Skip to content

Commit ca7e21d

Browse files
authored
DOC fix some grammar issues in the documentation (#1121)
Many English errors in this doc, fixed most.
1 parent 787ceb7 commit ca7e21d

File tree

1 file changed

+6
-6
lines changed

1 file changed

+6
-6
lines changed

doc/ensemble.rst

+6-6
Original file line numberDiff line numberDiff line change
@@ -19,7 +19,7 @@ Bagging classifier
1919
In ensemble classifiers, bagging methods build several estimators on different
2020
randomly selected subset of data. In scikit-learn, this classifier is named
2121
:class:`~sklearn.ensemble.BaggingClassifier`. However, this classifier does not
22-
allow to balance each subset of data. Therefore, when training on imbalanced
22+
allow each subset of data to be balanced. Therefore, when training on an imbalanced
2323
data set, this classifier will favor the majority classes::
2424

2525
>>> from sklearn.datasets import make_classification
@@ -59,10 +59,10 @@ sampling is controlled by the parameter `sampler` or the two parameters
5959
>>> balanced_accuracy_score(y_test, y_pred)
6060
0.8...
6161

62-
Changing the `sampler` will give rise to different known implementation
62+
Changing the `sampler` will give rise to different known implementations
6363
:cite:`maclin1997empirical`, :cite:`hido2009roughly`,
64-
:cite:`wang2009diversity`. You can refer to the following example shows in
65-
practice these different methods:
64+
:cite:`wang2009diversity`. You can refer to the following example which shows these
65+
different methods in practice:
6666
:ref:`sphx_glr_auto_examples_ensemble_plot_bagging_classifier.py`
6767

6868
.. _forest:
@@ -93,7 +93,7 @@ Boosting
9393

9494
Several methods taking advantage of boosting have been designed.
9595

96-
:class:`RUSBoostClassifier` randomly under-sample the dataset before to perform
96+
:class:`RUSBoostClassifier` randomly under-samples the dataset before performing
9797
a boosting iteration :cite:`seiffert2009rusboost`::
9898

9999
>>> from imblearn.ensemble import RUSBoostClassifier
@@ -107,7 +107,7 @@ a boosting iteration :cite:`seiffert2009rusboost`::
107107

108108
A specific method which uses :class:`~sklearn.ensemble.AdaBoostClassifier` as
109109
learners in the bagging classifier is called "EasyEnsemble". The
110-
:class:`EasyEnsembleClassifier` allows to bag AdaBoost learners which are
110+
:class:`EasyEnsembleClassifier` allows bagging AdaBoost learners which are
111111
trained on balanced bootstrap samples :cite:`liu2008exploratory`. Similarly to
112112
the :class:`BalancedBaggingClassifier` API, one can construct the ensemble as::
113113

0 commit comments

Comments
 (0)