diff --git a/ISSCC25/accepted_notebooks/MicroNina/Automating Analog Layouts A Proof of Concept with GLayout for Streamlined Design Process.ipynb b/ISSCC25/accepted_notebooks/MicroNina/Automating_Analog_Layouts_A_Proof_of_Concept_with_GLayout_for_Streamlined_Design_Process.ipynb similarity index 71% rename from ISSCC25/accepted_notebooks/MicroNina/Automating Analog Layouts A Proof of Concept with GLayout for Streamlined Design Process.ipynb rename to ISSCC25/accepted_notebooks/MicroNina/Automating_Analog_Layouts_A_Proof_of_Concept_with_GLayout_for_Streamlined_Design_Process.ipynb index c30b9bb6..ec3cf365 100644 --- a/ISSCC25/accepted_notebooks/MicroNina/Automating Analog Layouts A Proof of Concept with GLayout for Streamlined Design Process.ipynb +++ b/ISSCC25/accepted_notebooks/MicroNina/Automating_Analog_Layouts_A_Proof_of_Concept_with_GLayout_for_Streamlined_Design_Process.ipynb @@ -1,5 +1,15 @@ { - "cells": [ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "view-in-github" + }, + "source": [ + "\"Open" + ] + }, { "cell_type": "markdown", "metadata": { @@ -29,9 +39,9 @@ "id": "uNsiWR4kp9gO" }, "source": [ - "|Name|Affiliation| IEEE Member | SSCS Member | email\n", - "|:-----------------:|:----------:|:----------:|:----------:|:----------:|\n", - "| Eva Deltor | Institute of Microelectronics of Barcelona (IMB-CNM-CSIC) - UAB | No | No | evamaria.deltor@gmail.com\n" + "|Name|Affiliation|IEEE Member|SSCS Member|Email|\n", + "|:--:|:----------:|:----------:|:----------:|:----------:|\n", + "|Eva Deltor|Institute of Microelectronics of Barcelona (IMB-CNM-CSIC) - UAB|No|No|evamaria.deltor@gmail.com|\n" ] }, { @@ -133,6 +143,7 @@ "\n", "Based on this recent development, and recognizing its impressive contribution, my experience as junior designer suggests that explaining the design needs to an AI in analog design is not always comfortable. We find a more engineer-oriented approach—using schematics and a table of specifications—makes, makes me feel more at ease and simplifies the design process enabling me more control of what I am actually doing.\n", "\n", + "In the development of analog layouts, recent advances have focused on automating the design process when changes are necessary, such as modifying transistor dimensions or even changing the PDK (Process Design Kit). However, for this automation to be feasible, an initial iteration must be carried out, which can take significant time to develop—up to two weeks, according to some estimates [5]. Therefore, the objective of this project is to reduce the time required to complete this first iteration by automating the placement and routing of the circuit. As a result, the design of an op-amp could potentially be completed in a matter of minutes.\n", "\n", "References:\n", "\n", @@ -143,7 +154,9 @@ "\n", " [3] https://ieeexplore.ieee.org/document/9816083\n", "\n", - " [4] https://www.researchgate.net/publication/383875082_Human_Language_to_Analog_Layout_Using_GLayout_Layout_Automation_Framework\n" + " [4] https://www.researchgate.net/publication/383875082_Human_Language_to_Analog_Layout_Using_GLayout_Layout_Automation_Framework\n", + "\n", + " [5] https://www.youtube.com/watch?v=Lim_A1x9yQM\n" ] }, { @@ -152,12 +165,36 @@ "id": "5SUE7l3TDTH3" }, "source": [ - "# 2. Prepare the environment" + "# 2. Set up the environment" ] }, { "cell_type": "code", - "execution_count": null, + "source": [ + "# Clone the repository containing .sch and .spice files\n", + "! git clone https://github.com/evadeltor/Files_MicroNina.git" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "qYPKrw8P5rEA", + "outputId": "96ecb7d1-a615-4355-bfe9-4a0dbd3ea8c7" + }, + "execution_count": 1, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "fatal: destination path 'Files_MicroNina' already exists and is not an empty directory.