|
1 | 1 | use std::{
|
2 |
| - collections::HashMap, |
| 2 | + collections::{BTreeSet, HashMap}, |
3 | 3 | fmt::Display,
|
4 | 4 | hash::Hash,
|
| 5 | + mem, |
5 | 6 | panic::{self, PanicHookInfo},
|
6 | 7 | };
|
7 | 8 |
|
8 | 9 | use ff_ext::{ExtensionField, SmallField};
|
9 | 10 | use itertools::Itertools;
|
10 |
| -use multilinear_extensions::util::max_usable_threads; |
| 11 | +use multilinear_extensions::{ |
| 12 | + util::max_usable_threads, virtual_poly::ArcMultilinearExtension, |
| 13 | + virtual_polys::VirtualPolynomials, |
| 14 | +}; |
11 | 15 | use p3_field::Field;
|
12 | 16 | use transcript::Transcript;
|
13 | 17 |
|
| 18 | +use crate::expression::Expression; |
| 19 | + |
14 | 20 | pub fn i64_to_base<F: SmallField>(x: i64) -> F {
|
15 | 21 | if x >= 0 {
|
16 | 22 | F::from_u64(x as u64)
|
@@ -167,21 +173,6 @@ pub fn eval_wellform_address_vec<E: ExtensionField>(offset: u64, scaled: u64, r:
|
167 | 173 | .sum::<E>()
|
168 | 174 | }
|
169 | 175 |
|
170 |
| -/// transpose 2d vector without clone |
171 |
| -pub fn transpose<T>(v: Vec<Vec<T>>) -> Vec<Vec<T>> { |
172 |
| - assert!(!v.is_empty()); |
173 |
| - let len = v[0].len(); |
174 |
| - let mut iters: Vec<_> = v.into_iter().map(|n| n.into_iter()).collect(); |
175 |
| - (0..len) |
176 |
| - .map(|_| { |
177 |
| - iters |
178 |
| - .iter_mut() |
179 |
| - .map(|n| n.next().unwrap()) |
180 |
| - .collect::<Vec<T>>() |
181 |
| - }) |
182 |
| - .collect() |
183 |
| -} |
184 |
| - |
185 | 176 | pub fn display_hashmap<K: Display, V: Display>(map: &HashMap<K, V>) -> String {
|
186 | 177 | format!(
|
187 | 178 | "[{}]",
|
@@ -223,3 +214,137 @@ where
|
223 | 214 |
|
224 | 215 | result
|
225 | 216 | }
|
| 217 | + |
| 218 | +/// add mle terms into virtual poly by expression |
| 219 | +/// return distinct witin in set |
| 220 | +pub fn add_mle_list_by_expr<'a, E: ExtensionField>( |
| 221 | + virtual_polys: &mut VirtualPolynomials<'a, E>, |
| 222 | + selector: Option<&'a ArcMultilinearExtension<'a, E>>, |
| 223 | + wit_ins: Vec<&'a ArcMultilinearExtension<'a, E>>, |
| 224 | + expr: &Expression<E>, |
| 225 | + challenges: &[E], |
| 226 | + // sumcheck batch challenge |
| 227 | + alpha: E, |
| 228 | +) -> BTreeSet<u16> { |
| 229 | + assert!(expr.is_monomial_form()); |
| 230 | + let monomial_terms = expr.evaluate( |
| 231 | + &|_| unreachable!(), |
| 232 | + &|witness_id| vec![(E::ONE, { vec![witness_id] })], |
| 233 | + &|structural_witness_id, _, _, _| vec![(E::ONE, { vec![structural_witness_id] })], |
| 234 | + &|scalar| vec![(E::from(scalar), { vec![] })], |
| 235 | + &|challenge_id, pow, scalar, offset| { |
| 236 | + let challenge = challenges[challenge_id as usize]; |
| 237 | + vec![(challenge.exp_u64(pow as u64) * scalar + offset, vec![])] |
| 238 | + }, |
| 239 | + &|mut a, b| { |
| 240 | + a.extend(b); |
| 241 | + a |
| 242 | + }, |
| 243 | + &|mut a, mut b| { |
| 244 | + assert!(a.len() <= 2); |
| 245 | + assert!(b.len() <= 2); |
| 246 | + // special logic to deal with scaledsum |
| 247 | + // scaledsum second parameter must be 0 |
| 248 | + if a.len() == 2 { |
| 249 | + assert!((a[1].0, a[1].1.is_empty()) == (E::ZERO, true)); |
| 250 | + a.truncate(1); |
| 251 | + } |
| 252 | + if b.len() == 2 { |
| 253 | + assert!((b[1].0, b[1].1.is_empty()) == (E::ZERO, true)); |
| 254 | + b.truncate(1); |
| 255 | + } |
| 256 | + |
| 257 | + a[0].1.extend(mem::take(&mut b[0].1)); |
| 258 | + // return [ab] |
| 259 | + vec![(a[0].0 * b[0].0, mem::take(&mut a[0].1))] |
| 260 | + }, |
| 261 | + &|mut x, a, b| { |
