-
Notifications
You must be signed in to change notification settings - Fork 65
/
Copy pathsingle.py
180 lines (153 loc) · 7.79 KB
/
single.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
"""Example running MemN2N on a single bAbI task.
Download tasks from facebook.ai/babi """
from __future__ import absolute_import
from __future__ import print_function
from data_utils import load_task, vectorize_data
from sklearn import metrics
from sklearn.model_selection import train_test_split
from memn2n_kv import MemN2N_KV
from itertools import chain
from six.moves import range
import tensorflow as tf
import numpy as np
from memn2n_kv import zero_nil_slot, add_gradient_noise
tf.flags.DEFINE_float("epsilon", 0.1, "Epsilon value for Adam Optimizer.")
tf.flags.DEFINE_float("l2_lambda", 0.2, "Lambda for l2 loss.")
tf.flags.DEFINE_float("learning_rate", 0.001, "Learning rate")
tf.flags.DEFINE_float("max_grad_norm", 20.0, "Clip gradients to this norm.")
tf.flags.DEFINE_float("keep_prob", 1.0, "Keep probability for dropout")
tf.flags.DEFINE_integer("evaluation_interval", 50, "Evaluate and print results every x epochs")
tf.flags.DEFINE_integer("batch_size", 32, "Batch size for training.")
tf.flags.DEFINE_integer("feature_size", 40, "Feature size")
tf.flags.DEFINE_integer("hops", 3, "Number of hops in the Memory Network.")
tf.flags.DEFINE_integer("epochs", 100, "Number of epochs to train for.")
tf.flags.DEFINE_integer("embedding_size", 30, "Embedding size for embedding matrices.")
tf.flags.DEFINE_integer("memory_size", 20, "Maximum size of memory.")
tf.flags.DEFINE_integer("task_id", 1, "bAbI task id, 1 <= id <= 20")
tf.flags.DEFINE_string("data_dir", "data/tasks_1-20_v1-2/en/", "Directory containing bAbI tasks")
tf.flags.DEFINE_string("reader", "bow", "Reader for the model (bow, simple_gru)")
tf.flags.DEFINE_boolean("allow_soft_placement", True, "Allow device soft device placement")
tf.flags.DEFINE_boolean("log_device_placement", False, "Log placement of ops on devices")
tf.flags.DEFINE_string("output_file", "single_scores.csv", "Name of output file for final bAbI accuracy scores.")
FLAGS = tf.flags.FLAGS
print("Started Task:", FLAGS.task_id)
# task data
train, test = load_task(FLAGS.data_dir, FLAGS.task_id)
data = train + test
vocab = sorted(reduce(lambda x, y: x | y, (set(list(chain.from_iterable(s)) + q + a) for s, q, a in data)))
word_idx = dict((c, i + 1) for i, c in enumerate(vocab))
max_story_size = max(map(len, (s for s, _, _ in data)))
mean_story_size = int(np.mean(map(len, (s for s, _, _ in data))))
sentence_size = max(map(len, chain.from_iterable(s for s, _, _ in data)))
query_size = max(map(len, (q for _, q, _ in data)))
memory_size = min(FLAGS.memory_size, max_story_size)
vocab_size = len(word_idx) + 1 # +1 for nil word
sentence_size = max(query_size, sentence_size) # for the position
print("Longest sentence length", sentence_size)
print("Longest story length", max_story_size)
print("Average story length", mean_story_size)
# train/validation/test sets
S, Q, A = vectorize_data(train, word_idx, sentence_size, memory_size)
trainS, valS, trainQ, valQ, trainA, valA = train_test_split(S, Q, A, test_size=.1)
testS, testQ, testA = vectorize_data(test, word_idx, sentence_size, memory_size)
print("Training set shape", trainS.shape)
# params
n_train = trainS.shape[0]
n_test = testS.shape[0]
n_val = valS.shape[0]
print("Training Size", n_train)
print("Validation Size", n_val)
print("Testing Size", n_test)
train_labels = np.argmax(trainA, axis=1)
test_labels = np.argmax(testA, axis=1)
