@@ -17,6 +17,9 @@ Aside from the default model configs, there is a lot of flexibility to facilitat
17
17
18
18
19
19
## Updates / Tasks
20
+ ### 2020-09-03
21
+ * All models updated to latest checkpoints from TF original.
22
+ * Add experimental soft-nms code, must be manually enabled right now. It is REALLY slow, .1-.2 mAP increase.
20
23
21
24
### 2020-07-27
22
25
* Add updated TF ported weights for D3 model (better training) and model def and weights for new D7X model (54.3 val mAP)
@@ -160,27 +163,27 @@ If you are an organization is interested in sponsoring and any of this work, or
160
163
| Variant | Download | mAP (val2017) | mAP (test-dev2017) | mAP (TF official val2017) | mAP (TF official test-dev2017) |
161
164
| --- | --- | :---: | :---: | :---: | :---: |
162
165
| lite0 | [ tf_efficientdet_lite0.pth] ( https://github.com/rwightman/efficientdet-pytorch/releases/download/v0.1/tf_efficientdet_lite0-f5f303a9.pth ) | 32.0 | TBD | N/A | N/A |
163
- | D0 | [ tf_efficientdet_d0.pth] ( https://github.com/rwightman/efficientdet-pytorch/releases/download/v0.1/tf_efficientdet_d0-d92fd44f.pth ) | 33.6 | TBD | 33.5 | 33.8 |
164
- | D0 | [ efficientdet_d0.pth] ( https://github.com/rwightman/efficientdet-pytorch/releases/download/v0.1/efficientdet_d0-f3276ba8.pth ) | 33.6 | TBD | 33.5 | 33.8 |
165
- | D1 | [ tf_efficientdet_d1.pth] ( https://github.com/rwightman/efficientdet-pytorch/releases/download/v0.1/tf_efficientdet_d1-4c7ebaf2.pth ) | 39.3 | TBD | 39.1 | 39.6 |
166
+ | D0 | [ efficientdet_d0.pth] ( https://github.com/rwightman/efficientdet-pytorch/releases/download/v0.1/tf_efficientdet_d0_34-f153e0cf.pth ) | 33.6 | TBD | 33.5 | 33.8 |
167
+ | D0 | [ tf_efficientdet_d0.pth] ( https://github.com/rwightman/efficientdet-pytorch/releases/download/v0.1/tf_efficientdet_d0_34-1851dfed.pth ) | 34.2 | TBD | 34.3 | 34.6 |
166
168
| D1 | [ efficientdet_d1.pth] ( https://github.com/rwightman/efficientdet-pytorch/releases/download/v0.1/efficientdet_d1-bb7e98fe.pth ) | 39.4 | 39.5 | 39.1 | 39.6 |
167
- | D2 | [ tf_efficientdet_d2.pth] ( https://github.com/rwightman/efficientdet-pytorch/releases/download/v0.1/tf_efficientdet_d2-cb4ce77d.pth ) | 42.6 | 43.1 | 42.5 | 43 |
169
+ | D1 | [ tf_efficientdet_d1.pth] ( https://github.com/rwightman/efficientdet-pytorch/releases/download/v0.1/tf_efficientdet_d1_40-a30f94af.pth ) | 40.1 | TBD | 40.2 | 40.5 |
170
+ | D2 | [ tf_efficientdet_d2.pth] ( https://github.com/rwightman/efficientdet-pytorch/releases/download/v0.1/tf_efficientdet_d2_43-8107aa99.pth ) | 43.4 | TBD | 42.5 | 43 |
168
171
| D3 | [ tf_efficientdet_d3.pth] ( https://github.com/rwightman/efficientdet-pytorch/releases/download/v0.1/tf_efficientdet_d3_47-0b525f35.pth ) | 47.1 | TBD | 47.2 | 47.5 |
169
- | D4 | [ tf_efficientdet_d4.pth] ( https://github.com/rwightman/efficientdet-pytorch/releases/download/v0.1/tf_efficientdet_d4-5b370b7a .pth ) | 49.1 | TBD | 49.0 | 49.4 |
170
- | D5 | [ tf_efficientdet_d5.pth] ( https://github.com/rwightman/efficientdet-pytorch/releases/download/v0.1/tf_efficientdet_d5-ef44aea8 .pth ) | 50.4 | TBD | 50.5 | 50.7 |
171
- | D6 | [ tf_efficientdet_d6.pth] ( https://github.com/rwightman/efficientdet-pytorch/releases/download/v0.1/tf_efficientdet_d6-51cb0132 .pth ) | 51.2 | TBD | 51.3 | 51.7 |
172
+ | D4 | [ tf_efficientdet_d4.pth] ( https://github.com/rwightman/efficientdet-pytorch/releases/download/v0.1/tf_efficientdet_d4_49-f56376d9 .pth ) | 49.2 | TBD | 49.3 | 49.7 |
173
+ | D5 | [ tf_efficientdet_d5.pth] ( https://github.com/rwightman/efficientdet-pytorch/releases/download/v0.1/tf_efficientdet_d5_51-c79f9be6 .pth ) | 51.2 | TBD | 51.2 | 51.5 |
174
+ | D6 | [ tf_efficientdet_d6.pth] ( https://github.com/rwightman/efficientdet-pytorch/releases/download/v0.1/tf_efficientdet_d6_52-4eda3773 .pth ) | 52.0 | TBD | 52.1 | 52.6 |
172
175
| D7 | [ tf_efficientdet_d7.pth] ( https://github.com/rwightman/efficientdet-pytorch/releases/download/v0.1/tf_efficientdet_d7_53-6d1d7a95.pth ) | 53.1 | 53.4 | 53.4 | 53.7 |
173
176
| D7X | [ tf_efficientdet_d7x.pth] ( https://github.com/rwightman/efficientdet-pytorch/releases/download/v0.1/tf_efficientdet_d7x-f390b87c.pth ) | 54.3 | TBD | 54.4 | 55.1 |
174
177
175
- _ NOTE: Eval for TF D3, D7, and D7X numbers above were run with soft-nms, but still using normal NMS here._
178
+ _ NOTE: Official scores for all modules now using soft-nms, but still using normal NMS here._
176
179
177
180
## Usage
178
181
179
182
### Environment Setup
180
183
181
184
Tested in a Python 3.7 or 3.8 conda environment in Linux with:
182
- * PyTorch 1.4
183
- * PyTorch Image Models (timm) 0.1.20 , ` pip install timm ` or local install from (https://github.com/rwightman/pytorch-image-models )
185
+ * PyTorch 1.4 or PyTorch 1.6 (I recommend avoiding PyTorch 1.5 due to some jit and argmax issues)
186
+ * PyTorch Image Models (timm) >= 0.1.28 , ` pip install timm ` or local install from (https://github.com/rwightman/pytorch-image-models )
184
187
* Apex AMP master (as of 2020-04)
185
188
186
189
* NOTE* - There is a conflict/bug with Numpy 1.18+ and pycocotools, force install numpy <= 1.17.5 or the coco eval will fail,
@@ -274,26 +277,9 @@ For this run I used some improved augmentations, still experimenting so not read
274
277
275
278
#### TEST-DEV2017
276
279
277
- NOTE: I've only tried submitting D2 and D7 to dev server for sanity check so far
280
+ NOTE: I've only tried submitting D7 to dev server for sanity check so far
278
281
279
- ##### EfficientDet-D2
280
-
281
- ```
282
- Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.431
283
- Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.624
284
- Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.463
285
- Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.226
286
- Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.471
287
- Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.585
288
- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.345
289
- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.543
290
- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.575
291
- Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.342
292
- Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.632
293
- Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.756
294
- ```
295
-
296
- ##### EfficientDet-D7
282
+ ##### TF-EfficientDet-D7
297
283
```
298
284
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.534
299
285
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.726
@@ -311,56 +297,56 @@ NOTE: I've only tried submitting D2 and D7 to dev server for sanity check so far
311
297
312
298
#### VAL2017
313
299
314
- ##### EfficientDet-D0
300
+ ##### TF- EfficientDet-D0
315
301
```
316
- Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.336
317
- Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.516
318
- Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.354
319
- Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.125
320
- Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.387
321
- Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.528
322
- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.288
323
- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.440
324
- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.467
325
- Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.194
326
- Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.549
327
- Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.686
302
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.341877
303
+ Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.525112
304
+ Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.360218
305
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.131366
306
+ Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.399686
307
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.537368
308
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.293137
309
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.447829
310
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.472954
311
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.195282
312
+ Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.558127
313
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.695312
328
314
```
329
315
330
- ##### EfficientDet-D1
316
+ ##### TF- EfficientDet-D1
331
317
```
332
- Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.393
333
- Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.583
334
- Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.419
335
- Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.187
336
- Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.447
337
- Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.572
338
- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.323
339
- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.501
340
- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.532
341
- Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.295
342
- Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.599
343
- Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.734
318
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.401070
319
+ Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.590625
320
+ Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.422998
321
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.211116
322
+ Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.459650
323
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.577114
324
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.326565
325
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.507095
326
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.537278
327
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.308963
328
+ Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.610450
329
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.731814
344
330
```
345
331
346
- ##### EfficientDet-D2
332
+ ##### TF- EfficientDet-D2
347
333
```
348
- Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.426
349
- Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.618
350
- Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.452
351
- Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.237
352
- Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.481
353
- Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.590
354
- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.342
355
- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.537
356
- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.569
357
- Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.348
358
- Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.633
359
- Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.748
334
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.434042
335
+ Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.627834
336
+ Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.463488
337
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.237414
338
+ Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.486118
339
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.606151
340
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.343016
341
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.538328
342
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.571489
343
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.350301
344
+ Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.638884
345
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.746671
360
346
```
361
347
362
- ##### EfficientDet-D3
363
- _ NOTE: Official TF impl uses soft-nms for their scoring of this model, not impl here yet _
348
+ ##### TF EfficientDet-D3
349
+
364
350
```
365
351
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.471223
366
