@@ -219,18 +219,18 @@ def pca(
219
219
Principal axes defined as eigenvectors for sample covariance matrix.
220
220
In the context of SVD, these are equivalent to the right singular
221
221
vectors in the decomposition of a (N, M) matrix,
222
- i.e. ``dask_ml.decomposition .TruncatedSVD.components_``.
222
+ i.e. ``sgkit.stats.truncated_svd .TruncatedSVD.components_``.
223
223
sample_pca_loading : [array-like, shape: (M, C)]
224
224
Principal axes scaled by square root of eigenvalues.
225
225
These values can also be interpreted as the correlation between the
226
226
original variables and the unit-scaled principal axes.
227
227
sample_pca_explained_variance : [array-like, shape: (C,)]
228
228
Variance explained by each principal component. These values are equivalent
229
229
to eigenvalues that result from the eigendecomposition of a (N, M) matrix,
230
- i.e. ``dask_ml.decomposition .TruncatedSVD.explained_variance_``.
230
+ i.e. ``sgkit.stats.truncated_svd .TruncatedSVD.explained_variance_``.
231
231
sample_pca_explained_variance_ratio : [array-like, shape: (C,)]
232
232
Ratio of variance explained to total variance for each principal component,
233
- i.e. ``dask_ml.decomposition .TruncatedSVD.explained_variance_ratio_``.
233
+ i.e. ``sgkit.stats.truncated_svd .TruncatedSVD.explained_variance_ratio_``.
234
234
235
235
Examples
236
236
--------
0 commit comments