-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdqn_agent.py
130 lines (97 loc) · 4.94 KB
/
dqn_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import numpy as np
import random
from collections import namedtuple, deque
from model import Model
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
BUFFER_SIZE = int(1e5) # replay buffer size
BATCH_SIZE = 64 # minibatch size (Initially 64)
GAMMA = 0.995 # discount factor (Initially 0.99)
TAU = 1e-3 # for soft update of target parameters
LR = 5e-4 # learning rate (Initially 5e-4)
UPDATE_EVERY = 4 # how often to update the network
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
class Agent:
def __init__(self, state_size, action_size):
self.epsilon = 1.0
self.min_eps = 0.05
self.decay = 0.995
self.seed = random.seed(42)
self.state_size = state_size
self.action_size = action_size
self.local_nn = Model(state_size, action_size).to(device)
# self.target_nn = Model(state_size, action_size).to(device)
self.local_nn.load_state_dict(torch.load('/Users/sanketsans/Documents/Udacity/deepRL/deep-reinforcement-learning/p1_navigation/checkpoint0.pth', map_location=torch.device('cpu')))
self.local_nn.eval()
self.optimizer = optim.Adam(self.local_nn.parameters(), lr=LR)
self.memory = ReplayMemory(BUFFER_SIZE, action_size)
self.t_step = 0
def step(self, state, action, reward, new_state, done):
## store experiences in replay buffer
self.memory.add(state, action, reward, new_state, done)
##learn every update_every seconds
self.t_step = (self.t_step + 1) % UPDATE_EVERY
if self.t_step == 0:
if (self.memory.length()) > BATCH_SIZE:
experiences = self.memory.sample(BATCH_SIZE)
self.learn(experiences, GAMMA)
def act(self, state):
state = torch.from_numpy(state).float().unsqueeze(0).to(device)
self.local_nn.eval()
with torch.no_grad():
action_values = self.local_nn(state)
self.local_nn.train()
self.epsilon = max(self.epsilon*self.decay, self.min_eps)
if random.random() > self.epsilon:
return np.argmax(action_values.cpu().data.numpy())
else:
return random.choice(np.arange(self.action_size))
def learn(self, experiences, gamma):
# Get max predicted Q values (for next states) from target model
states, actions, rewards, next_states, dones = experiences
Q_targets_next = self.target_nn(next_states).detach().max(1)[0].unsqueeze(1)
Q_targets = rewards + (gamma * Q_targets_next * (1 - dones))
Q_expected = self.local_nn(states).gather(1, actions)
# Compute loss
loss = F.mse_loss(Q_expected, Q_targets)
# Minimize the loss
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
# ------------------- update target network ------------------- #
self.soft_update(self.local_nn, self.target_nn, TAU)
def soft_update(self, local_model, target_model, tau):
"""Soft update model parameters.
θ_target = τ*θ_local + (1 - τ)*θ_target
Params
======
local_model (PyTorch model): weights will be copied from
target_model (PyTorch model): weights will be copied to
tau (float): interpolation parameter
"""
for target_param, local_param in zip(target_model.parameters(), local_model.parameters()):
target_param.data.copy_(tau*local_param.data + (1.0-tau)*target_param.data)
class ReplayMemory:
def __init__(self, buffer_size, action_size):
"""Initialize a ReplayBuffer object."""
self.action_size = action_size
self.memory = deque(maxlen=buffer_size)
self.experience = namedtuple("Experience", field_names=["state", "action", "reward", "next_state", "done"])
self.seed = random.seed(42)
def add(self, state, action, reward, next_state, done):
"""Add a new experience to memory."""
e = self.experience(state, action, reward, next_state, done)
self.memory.append(e)
def sample(self, batch_size):
experiences = random.sample(self.memory, k=batch_size)
states = torch.from_numpy(np.vstack([e.state for e in experiences if e is not None])).float().to(device)
actions = torch.from_numpy(np.vstack([e.action for e in experiences if e is not None])).long().to(device)
rewards = torch.from_numpy(np.vstack([e.reward for e in experiences if e is not None])).float().to(device)
next_states = torch.from_numpy(np.vstack([e.next_state for e in experiences if e is not None])).float().to(device)
dones = torch.from_numpy(np.vstack([e.done for e in experiences if e is not None]).astype(np.uint8)).float().to(device)
return (states, actions, rewards, next_states, dones)
def length(self):
"""Return the current size of internal memory."""
return len(self.memory)