@@ -31,12 +31,12 @@ array[] matrix normal_marginal(matrix y, matrix mu_glm, vector sigma) {
3131 array[2] matrix[N, J] rtn;
3232 // Initialise the jacobian adjustments to zero, as vectorised lpdf will be used
3333 rtn[2] = rep_matrix(0, N, J);
34-
35- for (j in 1: J) {
36- rtn[1][ : , j] = (y[: , j] - mu_glm[ : , j]) / sigma[j];
37- rtn[2][1, j] = normal_lpdf(y[ : , j] | mu_glm[ : , j], sigma[j]);
34+
35+ for (j in 1 : J) {
36+ rtn[1][ : , j] = (y[ : , j] - mu_glm[ : , j]) / sigma[j];
37+ rtn[2][1, j] = normal_lpdf(y[ : , j] | mu_glm[ : , j], sigma[j]);
3838 }
39-
39+
4040 return rtn;
4141}
4242
@@ -63,11 +63,11 @@ array[] matrix bernoulli_marginal(array[,] int y, matrix mu_glm, matrix u_raw) {
6363 int J = cols(mu_glm);
6464 matrix[N, J] matrix_y = to_matrix(y);
6565 matrix[N, J] mu_glm_logit = 1 - inv_logit(mu_glm);
66-
66+
6767 matrix[N, J] Lbound = matrix_y .* mu_glm_logit;
6868 matrix[N, J] UmL = fabs(matrix_y - mu_glm_logit);
69-
70- return { inv_Phi(Lbound + UmL .* u_raw), log(UmL) };
69+
70+ return {inv_Phi(Lbound + UmL .* u_raw), log(UmL)};
7171}
7272
7373/**
@@ -89,15 +89,15 @@ array[] matrix bernoulli_marginal(array[,] int y, matrix mu_glm, matrix u_raw) {
8989 * @return 2D array of matrices containing the random variables
9090 * and jacobian adjustments
9191 */
92- array[] matrix binomial_marginal(array[,] int num, array[,] int den,
93- matrix mu_glm, matrix u_raw) {
92+ array[] matrix binomial_marginal(array[,] int num, array[,] int den, matrix mu_glm,
93+ matrix u_raw) {
9494 int N = rows(mu_glm);
9595 int J = cols(mu_glm);
9696 matrix[N, J] mu_glm_logit = inv_logit(mu_glm);
9797 array[2] matrix[N, J] rtn;
98-
99- for (j in 1: J) {
100- for (n in 1: N) {
98+
99+ for (j in 1 : J) {
100+ for (n in 1 : N) {
101101 real Ubound = binomial_cdf(num[n, j] | den[n, j], mu_glm_logit[n, j]);
102102 real Lbound = 0;
103103 if (num[n, j] > 0) {
@@ -108,7 +108,7 @@ array[] matrix binomial_marginal(array[,] int num, array[,] int den,
108108 rtn[2][n, j] = log(UmL);
109109 }
110110 }
111-
111+
112112 return rtn;
113113}
114114
@@ -135,9 +135,9 @@ array[] matrix poisson_marginal(array[,] int y, matrix mu_glm, matrix u_raw) {
135135 int J = cols(mu_glm);
136136 matrix[N, J] mu_glm_exp = exp(mu_glm);
137137 array[2] matrix[N, J] rtn;
138-
139- for (j in 1: J) {
140- for (n in 1: N) {
138+
139+ for (j in 1 : J) {
140+ for (n in 1 : N) {
141141 real Ubound = poisson_cdf(y[n, j] | mu_glm_exp[n, j]);
142142 real Lbound = 0;
143143 if (y[n, j] > 0) {
@@ -148,11 +148,10 @@ array[] matrix poisson_marginal(array[,] int y, matrix mu_glm, matrix u_raw) {
148148 rtn[2][n, j] = log(UmL);
149149 }
150150 }
151-
151+
152152 return rtn;
153153}
154154
155-
156155/**
157156 * Mixed Copula Log-Probability Function
158157 *
@@ -167,23 +166,23 @@ real centered_gaussian_copula_cholesky_lpdf(array[,] matrix marginals, matrix L)
167166 int N = rows(marginals[1][1]);
168167 int J = rows(L);
169168 matrix[N, J] U;
170-
169+
171170 // Iterate through marginal arrays, concatenating the outcome matrices by column
172171 // and aggregating the log-likelihoods (from continuous marginals) and jacobian
173172 // adjustments (from discrete marginals)
174173 real adj = 0;
175174 int pos = 1;
176- for (m in 1: size(marginals)) {
175+ for (m in 1 : size(marginals)) {
177176 int curr_cols = cols(marginals[m][1]);
178-
179- U[ : , pos: (pos + curr_cols - 1)] = marginals[m][1];
180-
177+
178+ U[ : , pos : (pos + curr_cols - 1)] = marginals[m][1];
179+
181180 adj += sum(marginals[m][2]);
182181 pos += curr_cols;
183182 }
184-
183+
185184 // Return the sum of the log-probability for copula outcomes and jacobian adjustments
186185 return multi_normal_cholesky_copula_lpdf(U | L) + adj;
187186}
188187
189- /** @} */
188+ /** @} */
0 commit comments