352
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.661550
@@ -376,55 +362,55 @@ _NOTE: Official TF impl uses soft-nms for their scoring of this model, not impl
376
362
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.779611
377
363
```
378
364
379
- ##### EfficientDet-D4
365
+ ##### TF- EfficientDet-D4
380
366
```
381
- Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.491
382
- Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.685
383
- Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.531
384
- Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.334
385
- Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.539
386
- Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.641
387
- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.375
388
- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.598
389
- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.635
390
- Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.468
391
- Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.683
392
- Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.780
367
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.491759
368
+ Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.686005
369
+ Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.527791
370
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.325658
371
+ Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.536508
372
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.635309
373
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.373752
374
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.601733
375
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.638343
376
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.463057
377
+ Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.685103
378
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.789180
393
379
```
394
380
395
- ##### EfficientDet-D5
381
+ ##### TF- EfficientDet-D5
396
382
```
397
- Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.504
398
- Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.700
399
- Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.543
400
- Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.337
401
- Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.549
402
- Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.646
403
- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.381
404
- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.617
405
- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.654
406
- Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.485
407
- Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.696
408
- Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.791
383
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.511767
384
+ Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.704835
385
+ Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.552920
386
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.355680
387
+ Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.551341
388
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.650184
389
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.384516
390
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.619196
391
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.657445
392
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.499319
393
+ Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.695617
394
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.788889
409
395
```
410
396
411
- ##### EfficientDet-D6
397
+ ##### TF- EfficientDet-D6
412
398
```
413
- Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.512
414
- Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.706
415
- Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.551
416
- Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.348
417
- Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.555
418
- Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.654
419
- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.386
420
- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.623
421
- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.661
422
- Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.500
423
- Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.701
424
- Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.794
399
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.520200
400
+ Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.713204
401
+ Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.560973
402
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.361596
403
+ Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.567414
404
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.657173
405
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.387733
406
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.629269
407
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.667495
408
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.499002
409
+ Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.711909
410
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.802336
425
411
```
426
412
427
- ##### EfficientDet-D7
413
+ ##### TF- EfficientDet-D7
428
414
```
429
415
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.531256
430
416
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.724700
@@ -440,8 +426,8 @@ _NOTE: Official TF impl uses soft-nms for their scoring of this model, not impl
440
426
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.806352
441
427
```
442
428
443
- ##### EfficientDet-D7X
444
- _ NOTE: Official TF impl uses soft-nms for their scoring of this model, not impl here yet _
429
+ ##### TF- EfficientDet-D7X
430
+
445
431
```
446
432
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.543
447
433
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.737
0 commit comments