\n" + ] + } + ] + }, + { + "cell_type": "code", + "execution_count": 2, "metadata": { "cellView": "form", "colab": { @@ -165,7 +202,7 @@ }, "collapsed": true, "id": "6l3pnRhjbTtH", - "outputId": "4601112f-93b8-4f1e-8ad2-10dd6196b53a" + "outputId": "5ab52723-9c9b-4ead-e2e1-0c061a50f002" }, "outputs": [ { @@ -177,15 +214,15 @@ "Requirement already satisfied: gdsfactory~=8.5.2 in /usr/local/lib/python3.10/dist-packages (from sky130) (8.5.6)\n", "Requirement already satisfied: PySpice in /usr/local/lib/python3.10/dist-packages (from sky130) (1.5)\n", "Requirement already satisfied: jinja2<4 in /usr/local/lib/python3.10/dist-packages (from gdsfactory~=8.5.2->sky130) (3.1.4)\n", - "Requirement already satisfied: loguru<1 in /usr/local/lib/python3.10/dist-packages (from gdsfactory~=8.5.2->sky130) (0.7.2)\n", + "Requirement already satisfied: loguru<1 in /usr/local/lib/python3.10/dist-packages (from gdsfactory~=8.5.2->sky130) (0.7.3)\n", "Requirement already satisfied: matplotlib<4 in /usr/local/lib/python3.10/dist-packages (from gdsfactory~=8.5.2->sky130) (3.8.0)\n", "Requirement already satisfied: numpy<2 in /usr/local/lib/python3.10/dist-packages (from gdsfactory~=8.5.2->sky130) (1.26.4)\n", "Requirement already satisfied: omegaconf<3 in /usr/local/lib/python3.10/dist-packages (from gdsfactory~=8.5.2->sky130) (2.3.0)\n", - "Requirement already satisfied: orjson<4 in /usr/local/lib/python3.10/dist-packages (from gdsfactory~=8.5.2->sky130) (3.10.11)\n", + "Requirement already satisfied: orjson<4 in /usr/local/lib/python3.10/dist-packages (from gdsfactory~=8.5.2->sky130) (3.10.12)\n", "Requirement already satisfied: pandas<3 in /usr/local/lib/python3.10/dist-packages (from gdsfactory~=8.5.2->sky130) (2.2.2)\n", "Requirement already satisfied: pydantic<2.9,>=2.8.2 in /usr/local/lib/python3.10/dist-packages (from gdsfactory~=8.5.2->sky130) (2.8.2)\n", - "Requirement already satisfied: pydantic-settings<3 in /usr/local/lib/python3.10/dist-packages (from gdsfactory~=8.5.2->sky130) (2.6.1)\n", - "Requirement already satisfied: pydantic-extra-types<3 in /usr/local/lib/python3.10/dist-packages (from gdsfactory~=8.5.2->sky130) (2.10.0)\n", + "Requirement already satisfied: pydantic-settings<3 in /usr/local/lib/python3.10/dist-packages (from gdsfactory~=8.5.2->sky130) (2.7.1)\n", + "Requirement already satisfied: pydantic-extra-types<3 in /usr/local/lib/python3.10/dist-packages (from gdsfactory~=8.5.2->sky130) (2.10.1)\n", "Requirement already satisfied: pyyaml in /usr/local/lib/python3.10/dist-packages (from gdsfactory~=8.5.2->sky130) (6.0.2)\n", "Requirement already satisfied: qrcode in /usr/local/lib/python3.10/dist-packages (from gdsfactory~=8.5.2->sky130) (8.0)\n", "Requirement already satisfied: rectpack<1 in /usr/local/lib/python3.10/dist-packages (from gdsfactory~=8.5.2->sky130) (0.2.2)\n", @@ -193,14 +230,14 @@ "Requirement already satisfied: scipy<2 in /usr/local/lib/python3.10/dist-packages (from gdsfactory~=8.5.2->sky130) (1.13.1)\n", "Requirement already satisfied: shapely<3 in /usr/local/lib/python3.10/dist-packages (from gdsfactory~=8.5.2->sky130) (2.0.6)\n", "Requirement already satisfied: toolz<1 in /usr/local/lib/python3.10/dist-packages (from gdsfactory~=8.5.2->sky130) (0.12.1)\n", - "Requirement already satisfied: types-PyYAML in /usr/local/lib/python3.10/dist-packages (from gdsfactory~=8.5.2->sky130) (6.0.12.20240917)\n", - "Requirement already satisfied: typer<1 in /usr/local/lib/python3.10/dist-packages (from gdsfactory~=8.5.2->sky130) (0.13.0)\n", + "Requirement already satisfied: types-PyYAML in /usr/local/lib/python3.10/dist-packages (from gdsfactory~=8.5.2->sky130) (6.0.12.20241230)\n", + "Requirement already satisfied: typer<1 in /usr/local/lib/python3.10/dist-packages (from gdsfactory~=8.5.2->sky130) (0.15.1)\n", "Requirement already satisfied: watchdog<5 in /usr/local/lib/python3.10/dist-packages (from gdsfactory~=8.5.2->sky130) (4.0.2)\n", "Requirement already satisfied: kfactory~=0.18.0 in /usr/local/lib/python3.10/dist-packages (from kfactory[git,ipy]~=0.18.0->gdsfactory~=8.5.2->sky130) (0.18.4)\n", "Requirement already satisfied: freetype-py in /usr/local/lib/python3.10/dist-packages (from gdsfactory~=8.5.2->sky130) (2.5.1)\n", - "Requirement already satisfied: mapbox_earcut in /usr/local/lib/python3.10/dist-packages (from gdsfactory~=8.5.2->sky130) (1.0.2)\n", + "Requirement already satisfied: mapbox_earcut in /usr/local/lib/python3.10/dist-packages (from gdsfactory~=8.5.2->sky130) (1.0.3)\n", "Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from gdsfactory~=8.5.2->sky130) (3.4.2)\n", - "Requirement already satisfied: scikit-image in /usr/local/lib/python3.10/dist-packages (from gdsfactory~=8.5.2->sky130) (0.24.0)\n", + "Requirement already satisfied: scikit-image in /usr/local/lib/python3.10/dist-packages (from gdsfactory~=8.5.2->sky130) (0.25.0)\n", "Requirement already satisfied: trimesh<4.5,>=4.4.1 in /usr/local/lib/python3.10/dist-packages (from gdsfactory~=8.5.2->sky130) (4.4.9)\n", "Requirement already satisfied: ipykernel in /usr/local/lib/python3.10/dist-packages (from gdsfactory~=8.5.2->sky130) (5.5.6)\n", "Requirement already satisfied: cffi>=1.14 in /usr/local/lib/python3.10/dist-packages (from PySpice->sky130) (1.17.1)\n", @@ -211,10 +248,10 @@ "Requirement already satisfied: aenum in /usr/local/lib/python3.10/dist-packages (from kfactory~=0.18.0->kfactory[git,ipy]~=0.18.0->gdsfactory~=8.5.2->sky130) (3.1.15)\n", "Requirement already satisfied: cachetools>=5.2.0 in /usr/local/lib/python3.10/dist-packages (from kfactory~=0.18.0->kfactory[git,ipy]~=0.18.0->gdsfactory~=8.5.2->sky130) (5.5.0)\n", "Requirement already satisfied: gitpython in /usr/local/lib/python3.10/dist-packages (from kfactory~=0.18.0->kfactory[git,ipy]~=0.18.0->gdsfactory~=8.5.2->sky130) (3.1.43)\n", - "Requirement already satisfied: klayout>=0.29.3 in /usr/local/lib/python3.10/dist-packages (from kfactory~=0.18.0->kfactory[git,ipy]~=0.18.0->gdsfactory~=8.5.2->sky130) (0.29.9)\n", + "Requirement already satisfied: klayout>=0.29.3 in /usr/local/lib/python3.10/dist-packages (from kfactory~=0.18.0->kfactory[git,ipy]~=0.18.0->gdsfactory~=8.5.2->sky130) (0.29.10)\n", "Requirement already satisfied: rectangle-packer in /usr/local/lib/python3.10/dist-packages (from kfactory~=0.18.0->kfactory[git,ipy]~=0.18.0->gdsfactory~=8.5.2->sky130) (2.0.2)\n", - "Requirement already satisfied: ruamel.yaml in /usr/local/lib/python3.10/dist-packages (from kfactory~=0.18.0->kfactory[git,ipy]~=0.18.0->gdsfactory~=8.5.2->sky130) (0.18.6)\n", - "Requirement already satisfied: tomli in /usr/local/lib/python3.10/dist-packages (from kfactory~=0.18.0->kfactory[git,ipy]~=0.18.0->gdsfactory~=8.5.2->sky130) (2.1.0)\n", + "Requirement already satisfied: ruamel.yaml in /usr/local/lib/python3.10/dist-packages (from kfactory~=0.18.0->kfactory[git,ipy]~=0.18.0->gdsfactory~=8.5.2->sky130) (0.18.10)\n", + "Requirement already satisfied: tomli in /usr/local/lib/python3.10/dist-packages (from kfactory~=0.18.0->kfactory[git,ipy]~=0.18.0->gdsfactory~=8.5.2->sky130) (2.2.1)\n", "\u001b[33mWARNING: kfactory 0.18.4 does not provide the extra 'git'\u001b[0m\u001b[33m\n", "\u001b[0mRequirement already satisfied: ipython in /usr/local/lib/python3.10/dist-packages (from kfactory[git,ipy]~=0.18.0->gdsfactory~=8.5.2->sky130) (7.34.0)\n", "Requirement already satisfied: ipywidgets in /usr/local/lib/python3.10/dist-packages (from kfactory[git,ipy]~=0.18.0->gdsfactory~=8.5.2->sky130) (7.7.1)\n", @@ -222,7 +259,7 @@ "Requirement already satisfied: