@@ -19,7 +19,7 @@ Bagging classifier
19
19
In ensemble classifiers, bagging methods build several estimators on different
20
20
randomly selected subset of data. In scikit-learn, this classifier is named
21
21
:class: `~sklearn.ensemble.BaggingClassifier `. However, this classifier does not
22
- allow to balance each subset of data. Therefore, when training on imbalanced
22
+ allow each subset of data to be balanced . Therefore, when training on an imbalanced
23
23
data set, this classifier will favor the majority classes::
24
24
25
25
>>> from sklearn.datasets import make_classification
@@ -59,10 +59,10 @@ sampling is controlled by the parameter `sampler` or the two parameters
59
59
>>> balanced_accuracy_score(y_test, y_pred)
60
60
0.8...
61
61
62
- Changing the `sampler ` will give rise to different known implementation
62
+ Changing the `sampler ` will give rise to different known implementations
63
63
:cite: `maclin1997empirical `, :cite: `hido2009roughly `,
64
- :cite: `wang2009diversity `. You can refer to the following example shows in
65
- practice these different methods:
64
+ :cite: `wang2009diversity `. You can refer to the following example which shows these
65
+ different methods in practice :
66
66
:ref: `sphx_glr_auto_examples_ensemble_plot_bagging_classifier.py `
67
67
68
68
.. _forest :
@@ -93,7 +93,7 @@ Boosting
93
93
94
94
Several methods taking advantage of boosting have been designed.
95
95
96
- :class: `RUSBoostClassifier ` randomly under-sample the dataset before to perform
96
+ :class: `RUSBoostClassifier ` randomly under-samples the dataset before performing
97
97
a boosting iteration :cite: `seiffert2009rusboost `::
98
98
99
99
>>> from imblearn.ensemble import RUSBoostClassifier
@@ -107,7 +107,7 @@ a boosting iteration :cite:`seiffert2009rusboost`::
107
107
108
108
A specific method which uses :class: `~sklearn.ensemble.AdaBoostClassifier ` as
109
109
learners in the bagging classifier is called "EasyEnsemble". The
110
- :class: `EasyEnsembleClassifier ` allows to bag AdaBoost learners which are
110
+ :class: `EasyEnsembleClassifier ` allows bagging AdaBoost learners which are
111
111
trained on balanced bootstrap samples :cite: `liu2008exploratory `. Similarly to
112
112
the :class: `BalancedBaggingClassifier ` API, one can construct the ensemble as::
113
113
0 commit comments