-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmin_entropy_loss_op.cu
159 lines (129 loc) · 4.96 KB
/
min_entropy_loss_op.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
#include <cfloat>
#include <functional>
#include "caffe2/core/context_gpu.h"
#include "min_entropy_loss_op.h"
namespace caffe2 {
namespace {
template <typename T>
inline __device__ T gpu_atomic_add(const T val, T* address);
template <>
inline __device__ float gpu_atomic_add(const float val, float* address) {
return atomicAdd(address, val);
}
template <typename T>
__global__ void get_norm_kernel(const int nthreads, const T* Xdata,
const T* Ldata, const int N, const int C,
const int B, T* norm) {
CUDA_1D_KERNEL_LOOP(index, nthreads) {
// int n = index / C;
int c = index % C;
if (Ldata[c] < 0.5) {
continue;
}
gpu_atomic_add(static_cast<T>(1), norm);
}
}
template <typename T>
__global__ void Forward(const int nthreads, const T* Xdata, const T* Ldata,
const int N, const int C, const int B,
const T kLOG_THRESHOLD, T* Ydata, T* norm) {
CUDA_1D_KERNEL_LOOP(index, nthreads) {
int n = index / C;
int c = index % C;
if (Ldata[c] < 0.5) {
continue;
}
float prob = max(Xdata[n * C + c], kLOG_THRESHOLD);
float loss = -prob * log(prob);
gpu_atomic_add(static_cast<T>(loss), Ydata);
gpu_atomic_add(static_cast<T>(1), norm);
// printf("loss: %f %f %f", loss, Ydata[0], norm[0]);
}
}
template <typename T>
__global__ void Backward(const int nthreads, const T* Xdata, const T* Ldata,
const int N, const int C, const int B, const T* scale,
const T kLOG_THRESHOLD, const T kDIFF_THRESHOLD,
T* dXdata) {
CUDA_1D_KERNEL_LOOP(index, nthreads) {
int n = index / C;
int c = index % C;
if (Ldata[c] < 0.5) {
continue;
}
float prob = max(Xdata[n * C + c], kLOG_THRESHOLD);
dXdata[index] = min(scale[0] * (-1 + (-1) * log(prob)), kDIFF_THRESHOLD);
}
}
} // namespace
template <>
bool MinEntropyLossOp<float, CUDAContext>::RunOnDevice() {
const auto& X = Input(0);
const auto& L = Input(1);
CAFFE_ENFORCE_EQ(X.dim(), 2);
CAFFE_ENFORCE_EQ(L.dim(), 2);
CAFFE_ENFORCE_EQ(X.dim32(1), L.dim32(1));
int N = X.dim32(0);
int C = X.dim32(1);
int B = L.dim32(0);
auto* Y = Output(0);
Y->Resize(vector<int64_t>());
math::Set<float, CUDAContext>(Y->numel(), 0.f, Y->mutable_data<float>(),
&context_);
const float* Xdata = X.data<float>();
const float* Ldata = L.data<float>();
auto* Ydata = Y->mutable_data<float>();
Tensor norm_gpu(caffe2::CUDA);
norm_gpu.Resize(vector<int64_t>());
math::Set<float, CUDAContext>(norm_gpu.numel(), 1.f,
norm_gpu.mutable_data<float>(), &context_);
CAFFE_ENFORCE_EQ(L.dim32(0), 1);
Forward<float><<<CAFFE_GET_BLOCKS(X.numel()), CAFFE_CUDA_NUM_THREADS, 0,
context_.cuda_stream()>>>(X.numel(), Xdata, Ldata, N, C, B,
kLOG_THRESHOLD(), Ydata,
norm_gpu.mutable_data<float>());
math::Div<float, CUDAContext>(1, Y->data<float>(), norm_gpu.data<float>(),
Y->mutable_data<float>(), &context_);
return true;
}
template <>
bool MinEntropyLossGradientOp<float, CUDAContext>::RunOnDevice() {
auto& X = Input(0);
auto& L = Input(1);
auto& dY = Input(2);
CAFFE_ENFORCE_EQ(X.dim(), 2);
CAFFE_ENFORCE_EQ(L.dim(), 2);
CAFFE_ENFORCE_EQ(X.dim32(1), L.dim32(1));
CAFFE_ENFORCE_EQ(dY.numel(), 1);
int N = X.dim32(0);
int C = X.dim32(1);
int B = L.dim32(0);
auto* dX = Output(0);
dX->ResizeLike(X);
math::Set<float, CUDAContext>(dX->numel(), 0.f, dX->mutable_data<float>(),
&context_);
const float* Xdata = X.data<float>();
const float* Ldata = L.data<float>();
const float* dYdata = dY.data<float>();
float* dXdata = dX->mutable_data<float>();
Tensor scale_gpu(caffe2::CUDA);
scale_gpu.Resize(vector<int64_t>());
math::Set<float, CUDAContext>(scale_gpu.numel(), 1.f,
scale_gpu.mutable_data<float>(), &context_);
CAFFE_ENFORCE_EQ(L.dim32(0), 1);
get_norm_kernel<float><<<CAFFE_GET_BLOCKS(X.numel()), CAFFE_CUDA_NUM_THREADS,
0, context_.cuda_stream()>>>(
X.numel(), Xdata, Ldata, N, C, B, scale_gpu.mutable_data<float>());
math::Div<float, CUDAContext>(1, dYdata, scale_gpu.data<float>(),
scale_gpu.mutable_data<float>(), &context_);
CAFFE_ENFORCE_EQ(L.dim32(0), 1);
Backward<float><<<CAFFE_GET_BLOCKS(X.numel()), CAFFE_CUDA_NUM_THREADS, 0,
context_.cuda_stream()>>>(
X.numel(), Xdata, Ldata, N, C, B, scale_gpu.data<float>(),
kLOG_THRESHOLD(), kDIFF_THRESHOLD(), dXdata);
return true;
}
REGISTER_CUDA_OPERATOR(MinEntropyLoss, MinEntropyLossOp<float, CUDAContext>);
REGISTER_CUDA_OPERATOR(MinEntropyLossGradient,
MinEntropyLossGradientOp<float, CUDAContext>);
} // namespace caffe2