ipyevents in /usr/local/lib/python3.10/dist-packages (from kfactory[git,ipy]~=0.18.0->gdsfactory~=8.5.2->sky130) (2.0.2)\n", "Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4->gdsfactory~=8.5.2->sky130) (1.3.1)\n", "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4->gdsfactory~=8.5.2->sky130) (0.12.1)\n", - "Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4->gdsfactory~=8.5.2->sky130) (4.55.0)\n", + "Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4->gdsfactory~=8.5.2->sky130) (4.55.3)\n", "Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4->gdsfactory~=8.5.2->sky130) (1.4.7)\n", "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4->gdsfactory~=8.5.2->sky130) (24.2)\n", "Requirement already satisfied: pillow>=6.2.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4->gdsfactory~=8.5.2->sky130) (11.0.0)\n", @@ -238,7 +275,7 @@ "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests>=2.23->PySpice->sky130) (3.4.0)\n", "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests>=2.23->PySpice->sky130) (3.10)\n", "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests>=2.23->PySpice->sky130) (2.2.3)\n", - "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests>=2.23->PySpice->sky130) (2024.8.30)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests>=2.23->PySpice->sky130) (2024.12.14)\n", "Requirement already satisfied: markdown-it-py>=2.2.0 in /usr/local/lib/python3.10/dist-packages (from rich<14->gdsfactory~=8.5.2->sky130) (3.0.0)\n", "Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /usr/local/lib/python3.10/dist-packages (from rich<14->gdsfactory~=8.5.2->sky130) (2.18.0)\n", "Requirement already satisfied: click>=8.0.0 in /usr/local/lib/python3.10/dist-packages (from typer<1->gdsfactory~=8.5.2->sky130) (8.1.7)\n", @@ -247,8 +284,8 @@ "Requirement already satisfied: traitlets>=4.1.0 in /usr/local/lib/python3.10/dist-packages (from ipykernel->gdsfactory~=8.5.2->sky130) (5.7.1)\n", "Requirement already satisfied: jupyter-client in /usr/local/lib/python3.10/dist-packages (from ipykernel->gdsfactory~=8.5.2->sky130) (6.1.12)\n", "Requirement already satisfied: tornado>=4.2 in /usr/local/lib/python3.10/dist-packages (from ipykernel->gdsfactory~=8.5.2->sky130) (6.3.3)\n", - "Requirement already satisfied: imageio>=2.33 in /usr/local/lib/python3.10/dist-packages (from scikit-image->gdsfactory~=8.5.2->sky130) (2.36.0)\n", - "Requirement already satisfied: tifffile>=2022.8.12 in /usr/local/lib/python3.10/dist-packages (from scikit-image->gdsfactory~=8.5.2->sky130) (2024.9.20)\n", + "Requirement already satisfied: imageio!=2.35.0,>=2.33 in /usr/local/lib/python3.10/dist-packages (from scikit-image->gdsfactory~=8.5.2->sky130) (2.36.1)\n", + "Requirement already satisfied: tifffile>=2022.8.12 in /usr/local/lib/python3.10/dist-packages (from scikit-image->gdsfactory~=8.5.2->sky130) (2024.12.12)\n", "Requirement already satisfied: lazy-loader>=0.4 in /usr/local/lib/python3.10/dist-packages (from scikit-image->gdsfactory~=8.5.2->sky130) (0.4)\n", "Requirement already satisfied: setuptools>=18.5 in /usr/local/lib/python3.10/dist-packages (from ipython->kfactory[git,ipy]~=0.18.0->gdsfactory~=8.5.2->sky130) (75.1.0)\n", "Requirement already satisfied: jedi>=0.16 in /usr/local/lib/python3.10/dist-packages (from ipython->kfactory[git,ipy]~=0.18.0->gdsfactory~=8.5.2->sky130) (0.19.2)\n", @@ -259,14 +296,14 @@ "Requirement already satisfied: matplotlib-inline in /usr/local/lib/python3.10/dist-packages (from ipython->kfactory[git,ipy]~=0.18.0->gdsfactory~=8.5.2->sky130) (0.1.7)\n", "Requirement already satisfied: pexpect>4.3 in /usr/local/lib/python3.10/dist-packages (from ipython->kfactory[git,ipy]~=0.18.0->gdsfactory~=8.5.2->sky130) (4.9.0)\n", "Requirement already satisfied: mdurl~=0.1 in /usr/local/lib/python3.10/dist-packages (from markdown-it-py>=2.2.0->rich<14->gdsfactory~=8.5.2->sky130) (0.1.2)\n", - "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.7->matplotlib<4->gdsfactory~=8.5.2->sky130) (1.16.0)\n", + "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.7->matplotlib<4->gdsfactory~=8.5.2->sky130) (1.17.0)\n", "Requirement already satisfied: gitdb<5,>=4.0.1 in /usr/local/lib/python3.10/dist-packages (from gitpython->kfactory~=0.18.0->kfactory[git,ipy]~=0.18.0->gdsfactory~=8.5.2->sky130) (4.0.11)\n", "Requirement already satisfied: widgetsnbextension~=3.6.0 in /usr/local/lib/python3.10/dist-packages (from ipywidgets->kfactory[git,ipy]~=0.18.0->gdsfactory~=8.5.2->sky130) (3.6.10)\n", "Requirement already satisfied: jupyterlab-widgets>=1.0.0 in /usr/local/lib/python3.10/dist-packages (from ipywidgets->kfactory[git,ipy]~=0.18.0->gdsfactory~=8.5.2->sky130) (3.0.13)\n", "Requirement already satisfied: jupyter-core>=4.6.0 in /usr/local/lib/python3.10/dist-packages (from jupyter-client->ipykernel->gdsfactory~=8.5.2->sky130) (5.7.2)\n", "Requirement already satisfied: pyzmq>=13 in /usr/local/lib/python3.10/dist-packages (from jupyter-client->ipykernel->gdsfactory~=8.5.2->sky130) (24.0.1)\n", "Requirement already satisfied: ruamel.yaml.clib>=0.2.7 in /usr/local/lib/python3.10/dist-packages (from ruamel.yaml->kfactory~=0.18.0->kfactory[git,ipy]~=0.18.0->gdsfactory~=8.5.2->sky130) (0.2.12)\n", - "\u001b[33mWARNING: typer 0.13.0 does not provide the extra 'all'\u001b[0m\u001b[33m\n", + "\u001b[33mWARNING: typer 0.15.1 does not provide the extra 'all'\u001b[0m\u001b[33m\n", "\u001b[0mRequirement already satisfied: smmap<6,>=3.0.1 in /usr/local/lib/python3.10/dist-packages (from gitdb<5,>=4.0.1->gitpython->kfactory~=0.18.0->kfactory[git,ipy]~=0.18.0->gdsfactory~=8.5.2->sky130) (5.0.1)\n", "Requirement already satisfied: parso<0.9.0,>=0.8.4 in /usr/local/lib/python3.10/dist-packages (from jedi>=0.16->ipython->kfactory[git,ipy]~=0.18.0->gdsfactory~=8.5.2->sky130) (0.8.4)\n", "Requirement already satisfied: platformdirs>=2.5 in /usr/local/lib/python3.10/dist-packages (from jupyter-core>=4.6.0->jupyter-client->ipykernel->gdsfactory~=8.5.2->sky130) (4.3.6)\n", @@ -279,7 +316,7 @@ "Requirement already satisfied: nest-asyncio>=1.5 in /usr/local/lib/python3.10/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->kfactory[git,ipy]~=0.18.0->gdsfactory~=8.5.2->sky130) (1.6.0)\n", "Requirement already satisfied: Send2Trash>=1.8.0 in /usr/local/lib/python3.10/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->kfactory[git,ipy]~=0.18.0->gdsfactory~=8.5.2->sky130) (1.8.3)\n", "Requirement already satisfied: terminado>=0.8.3 in /usr/local/lib/python3.10/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->kfactory[git,ipy]~=0.18.0->gdsfactory~=8.5.2->sky130) (0.18.1)\n", - "Requirement already satisfied: prometheus-client in /usr/local/lib/python3.10/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->kfactory[git,ipy]~=0.18.0->gdsfactory~=8.5.2->sky130) (0.21.0)\n", + "Requirement already satisfied: prometheus-client in /usr/local/lib/python3.10/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->kfactory[git,ipy]~=0.18.0->gdsfactory~=8.5.2->sky130) (0.21.1)\n", "Requirement already satisfied: nbclassic>=0.4.7 in /usr/local/lib/python3.10/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->kfactory[git,ipy]~=0.18.0->gdsfactory~=8.5.2->sky130) (1.1.0)\n", "Requirement already satisfied: notebook-shim>=0.2.3 in /usr/local/lib/python3.10/dist-packages (from nbclassic>=0.4.7->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->kfactory[git,ipy]~=0.18.0->gdsfactory~=8.5.2->sky130) (0.2.4)\n", "Requirement already satisfied: beautifulsoup4 