-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathtrain.py
156 lines (118 loc) · 6.01 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import shutil
import time
from pathlib import Path
import numpy as np
import tensorflow as tf
from config import Config
import model as _model
from data_loader import get_datasets
import matplotlib.pyplot as plt
flags = tf.app.flags
FLAGS = flags.FLAGS
flags.DEFINE_string('config', 'conf/SML2010.json', 'Path to json file with the configuration to be run')
def copy_checkpoint(source, target):
for ext in (".index", ".data-00000-of-00001"):
shutil.copyfile(source.with_suffix(ext), target.with_suffix(ext))
def make_summary(value_dict):
return tf.Summary(value=[tf.Summary.Value(tag=k, simple_value=v) for k, v in value_dict.items()])
def plot(session, model, next_element, i, log_path: Path):
all_true = []
all_predicted = []
while True:
try:
x, y = session.run(next_element)
predictions = session.run(model.predictions, {model.driving_series: x, model.past_history: y})
true = np.reshape(y[:, -1], [-1]).tolist()
predicted = np.reshape(predictions, [-1]).tolist()
all_true += true
all_predicted += predicted
except tf.errors.OutOfRangeError:
break
all_true = np.array(all_true)
all_predicted = np.array(all_predicted)
plt.figure()
plt.plot(all_true, label="true")
plt.plot(all_predicted, label="predicted")
plt.legend(loc='upper left')
plt.title("Validation data")
plt.ylabel("target serie")
plt.xlabel("time steps")
plt.savefig(log_path / f"plot{i}.png", dpi=300)
plt.close()
def main(argv):
# load hyper-parameters from configuration file
config = Config.from_file(FLAGS.config)
np.random.seed(config.seed)
with tf.Graph().as_default():
# set seeds for reproducibility
tf.set_random_seed(config.seed)
with tf.Session() as session:
train_set, val_set, test_set = get_datasets(config)
train_set = train_set.batch(config.batch_size, drop_remainder=True)
val_set = val_set.batch(config.batch_size, drop_remainder=True)
test_set = test_set.batch(config.batch_size, drop_remainder=True)
model = _model.TimeAttnModel(config)
report_frequency = config.report_frequency
saver = tf.train.Saver(max_to_keep=1)
log_path = config.log_path
writer = tf.summary.FileWriter(log_path, flush_secs=20)
best_RMSE = float("inf")
best_MAE = float("inf")
best_MAPE = float("inf")
accumulated_loss = 0.0
initial_time = time.time()
session.run(tf.global_variables_initializer())
tf_global_step = 0
train_iterator = train_set.make_initializable_iterator()
val_iterator = val_set.make_initializable_iterator()
test_iterator = test_set.make_initializable_iterator()
train_next_element = train_iterator.get_next()
val_next_element = val_iterator.get_next()
test_next_element = test_iterator.get_next()
# Restore from last evaluated epoch
ckpt = tf.train.get_checkpoint_state(log_path)
if ckpt and ckpt.model_checkpoint_path:
print("Restoring from: {}".format(ckpt.model_checkpoint_path))
saver.restore(session, ckpt.model_checkpoint_path)
init_global_step = session.run(model.global_step)
else:
init_global_step = 0
for i in range(config.num_epochs):
session.run(train_iterator.initializer)
print(f"====================================== EPOCH {i} ======================================")
while True:
try:
x, y = session.run(train_next_element)
tf_loss, tf_global_step, _, _ = session.run([model.loss, model.global_step,
model.train_op_en, model.train_op_dec],
feed_dict={model.driving_series: x,
model.past_history: y})
accumulated_loss += tf_loss
if tf_global_step % report_frequency == 0:
total_time = time.time() - initial_time
steps_per_second = (tf_global_step - init_global_step) / total_time
average_loss = accumulated_loss / report_frequency
print("[{}] loss={:.5f}, steps/s={:.5f}".format(tf_global_step, average_loss, steps_per_second))
writer.add_summary(make_summary({"loss": average_loss}), tf_global_step)
accumulated_loss = 0.0
except tf.errors.OutOfRangeError:
break
session.run(val_iterator.initializer)
saver.save(session, log_path / "model", global_step=tf_global_step)
val_scores = model.evaluate(session, val_next_element)
if val_scores["RMSE"] < best_RMSE:
best_RMSE = val_scores["RMSE"]
copy_checkpoint(log_path / f"model-{tf_global_step}",
log_path / "model-max-ckpt")
writer.add_summary(make_summary(val_scores), tf_global_step)
writer.add_summary(make_summary({"min RMSE = ": best_RMSE}), tf_global_step)
print("----------------------")
print("RMSE: {:.5f}".format(val_scores["RMSE"]))
print("MAE: {:.5f}".format(val_scores["MAE"]))
print("MAPE: {:.5f}".format(val_scores["MAPE"]))
print("best_RMSE={:.5f}".format(best_RMSE))
if i % config.plot_frequency == 0:
session.run(val_iterator.initializer)
plot(session, model, val_next_element, i, config.log_path)
if __name__ == '__main__':
tf.app.run(main=main)