| 262 | + assert!(a.len() == 1 && a[0].1.is_empty()); // for challenge or constant, term should be empty |
| 263 | + assert!(b.len() == 1 && b[0].1.is_empty()); // for challenge or constant, term should be empty |
| 264 | + assert!(x.len() == 1 && (x[0].0, x[0].1.len()) == (E::ONE, 1)); // witin size only 1 |
| 265 | + if b[0].0 == E::ZERO { |
| 266 | + // only include first term if b = 0 |
| 267 | + vec![(a[0].0, mem::take(&mut x[0].1))] |
| 268 | + } else { |
| 269 | + // return [ax, b] |
| 270 | + vec![(a[0].0, mem::take(&mut x[0].1)), (b[0].0, vec![])] |
| 271 | + } |
| 272 | + }, |
| 273 | + ); |
| 274 | + for (constant, monomial_term) in monomial_terms.iter() { |
| 275 | + if *constant != E::ZERO && monomial_term.is_empty() && selector.is_none() { |
| 276 | + todo!("make virtual poly support pure constant") |
| 277 | + } |
| 278 | + let sel = selector.map(|sel| vec![sel]).unwrap_or_default(); |
| 279 | + let terms_polys = monomial_term |
| 280 | + .iter() |
| 281 | + .map(|wit_id| wit_ins[*wit_id as usize]) |
| 282 | + .collect_vec(); |
| 283 | + |
| 284 | + virtual_polys.add_mle_list([sel, terms_polys].concat(), *constant * alpha); |
| 285 | + } |
| 286 | + |
| 287 | + monomial_terms |
| 288 | + .into_iter() |
| 289 | + .flat_map(|(_, monomial_term)| monomial_term.into_iter().collect_vec()) |
| 290 | + .collect::<BTreeSet<u16>>() |
| 291 | +} |
| 292 | + |
| 293 | +#[cfg(test)] |
| 294 | +mod tests { |
| 295 | + use ff_ext::GoldilocksExt2; |
| 296 | + use itertools::Itertools; |
| 297 | + use multilinear_extensions::{ |
| 298 | + mle::IntoMLE, virtual_poly::ArcMultilinearExtension, virtual_polys::VirtualPolynomials, |
| 299 | + }; |
| 300 | + use p3_field::PrimeCharacteristicRing; |
| 301 | + |
| 302 | + use crate::{ |
| 303 | + circuit_builder::{CircuitBuilder, ConstraintSystem}, |
| 304 | + expression::{Expression, ToExpr}, |
| 305 | + utils::add_mle_list_by_expr, |
| 306 | + }; |
| 307 | + |
| 308 | + #[test] |
| 309 | + fn test_add_mle_list_by_expr() { |
| 310 | + type E = ff_ext::GoldilocksExt2; |
| 311 | + type F = p3_goldilocks::Goldilocks; |
| 312 | + let mut cs = ConstraintSystem::new(|| "test_root"); |
| 313 | + let mut cb = CircuitBuilder::<E>::new(&mut cs); |
| 314 | + let x = cb.create_witin(|| "x"); |
| 315 | + let y = cb.create_witin(|| "y"); |
| 316 | + |
| 317 | + let wits_in: Vec<ArcMultilinearExtension<E>> = (0..cs.num_witin as usize) |
| 318 | + .map(|_| vec![F::from_u64(1)].into_mle().into()) |
| 319 | + .collect(); |
| 320 | + |
| 321 | + let mut virtual_polys = VirtualPolynomials::new(1, 0); |
| 322 | + |
| 323 | + // 3xy + 2y |
| 324 | + let expr: Expression<E> = 3 * x.expr() * y.expr() + 2 * y.expr(); |
| 325 | + |
| 326 | + let distrinct_zerocheck_terms_set = add_mle_list_by_expr( |
| 327 | + &mut virtual_polys, |
| 328 | + None, |
| 329 | + wits_in.iter().collect_vec(), |
| 330 | + &expr, |
| 331 | + &[], |
| 332 | + GoldilocksExt2::ONE, |
| 333 | + ); |
| 334 | + assert!(distrinct_zerocheck_terms_set.len() == 2); |
| 335 | + assert!(virtual_polys.degree() == 2); |
| 336 | + |
| 337 | + // 3x^3 |
| 338 | + let expr: Expression<E> = 3 * x.expr() * x.expr() * x.expr(); |
| 339 | + let distrinct_zerocheck_terms_set = add_mle_list_by_expr( |
| 340 | + &mut virtual_polys, |
| 341 | + None, |
| 342 | + wits_in.iter().collect_vec(), |
| 343 | + &expr, |
| 344 | + &[], |
| 345 | + GoldilocksExt2::ONE, |
| 346 | + ); |
| 347 | + assert!(distrinct_zerocheck_terms_set.len() == 1); |
| 348 | + assert!(virtual_polys.degree() == 3); |
| 349 | + } |
| 350 | +} |
0 commit comments