in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->kfactory[git,ipy]~=0.18.0->gdsfactory~=8.5.2->sky130) (4.12.3)\n", @@ -287,17 +324,17 @@ "Requirement already satisfied: defusedxml in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->kfactory[git,ipy]~=0.18.0->gdsfactory~=8.5.2->sky130) (0.7.1)\n", "Requirement already satisfied: jupyterlab-pygments in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->kfactory[git,ipy]~=0.18.0->gdsfactory~=8.5.2->sky130) (0.3.0)\n", "Requirement already satisfied: mistune<4,>=2.0.3 in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->kfactory[git,ipy]~=0.18.0->gdsfactory~=8.5.2->sky130) (3.0.2)\n", - "Requirement already satisfied: nbclient>=0.5.0 in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->kfactory[git,ipy]~=0.18.0->gdsfactory~=8.5.2->sky130) (0.10.0)\n", + "Requirement already satisfied: nbclient>=0.5.0 in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->kfactory[git,ipy]~=0.18.0->gdsfactory~=8.5.2->sky130) (0.10.1)\n", "Requirement already satisfied: pandocfilters>=1.4.1 in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->kfactory[git,ipy]~=0.18.0->gdsfactory~=8.5.2->sky130) (1.5.1)\n", "Requirement already satisfied: tinycss2 in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->kfactory[git,ipy]~=0.18.0->gdsfactory~=8.5.2->sky130) (1.4.0)\n", - "Requirement already satisfied: fastjsonschema>=2.15 in /usr/local/lib/python3.10/dist-packages (from nbformat->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->kfactory[git,ipy]~=0.18.0->gdsfactory~=8.5.2->sky130) (2.20.0)\n", + "Requirement already satisfied: fastjsonschema>=2.15 in /usr/local/lib/python3.10/dist-packages (from nbformat->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->kfactory[git,ipy]~=0.18.0->gdsfactory~=8.5.2->sky130) (2.21.1)\n", "Requirement already satisfied: jsonschema>=2.6 in /usr/local/lib/python3.10/dist-packages (from nbformat->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->kfactory[git,ipy]~=0.18.0->gdsfactory~=8.5.2->sky130) (4.23.0)\n", "Requirement already satisfied: argon2-cffi-bindings in /usr/local/lib/python3.10/dist-packages (from argon2-cffi->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->kfactory[git,ipy]~=0.18.0->gdsfactory~=8.5.2->sky130) (21.2.0)\n", "Requirement already satisfied: webencodings in /usr/local/lib/python3.10/dist-packages (from bleach!=5.0.0->nbconvert>=5->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->kfactory[git,ipy]~=0.18.0->gdsfactory~=8.5.2->sky130) (0.5.1)\n", - "Requirement already satisfied: attrs>=22.2.0 in /usr/local/lib/python3.10/dist-packages (from jsonschema>=2.6->nbformat->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->kfactory[git,ipy]~=0.18.0->gdsfactory~=8.5.2->sky130) (24.2.0)\n", + "Requirement already satisfied: attrs>=22.2.0 in /usr/local/lib/python3.10/dist-packages (from jsonschema>=2.6->nbformat->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->kfactory[git,ipy]~=0.18.0->gdsfactory~=8.5.2->sky130) (24.3.0)\n", "Requirement already satisfied: jsonschema-specifications>=2023.03.6 in /usr/local/lib/python3.10/dist-packages (from jsonschema>=2.6->nbformat->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->kfactory[git,ipy]~=0.18.0->gdsfactory~=8.5.2->sky130) (2024.10.1)\n", "Requirement already satisfied: referencing>=0.28.4 in /usr/local/lib/python3.10/dist-packages (from jsonschema>=2.6->nbformat->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->kfactory[git,ipy]~=0.18.0->gdsfactory~=8.5.2->sky130) (0.35.1)\n", - "Requirement already satisfied: rpds-py>=0.7.1 in /usr/local/lib/python3.10/dist-packages (from jsonschema>=2.6->nbformat->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->kfactory[git,ipy]~=0.18.0->gdsfactory~=8.5.2->sky130) (0.21.0)\n", + "Requirement already satisfied: rpds-py>=0.7.1 in /usr/local/lib/python3.10/dist-packages (from jsonschema>=2.6->nbformat->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->kfactory[git,ipy]~=0.18.0->gdsfactory~=8.5.2->sky130) (0.22.3)\n", "Requirement already satisfied: jupyter-server<3,>=1.8 in /usr/local/lib/python3.10/dist-packages (from notebook-shim>=0.2.3->nbclassic>=0.4.7->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->kfactory[git,ipy]~=0.18.0->gdsfactory~=8.5.2->sky130) (1.24.0)\n", "Requirement already satisfied: soupsieve>1.2 in /usr/local/lib/python3.10/dist-packages (from beautifulsoup4->nbconvert>=5->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->kfactory[git,ipy]~=0.18.0->gdsfactory~=8.5.2->sky130) (2.6)\n", "Requirement already satisfied: anyio<4,>=3.1.0 in /usr/local/lib/python3.10/dist-packages (from jupyter-server<3,>=1.8->notebook-shim>=0.2.3->nbclassic>=0.4.7->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->kfactory[git,ipy]~=0.18.0->gdsfactory~=8.5.2->sky130) (3.7.1)\n", @@ -313,27 +350,27 @@ "Collecting gdsfactory<7.17,>=7.16.0 (from gf180)\n", " Using cached gdsfactory-7.16.0-py3-none-any.whl.metadata (11 kB)\n", "Collecting colorama (from prettyprinttree)\n", - " Using cached colorama-0.4.6-py2.py3-none-any.whl.metadata (17 kB)\n", + " Downloading colorama-0.4.6-py2.py3-none-any.whl.metadata (17 kB)\n", "Collecting cmd2 (from prettyprinttree)\n", - " Using cached cmd2-2.5.7-py3-none-any.whl.metadata (13 kB)\n", + " Downloading cmd2-2.5.8-py3-none-any.whl.metadata (18 kB)\n", "Requirement already satisfied: lxml in /usr/local/lib/python3.10/dist-packages (from svgutils) (5.3.0)\n", "Collecting flatdict (from gdsfactory<7.17,>=7.16.0->gf180)\n", " Using cached flatdict-4.0.1.tar.gz (8.3 kB)\n", " Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n", "Collecting gdstk<0.10,>=0.9.49 (from gdsfactory<7.17,>=7.16.0->gf180)\n", - " Using cached gdstk-0.9.58-cp310-cp310-manylinux_2_28_x86_64.whl.metadata (8.7 kB)\n", + " Downloading gdstk-0.9.58-cp310-cp310-manylinux_2_28_x86_64.whl.metadata (8.7 kB)\n", "Requirement already satisfied: jinja2<4 in /usr/local/lib/python3.10/dist-packages (from gdsfactory<7.17,>=7.16.0->gf180) (3.1.4)\n", - "Requirement already satisfied: loguru<1 in /usr/local/lib/python3.10/dist-packages (from gdsfactory<7.17,>=7.16.0->gf180) (0.7.2)\n", + "Requirement already satisfied: loguru<1 in /usr/local/lib/python3.10/dist-packages (from gdsfactory<7.17,>=7.16.0->gf180) (0.7.3)\n", "Requirement already satisfied: matplotlib<4 in /usr/local/lib/python3.10/dist-packages (from gdsfactory<7.17,>=7.16.0->gf180) (3.8.0)\n", "Requirement already satisfied: numpy<2 in /usr/local/lib/python3.10/dist-packages (from gdsfactory<7.17,>=7.16.0->gf180) (1.26.4)\n", "Requirement already satisfied: omegaconf<3 in /usr/local/lib/python3.10/dist-packages (from gdsfactory<7.17,>=7.16.0->gf180) (2.3.0)\n", - "Requirement already satisfied: orjson<4 in /usr/local/lib/python3.10/dist-packages (from gdsfactory<7.17,>=7.16.0->gf180) (3.10.11)\n", + "Requirement already satisfied: orjson<4 in /usr/local/lib/python3.10/dist-packages (from gdsfactory<7.17,>=7.16.0->gf180) (3.10.12)\n", "Requirement already satisfied: pandas<3 in /usr/local/lib/python3.10/dist-packages (from gdsfactory<7.17,>=7.16.0->gf180) (2.2.2)\n", "Collecting pydantic<2.7,>=2 (from gdsfactory<7.17,>=7.16.0->gf180)\n", " Downloading pydantic-2.6.4-py3-none-any.whl.metadata (85 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m85.1/85.1 kB\u001b[0m \u001b[31m1.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hRequirement already satisfied: pydantic-settings<3 in /usr/local/lib/python3.10/dist-packages (from gdsfactory<7.17,>=7.16.0->gf180) (2.6.1)\n", - "Requirement already satisfied: pydantic-extra-types<3 in /usr/local/lib/python3.10/dist-packages (from gdsfactory<7.17,>=7.16.0->gf180) (2.10.0)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m85.1/85.1 kB\u001b[0m \u001b[31m6.