-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathquicksort.go
226 lines (208 loc) · 5.03 KB
/
quicksort.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
package gosort
import (
"math/rand"
"sort"
)
// QuickSort1 implements CLRS quicksort with basic pivot selection
func QuickSort1(nums []int) {
quickSort1(nums, 0, len(nums)-1)
}
// QuickSortIface1 implements CLRS quicksort with basic pivot selection
//
// using the sorting.Interface
func QuickSortIface1(data sort.Interface) {
quickSortIface1(data, 0, data.Len()-1)
}
// QuickSort2 is copied from pkg/sort - looks like introsort
func QuickSort2(nums []int) {
n := len(nums)
quickSort2(nums, 0, n, maxDepth(n))
}
// QuickSort3 implements CLRS quicksort with randomized pivot selection
func QuickSort3(nums []int) {
quickSort3(nums, 0, len(nums)-1)
}
func quickSort1(nums []int, p, r int) {
if p < r {
q, _ := partition1(nums, p, r)
quickSort1(nums, p, q-1)
quickSort1(nums, q+1, r)
}
}
func quickSortIface1(data sort.Interface, p, r int) {
if p < r {
q, _ := partitionIface1(data, p, r)
quickSortIface1(data, p, q-1)
quickSortIface1(data, q+1, r)
}
}
func partition1(nums []int, p, r int) (int, int) {
x := nums[r]
i := p - 1
for j := p; j < r; j++ {
if nums[j] <= x {
i++
nums[i], nums[j] = nums[j], nums[i]
}
}
nums[i+1], nums[r] = nums[r], nums[i+1]
return i + 1, r
}
func partitionIface1(data sort.Interface, p, r int) (int, int) {
i := p - 1
for j := p; j < r; j++ {
if data.Less(j, r) {
i++
data.Swap(i, j)
}
}
data.Swap(i+1, r)
return i + 1, r
}
func maxDepth(n int) int {
var depth int
for i := n; i > 0; i >>= 1 {
depth++
}
return depth * 2
}
// medianOfThree moves the median of the three values data[m0], data[m1], data[m2] into data[m1].
func medianOfThree(nums []int, m1, m0, m2 int) {
// sort 3 elements
if nums[m1] <= nums[m0] {
nums[m1], nums[m0] = nums[m0], nums[m1]
}
if nums[m2] <= nums[m1] {
nums[m1], nums[m2] = nums[m2], nums[m1]
if nums[m1] <= nums[m0] {
nums[m1], nums[m0] = nums[m0], nums[m1]
}
}
}
func doPivot(nums []int, lo, hi int) (midlo, midhi int) {
m := int(uint(lo+hi) >> 1) // Written like this to avoid integer overflow.
if hi-lo > 40 {
// Tukey's ``Ninther,'' median of three medians of three.
s := (hi - lo) / 8
medianOfThree(nums, lo, lo+s, lo+2*s)
medianOfThree(nums, m, m-s, m+s)
medianOfThree(nums, hi-1, hi-1-s, hi-1-2*s)
}
medianOfThree(nums, lo, m, hi-1)
// Invariants are:
// nums[lo] = pivot (set up by ChoosePivot)
// nums[lo < i < a] < pivot
// nums[a <= i < b] <= pivot
// nums[b <= i < c] unexamined
// nums[c <= i < hi-1] > pivot
// nums[hi-1] >= pivot
pivot := lo
a, c := lo+1, hi-1
for ; a < c && nums[a] <= nums[pivot]; a++ {
}
b := a
for {
for ; b < c && !(nums[pivot] <= nums[b]); b++ {
}
for ; b < c && nums[pivot] <= nums[c-1]; c-- {
}
if b >= c {
break
}
nums[b], nums[c-1] = nums[c-1], nums[b]
b++
c--
}
// If hi-c<3 then there are duplicates (by property of median of nine).
// Let's be a bit more conservative, and set border to 5.
protect := hi-c < 5
if !protect && hi-c < (hi-lo)/4 {
// Lets test some points for equality to pivot
dups := 0
//if !(nums[pivot] <= nums[hi-1]) {
if nums[pivot] == nums[hi-1] {
nums[c], nums[hi-1] = nums[hi-1], nums[c]
c++
dups++
}
//if !(nums[b-1] <= nums[pivot]) {
if nums[b-1] == nums[pivot] {
b--
dups++
}
// m-lo = (hi-lo)/2 > 6
// b-lo > (hi-lo)*3/4-1 > 8
// ==> m < b ==> data[m] <= pivot
//if !(nums[m] <= nums[pivot]) {
if nums[m] == nums[pivot] {
nums[m], nums[b-1] = nums[b-1], nums[m]
b--
dups++
}
// if at least 2 points are equal to pivot, assume skewed distribution
protect = dups > 1
}
if protect {
// Protect against a lot of duplicates
// Add invariant:
// data[a <= i < b] unexamined
// data[b <= i < c] = pivot
for {
for ; a < b && nums[b-1] == nums[pivot]; b-- {
}
for ; a < b && nums[a] < nums[pivot]; a++ {
}
if a >= b {
break
}
// data[a] == pivot; data[b-1] < pivot
nums[a], nums[b-1] = nums[b-1], nums[a]
a++
b--
}
}
// Swap pivot into middle
nums[pivot], nums[b-1] = nums[b-1], nums[pivot]
return b - 1, c
}
func quickSort2(nums []int, a, b, maxDepth int) {
for b-a > 12 { // Use ShellSort for slices <= 12 elements
if maxDepth == 0 {
heapSort(nums, a, b)
return
}
maxDepth--
mlo, mhi := doPivot(nums, a, b)
// Avoiding recursion on the larger subproblem guarantees
// a stack depth of at most lg(b-a).
if mlo-a < b-mhi {
quickSort2(nums, a, mlo, maxDepth)
a = mhi // i.e., quickSort(data, mhi, b)
} else {
quickSort2(nums, mhi, b, maxDepth)
b = mlo // i.e., quickSort(data, a, mlo)
}
}
if b-a > 1 {
// Do ShellSort pass with gap 6
// It could be written in this simplified form cause b-a <= 12
for i := a + 6; i < b; i++ {
if nums[i] <= nums[i-6] {
nums[i], nums[i-6] = nums[i-6], nums[i]
}
}
insertionSort(nums, a, b)
}
}
func quickSort3(nums []int, p, r int) {
if p < r {
q, _ := partition3(nums, p, r)
quickSort3(nums, p, q-1)
quickSort3(nums, q+1, r)
}
}
func partition3(nums []int, p, r int) (int, int) {
i := rand.Intn(r-p) + p
nums[i], nums[r] = nums[r], nums[i]
return partition1(nums, p, r)
}