forked from open-mmlab/mmtracking
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmot2coco.py
218 lines (203 loc) · 7.56 KB
/
mot2coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
# This script converts MOT labels into COCO style.
# Offical website of the MOT dataset: https://motchallenge.net/
#
# Label format of MOT dataset:
# GTs:
# <frame_id> # starts from 1 but COCO style starts from 0,
# <instance_id>, <x1>, <y1>, <w>, <h>,
# <conf> # conf is annotated as 0 if the object is ignored,
# <class_id>, <visibility>
#
# DETs and Results:
# <frame_id>, <instance_id>, <x1>, <y1>, <w>, <h>, <conf>,
# <x>, <y>, <z> # for 3D objects
#
# Classes in MOT:
# 1: 'pedestrian'
# 2: 'person on vehicle'
# 3: 'car'
# 4: 'bicycle'
# 5: 'motorbike'
# 6: 'non motorized vehicle'
# 7: 'static person'
# 8: 'distractor'
# 9: 'occluder'
# 10: 'occluder on the ground',
# 11: 'occluder full'
# 12: 'reflection'
#
# USELESS classes are not included into the json file.
# IGNORES classes are included with `ignore=True`.
import argparse
import os
import os.path as osp
from collections import defaultdict
import mmcv
import numpy as np
from tqdm import tqdm
USELESS = [3, 4, 5, 6, 9, 10, 11]
IGNORES = [2, 7, 8, 12, 13]
def parse_args():
parser = argparse.ArgumentParser(
description='Convert MOT label and detections to COCO-VID format.')
parser.add_argument('-i', '--input', help='path of MOT data')
parser.add_argument(
'-o', '--output', help='path to save coco formatted label file')
parser.add_argument(
'--convert-det',
action='store_true',
help='convert offical detection results.')
parser.add_argument(
'--split-train',
action='store_true',
help='split the train set into half-train and half-validate.')
return parser.parse_args()
def parse_gts(gts):
outputs = defaultdict(list)
for gt in gts:
gt = gt.strip().split(',')
frame_id, ins_id = map(int, gt[:2])
bbox = list(map(float, gt[2:6]))
conf = float(gt[6])
class_id = int(gt[7])
visibility = float(gt[8])
if class_id in USELESS:
continue
elif class_id in IGNORES:
continue
anns = dict(
category_id=1,
bbox=bbox,
area=bbox[2] * bbox[3],
iscrowd=False,
visibility=visibility,
mot_instance_id=ins_id,
mot_conf=conf,
mot_class_id=class_id)
outputs[frame_id].append(anns)
return outputs
def parse_dets(dets):
outputs = defaultdict(list)
for det in dets:
det = det.strip().split(',')
frame_id, ins_id = map(int, det[:2])
assert ins_id == -1
bbox = list(map(float, det[2:7]))
# [x1, y1, x2, y2] to be consistent with mmdet
bbox = [
bbox[0], bbox[1], bbox[0] + bbox[2], bbox[1] + bbox[3], bbox[4]
]
outputs[frame_id].append(bbox)
return outputs
def main():
args = parse_args()
if not osp.exists(args.output):
os.makedirs(args.output)
sets = ['train', 'test']
if args.split_train:
sets += ['half-train', 'half-val']
vid_id, img_id, ann_id = 1, 1, 1
for subset in sets:
ins_id = 0
print(f'Converting {subset} set to COCO format')
if 'half' in subset:
in_folder = osp.join(args.input, 'train')
else:
in_folder = osp.join(args.input, subset)
out_file = osp.join(args.output, f'{subset}_cocoformat.json')
outputs = defaultdict(list)
outputs['categories'] = [dict(id=1, name='pedestrian')]
if args.convert_det:
det_file = osp.join(args.output, f'{subset}_detections.pkl')
detections = dict(bbox_results=dict())
video_names = os.listdir(in_folder)
for video_name in tqdm(video_names):
# basic params
parse_gt = 'test' not in subset
ins_maps = dict()
# load video infos
video_folder = osp.join(in_folder, video_name)
infos = mmcv.list_from_file(f'{video_folder}/seqinfo.ini')
# video-level infos
assert video_name == infos[1].strip().split('=')[1]
img_folder = infos[2].strip().split('=')[1]
img_names = os.listdir(f'{video_folder}/{img_folder}')
img_names = sorted(img_names)
fps = int(infos[3].strip().split('=')[1])
num_imgs = int(infos[4].strip().split('=')[1])
assert num_imgs == len(img_names)
width = int(infos[5].strip().split('=')[1])
height = int(infos[6].strip().split('=')[1])
video = dict(
id=vid_id,
name=video_name,
fps=fps,
width=width,
height=height)
# parse annotations
if parse_gt:
gts = mmcv.list_from_file(f'{video_folder}/gt/gt.txt')
img2gts = parse_gts(gts)
if args.convert_det:
dets = mmcv.list_from_file(f'{video_folder}/det/det.txt')
img2dets = parse_dets(dets)
# make half sets
if 'half' in subset:
split_frame = num_imgs // 2 + 1
if 'train' in subset:
img_names = img_names[:split_frame]
elif 'val' in subset:
img_names = img_names[split_frame:]
else:
raise ValueError(
'subset must be named with `train` or `val`')
mot_frame_ids = [str(int(_.split('.')[0])) for _ in img_names]
with open(f'{video_folder}/gt/gt_{subset}.txt', 'wt') as f:
for gt in gts:
if gt.split(',')[0] in mot_frame_ids:
f.writelines(f'{gt}\n')
# image and box level infos
for frame_id, name in enumerate(img_names):
img_name = osp.join(video_name, img_folder, name)
mot_frame_id = int(name.split('.')[0])
image = dict(
id=img_id,
video_id=vid_id,
file_name=img_name,
height=height,
width=width,
frame_id=frame_id,
mot_frame_id=mot_frame_id)
if parse_gt:
gts = img2gts[mot_frame_id]
for gt in gts:
gt.update(id=ann_id, image_id=img_id)
mot_ins_id = gt['mot_instance_id']
if mot_ins_id in ins_maps:
gt['instance_id'] = ins_maps[mot_ins_id]
else:
gt['instance_id'] = ins_id
ins_maps[mot_ins_id] = ins_id
ins_id += 1
outputs['annotations'].append(gt)
ann_id += 1
if args.convert_det:
dets = np.array(img2dets[mot_frame_id])
if dets.ndim == 1:
assert len(dets) == 0
dets = np.zeros((0, 5))
detections['bbox_results'][img_name] = [dets]
outputs['images'].append(image)
img_id += 1
outputs['videos'].append(video)
vid_id += 1
outputs['num_instances'] = ins_id
print(f'{subset} has {ins_id} instances.')
mmcv.dump(outputs, out_file)
if args.convert_det:
mmcv.dump(detections, det_file)
print(f'Done! Saved as {out_file} and {det_file}')
else:
print(f'Done! Saved as {out_file}')
if __name__ == '__main__':
main()