@@ -351,9 +351,13 @@ def beta_A_isometric_monte_carlo(self, v, **kwargs):
351
351
\beta\Delta A(v) =
352
352
-\ln\left\langle e^{-\beta\Delta A_0} \right\rangle_\star,
353
353
354
- where :math:`\Delta A_0\equiv
355
- A_0(v,\boldsymbol{\lambda})-A_0(1,\boldsymbol{\lambda})`
356
- and
354
+ where the relative free energy of the reference system is
355
+
356
+ .. math::
357
+ \Delta A_0\equiv
358
+ A_0(v,\boldsymbol{\lambda})-A_0(1,\boldsymbol{\lambda}),
359
+
360
+ and where the isometric ensemble average here is
357
361
358
362
.. math::
359
363
\left\langle \phi \right\rangle_\star \equiv
@@ -365,8 +369,11 @@ def beta_A_isometric_monte_carlo(self, v, **kwargs):
365
369
}
366
370
,
367
371
368
- where :math:`A_\star(\boldsymbol{\lambda})\equiv
369
- A_0(1,\lambda}) + U_1(\boldsymbol{\lambda})`.
372
+ where the free energy measure here is
373
+
374
+ .. math::
375
+ A_\star(\boldsymbol{\lambda})\equiv
376
+ A_0(1,\lambda}) + U_1(\boldsymbol{\lambda}).
370
377
371
378
Args:
372
379
v (array_like): The nondimensional end separation.
@@ -435,9 +442,13 @@ def beta_G_isotensional_monte_carlo(self, p, **kwargs):
435
442
\beta\Delta G(v) =
436
443
-\ln\left\langle e^{-\beta\Delta G_0} \right\rangle_\star,
437
444
438
- where :math:`\Delta G_0\equiv
439
- G_0(p,\boldsymbol{\lambda})-G_0(0,\boldsymbol{\lambda})`
440
- and
445
+ where the relative free energy of the reference system is
446
+
447
+ .. math::
448
+ \Delta G_0\equiv
449
+ G_0(p,\boldsymbol{\lambda})-G_0(0,\boldsymbol{\lambda}),
450
+
451
+ and where the isotensional ensemble average here is
441
452
442
453
.. math::
443
454
\left\langle \phi \right\rangle_\star \equiv
@@ -449,8 +460,11 @@ def beta_G_isotensional_monte_carlo(self, p, **kwargs):
449
460
}
450
461
,
451
462
452
- where :math:`G_\star(\boldsymbol{\lambda})\equiv
453
- G_0(0,\lambda}) + U_1(\boldsymbol{\lambda})`.
463
+ where the free energy measure here is
464
+
465
+ .. math::
466
+ G_\star(\boldsymbol{\lambda})\equiv
467
+ G_0(0,\lambda}) + U_1(\boldsymbol{\lambda}).
454
468
455
469
Args:
456
470
p (array_like): The nondimensional end force.
@@ -520,7 +534,7 @@ def k_isometric_monte_carlo(self, v, **kwargs):
520
534
of the ensemble average
521
535
522
536
.. math::
523
- k \propto
537
+ \frac{k(v)}{k(1)} =
524
538
\frac{\left\langle
525
539
e^{-\beta\Delta A_0^\ddagger}
526
540
\right\rangle_\star^\ddagger}{\left\langle
@@ -615,7 +629,7 @@ def k_isotensional_monte_carlo(self, p, **kwargs):
615
629
of the ensemble average
616
630
617
631
.. math::
618
- k \propto
632
+ \frac{k(p)}{k(0)} =
619
633
\frac{\left\langle
620
634
e^{-\beta\Delta G_0^\ddagger}
621
635
\right\rangle_\star^\ddagger}{\left\langle
0 commit comments