val_labels = np.argmax(valA, axis=1)
batch_size = FLAGS.batch_size
batches = zip(range(0, n_train-batch_size, batch_size), range(batch_size, n_train, batch_size))
with tf.Graph().as_default():
session_conf = tf.ConfigProto(
allow_soft_placement=FLAGS.allow_soft_placement,
log_device_placement=FLAGS.log_device_placement)
global_step = tf.Variable(0, name="global_step", trainable=False)
# decay learning rate
starter_learning_rate = FLAGS.learning_rate
learning_rate = tf.train.exponential_decay(starter_learning_rate, global_step, 20000, 0.96, staircase=True)
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate, epsilon=FLAGS.epsilon)
with tf.Session() as sess:
model = MemN2N_KV(batch_size=batch_size, vocab_size=vocab_size,
query_size=sentence_size, story_size=sentence_size, memory_key_size=memory_size,
feature_size=FLAGS.feature_size, memory_value_size=memory_size,
embedding_size=FLAGS.embedding_size, hops=FLAGS.hops, reader=FLAGS.reader,
l2_lambda=FLAGS.l2_lambda)
grads_and_vars = optimizer.compute_gradients(model.loss_op)
grads_and_vars = [(tf.clip_by_norm(g, FLAGS.max_grad_norm), v)
for g, v in grads_and_vars if g is not None]
grads_and_vars = [(add_gradient_noise(g), v) for g, v in grads_and_vars]
nil_grads_and_vars = []
for g, v in grads_and_vars:
if v.name in model._nil_vars:
nil_grads_and_vars.append((zero_nil_slot(g), v))
else:
nil_grads_and_vars.append((g, v))
train_op = optimizer.apply_gradients(nil_grads_and_vars, name="train_op", global_step=global_step)
sess.run(tf.global_variables_initializer())
def train_step(s, q, a):
feed_dict = {
model._memory_value: s,
model._query: q,
model._memory_key: s,
model._labels: a,
model.keep_prob: FLAGS.keep_prob
}
_, step, predict_op = sess.run([train_op, global_step, model.predict_op], feed_dict)
return predict_op
def test_step(s, q):
feed_dict = {
model._query: q,
model._memory_key: s,
model._memory_value: s,
model.keep_prob: 1
}
preds = sess.run(model.predict_op, feed_dict)
return preds
for t in range(1, FLAGS.epochs+1):
np.random.shuffle(batches)
train_preds = []
#for start in range(0, n_train, batch_size):
for start, end in batches:
#end = start + batch_size
s = trainS[start:end]
q = trainQ[start:end]
a = trainA[start:end]
predict_op = train_step(s, q, a)
train_preds += list(predict_op)
if t % FLAGS.evaluation_interval == 0:
# test on train dataset
train_preds = test_step(trainS, trainQ)
train_acc = metrics.accuracy_score(train_labels, train_preds)
print('-----------------------')
print('Epoch', t)
print('Training Accuracy: {0:.2f}'.format(train_acc))
print('-----------------------')
val_preds = test_step(valS, valQ)
val_acc = metrics.accuracy_score(np.array(val_preds), val_labels)
print (val_preds)
print('-----------------------')
print('Epoch', t)
print('Validation Accuracy:', val_acc)
print('-----------------------')
# test on train dataset
train_preds = test_step(trainS, trainQ)
train_acc = metrics.accuracy_score(train_labels, train_preds)
train_acc = '{0:.2f}'.format(train_acc)
# eval dataset
val_preds = test_step(valS, valQ)
val_acc = metrics.accuracy_score(val_labels, val_preds)
val_acc = '{0:.2f}'.format(val_acc)
# testing dataset
test_preds = test_step(testS, testQ)
test_acc = metrics.accuracy_score(test_labels, test_preds)
test_acc = '{0:.2f}'.format(test_acc)
print("Testing Accuracy: {}".format(test_acc))
print('Writing final results to {}'.format(FLAGS.output_file))
with open(FLAGS.output_file, 'a') as f:
f.write('{}, {}, {}, {}\n'.format(FLAGS.task_id, test_acc, train_acc, val_acc))