed or dist.get_rank() == 0:
for img_idx, img_dets in zip(self.img_indices, self.predictions):
gt = self._dataset.get_ann_info(img_idx)
self._evaluator.add_single_ground_truth_image_info(img_idx, gt)
bbox = img_dets[:, 0:4] if self.pred_yxyx else img_dets[:, [1, 0, 3, 2]]
det = dict(bbox=bbox, score=img_dets[:, 4], cls=img_dets[:, 5])
self._evaluator.add_single_detected_image_info(img_idx, det)
metrics = self._evaluator.evaluate()
_logger.info('Metrics:')
for k, v in metrics.items():
_logger.info(f'{k}: {v}')
map_metric = metrics[self._eval_metric_name]
if self.distributed:
dist.broadcast(torch.tensor(map_metric, device=self.distributed_device), 0)
else:
map_metric = torch.tensor(0, device=self.distributed_device)
wait = dist.broadcast(map_metric, 0, async_op=True)
while not wait.is_completed():
# wait without spinning the cpu @ 100%, no need for low latency here
time.sleep(0.5)
map_metric = map_metric.item()
if output_result_file:
self.save(output_result_file)
self.reset()
return map_metric
class PascalEvaluator(TfmEvaluator):
def __init__(self, dataset, distributed=False, pred_yxyx=False):
super().__init__(
dataset, distributed=distributed, pred_yxyx=pred_yxyx, evaluator_cls=tfm_eval.PascalDetectionEvaluator)
class OpenImagesEvaluator(TfmEvaluator):
def __init__(self, dataset, distributed=False, pred_yxyx=False):
super().__init__(
dataset, distributed=distributed, pred_yxyx=pred_yxyx, evaluator_cls=tfm_eval.OpenImagesDetectionEvaluator)
def create_evaluator(name, dataset, distributed=False, pred_yxyx=False):
# FIXME support OpenImages Challenge2019 metric w/ image level label consideration
if 'coco' in name:
return CocoEvaluator(dataset, distributed=distributed, pred_yxyx=pred_yxyx)
elif 'openimages' in name:
return OpenImagesEvaluator(dataset, distributed=distributed, pred_yxyx=pred_yxyx)
else:
return PascalEvaluator(dataset, distributed=distributed, pred_yxyx=pred_yxyx)