forked from andreaskipf/learnedcardinalities
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
231 lines (181 loc) · 9.06 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import os
import csv
import argparse
import time
import torch
from torch.autograd import Variable
from torch.utils.data import DataLoader
from mscn.util import *
from mscn.data import get_train_datasets, load_sample, load_dicts, make_dataset
from mscn.model import SetConv
from mscn.datasets import LoadForest
from mscn.queries import LoadForestQueries
def error_metric(est_card, card):
# both + 1 in case est_card or card being 0
if est_card > card:
return (est_card + 1) / (card + 1)
else:
return (card + 1) / (est_card + 1)
def unnormalize_torch(vals, min_val, max_val):
vals = (vals * (max_val - min_val)) + min_val
return torch.exp(vals) - 1
def qerror_loss(preds, targets, min_val, max_val):
qerror = []
preds = unnormalize_torch(preds, min_val, max_val)
targets = unnormalize_torch(targets, min_val, max_val)
for i in range(len(targets)):
qerror.append(error_metric(preds[i], targets[i]))
return torch.mean(torch.cat(qerror))
def print_qerror(preds_unnorm, labels_unnorm):
qerror = []
for i in range(len(preds_unnorm)):
qerror.append(error_metric(float(preds_unnorm[i]), float(labels_unnorm[i])))
print("Median: {}".format(np.median(qerror)))
print("90th percentile: {}".format(np.percentile(qerror, 90)))
print("95th percentile: {}".format(np.percentile(qerror, 95)))
print("99th percentile: {}".format(np.percentile(qerror, 99)))
print("Max: {}".format(np.max(qerror)))
print("Mean: {}".format(np.mean(qerror)))
return np.array(qerror)
def predict(model, data_loader, cuda):
preds = []
t_total = 0.
model.eval()
for batch_idx, data_batch in enumerate(data_loader):
samples, predicates, targets, sample_masks, predicate_masks = data_batch
if cuda:
samples, predicates, targets = samples.cuda(), predicates.cuda(), targets.cuda()
sample_masks, predicate_masks = sample_masks.cuda(), predicate_masks.cuda()
samples, predicates, targets = Variable(samples), Variable(predicates), Variable(
targets)
sample_masks, predicate_masks = Variable(sample_masks), Variable(predicate_masks)
t = time.time()
outputs = model(samples, predicates, sample_masks, predicate_masks)
t_total += time.time() - t
for i in range(outputs.shape[0]):
preds.append(outputs[i].cpu().item())
return preds, t_total
def train(query, num_samples, num_epochs, batch_size, hid_units, cuda, seed):
# load queires
queries, labels = LoadForestQueries(query, split_close_range=True)
# Load training and validation data
dicts, column_min_max_vals, min_val, max_val, labels_train, labels_test, max_num_predicates, train_data, test_data = get_train_datasets(
queries, labels, num_samples, seed)
column2vec, op2vec = dicts
# Train model
predicate_feats = len(column2vec) + len(op2vec) + 1
state = {
'min_val': min_val,
'max_val': max_val
}
model = SetConv(num_samples, predicate_feats, hid_units)
model_size = model.size()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
best_valid_loss = float('inf')
if cuda:
model.cuda()
train_data_loader = DataLoader(train_data, batch_size=batch_size)
test_data_loader = DataLoader(test_data, batch_size=batch_size)
model.train()
for epoch in range(num_epochs):
loss_total = 0.
for batch_idx, data_batch in enumerate(train_data_loader):
samples, predicates, targets, sample_masks, predicate_masks = data_batch
if cuda:
samples, predicates, targets = samples.cuda(), predicates.cuda(), targets.cuda()
sample_masks, predicate_masks = sample_masks.cuda(), predicate_masks.cuda()
samples, predicates, targets = Variable(samples), Variable(predicates), Variable(
targets)
sample_masks, predicate_masks = Variable(sample_masks), Variable(predicate_masks)
optimizer.zero_grad()
outputs = model(samples, predicates, sample_masks, predicate_masks)
loss = qerror_loss(outputs, targets.float().reshape(-1, 1), min_val, max_val)
loss_total += loss.item()
loss.backward()
optimizer.step()
print("Epoch {}, loss: {}".format(epoch, loss_total / len(train_data_loader)))
# Get final training and validation set predictions
# preds_train, t_total = predict(model, train_data_loader, cuda)
# print("Prediction time per training sample: {}".format(t_total / len(labels_train) * 1000))
preds_test, t_total = predict(model, test_data_loader, cuda)
print("Prediction time per validation sample: {}".format(t_total / len(labels_test) * 1000))
# Unnormalize
# preds_train_unnorm = unnormalize_labels(preds_train, min_val, max_val)
# labels_train_unnorm = unnormalize_labels(labels_train, min_val, max_val)
preds_test_unnorm = unnormalize_labels(preds_test, min_val, max_val)
labels_test_unnorm = unnormalize_labels(labels_test, min_val, max_val)
# Print metrics
# print("\nQ-Error training set:")
# train_qerror = print_qerror(preds_train_unnorm, labels_train_unnorm)
print("\nQ-Error validation set:")
test_qerror = print_qerror(preds_test_unnorm, labels_test_unnorm)
print("")
valid_loss = test_qerror.mean()
if valid_loss < best_valid_loss:
print('best valid loss for now!', valid_loss)
best_valid_loss = valid_loss
state['model_state_dict'] = model.state_dict()
torch.save(state, os.path.join('model', '{}_{}_{}_{:.2f}.pt'
.format(num_samples, hid_units, seed, model_size)))
def test(query, num_samples, model_name, batch_size, hid_units, cuda, seed):
# load queires
queries, labels = LoadForestQueries(query, split_close_range=True)
# load sample
sample = load_sample(num_samples, seed)
# load dicts from data
table = LoadForest()
column2vec, op2vec, column_min_max_vals = load_dicts(table)
# load model
predicate_feats = len(column2vec) + len(op2vec) + 1
model = SetConv(num_samples, predicate_feats, hid_units)
model_size = model.size()
state = torch.load(os.path.join('model', '{}_{}_{}_{:.2f}.pt'
.format(num_samples, hid_units, seed, model_size)))
model.load_state_dict(state['model_state_dict'])
# load min max label from model dict
min_val = state['min_val']
max_val = state['max_val']
print('min val: {}, max_val: {}'.format(min_val, max_val))
# Get feature encoding and proper normalization
samples_enc = get_sample_bitmap(sample, queries)
predicates_enc = encode_data(queries, column_min_max_vals, column2vec, op2vec)
labels_test, _, _ = normalize_labels(labels, min_val, max_val)
print("Number of test samples: {}".format(len(labels_test)))
max_num_predicates = max([len(p) for p in predicates_enc])
# Get test set predictions
test_data = make_dataset(samples_enc, predicates_enc, labels_test, max_num_predicates)
test_data_loader = DataLoader(test_data, batch_size=batch_size)
preds_test, t_total = predict(model, test_data_loader, cuda)
print("Prediction time per test sample: {}".format(t_total / len(labels_test) * 1000))
# Unnormalize
preds_test_unnorm = unnormalize_labels(preds_test, min_val, max_val)
# Print metrics
print("\nQ-Error:")
test_error = print_qerror(preds_test_unnorm, labels)
# Write predictions
file_name = os.path.join('results', '{}_{}.csv'.format(query, model_name))
os.makedirs(os.path.dirname(file_name), exist_ok=True)
with open(file_name, "w") as f:
writer = csv.writer(f)
for i in range(len(preds_test_unnorm)):
writer.writerow((test_error[i], preds_test_unnorm[i], labels[i]))
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--cmd", help="train / test", type=str, default='train')
parser.add_argument("--query", help="query name", type=str, default='q20k')
parser.add_argument("--model", help="model name", type=str, default='')
parser.add_argument("--seed", help="random seed", type=int, default=123)
parser.add_argument("--samples", help="number of materialized samples", type=int, default=1000)
parser.add_argument("--epochs", help="number of epochs (default: 500)", type=int, default=500)
parser.add_argument("--batch", help="batch size (default: 1024)", type=int, default=1024)
parser.add_argument("--hid", help="number of hidden units (default: 28)", type=int, default=28)
parser.add_argument("--cuda", help="use CUDA", action="store_true")
args = parser.parse_args()
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.cmd == 'train':
train(args.query, args.samples, args.epochs, args.batch, args.hid, args.cuda, args.seed)
elif args.cmd == 'test':
test(args.query, args.samples, args.model, args.batch, args.hid, args.cuda, args.seed)
if __name__ == "__main__":
main()