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: pydantic-settings<3 in /usr/local/lib/python3.10/dist-packages (from gdsfactory<7.17,>=7.16.0->gf180) (2.7.1)\n", + "Requirement already satisfied: pydantic-extra-types<3 in /usr/local/lib/python3.10/dist-packages (from gdsfactory<7.17,>=7.16.0->gf180) (2.10.1)\n", "Requirement already satisfied: pyyaml in /usr/local/lib/python3.10/dist-packages (from gdsfactory<7.17,>=7.16.0->gf180) (6.0.2)\n", "Requirement already satisfied: qrcode in /usr/local/lib/python3.10/dist-packages (from gdsfactory<7.17,>=7.16.0->gf180) (8.0)\n", "Requirement already satisfied: rectpack<1 in /usr/local/lib/python3.10/dist-packages (from gdsfactory<7.17,>=7.16.0->gf180) (0.2.2)\n", @@ -341,17 +378,17 @@ "Requirement already satisfied: scipy<2 in /usr/local/lib/python3.10/dist-packages (from gdsfactory<7.17,>=7.16.0->gf180) (1.13.1)\n", "Requirement already satisfied: shapely<3 in /usr/local/lib/python3.10/dist-packages (from gdsfactory<7.17,>=7.16.0->gf180) (2.0.6)\n", "Requirement already satisfied: toolz<1 in /usr/local/lib/python3.10/dist-packages (from gdsfactory<7.17,>=7.16.0->gf180) (0.12.1)\n", - "Requirement already satisfied: types-PyYAML in /usr/local/lib/python3.10/dist-packages (from gdsfactory<7.17,>=7.16.0->gf180) (6.0.12.20240917)\n", - "Requirement already satisfied: typer<1 in /usr/local/lib/python3.10/dist-packages (from gdsfactory<7.17,>=7.16.0->gf180) (0.13.0)\n", + "Requirement already satisfied: types-PyYAML in /usr/local/lib/python3.10/dist-packages (from gdsfactory<7.17,>=7.16.0->gf180) (6.0.12.20241230)\n", + "Requirement already satisfied: typer<1 in /usr/local/lib/python3.10/dist-packages (from gdsfactory<7.17,>=7.16.0->gf180) (0.15.1)\n", "Requirement already satisfied: watchdog<5 in /usr/local/lib/python3.10/dist-packages (from gdsfactory<7.17,>=7.16.0->gf180) (4.0.2)\n", "Collecting kfactory<0.12,>=0.9.1 (from kfactory[git,ipy]<0.12,>=0.9.1->gdsfactory<7.17,>=7.16.0->gf180)\n", " Downloading kfactory-0.11.4-py3-none-any.whl.metadata (4.5 kB)\n", "Requirement already satisfied: freetype-py in /usr/local/lib/python3.10/dist-packages (from gdsfactory<7.17,>=7.16.0->gf180) (2.5.1)\n", - "Requirement already satisfied: mapbox_earcut in /usr/local/lib/python3.10/dist-packages (from gdsfactory<7.17,>=7.16.0->gf180) (1.0.2)\n", + "Requirement already satisfied: mapbox_earcut in /usr/local/lib/python3.10/dist-packages (from gdsfactory<7.17,>=7.16.0->gf180) (1.0.3)\n", "Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from gdsfactory<7.17,>=7.16.0->gf180) (3.4.2)\n", "Collecting pyglet<2 (from gdsfactory<7.17,>=7.16.0->gf180)\n", - " Downloading pyglet-1.5.29-py3-none-any.whl.metadata (7.6 kB)\n", - "Requirement already satisfied: scikit-image in /usr/local/lib/python3.10/dist-packages (from gdsfactory<7.17,>=7.16.0->gf180) (0.24.0)\n", + " Downloading pyglet-1.5.31-py3-none-any.whl.metadata (7.6 kB)\n", + "Requirement already satisfied: scikit-image in /usr/local/lib/python3.10/dist-packages (from gdsfactory<7.17,>=7.16.0->gf180) (0.25.0)\n", "Collecting trimesh<4.2,>=4 (from gdsfactory<7.17,>=7.16.0->gf180)\n", " Downloading trimesh-4.1.8-py3-none-any.whl.metadata (18 kB)\n", "Collecting ipycytoscape (from gdsfactory<7.17,>=7.16.0->gf180)\n", @@ -359,24 +396,24 @@ "Requirement already satisfied: ipyevents in /usr/local/lib/python3.10/dist-packages (from gdsfactory<7.17,>=7.16.0->gf180) (2.0.2)\n", "Requirement already satisfied: ipykernel in /usr/local/lib/python3.10/dist-packages (from gdsfactory<7.17,>=7.16.0->gf180) (5.5.6)\n", "Collecting ipympl (from gdsfactory<7.17,>=7.16.0->gf180)\n", - " Downloading ipympl-0.9.4-py3-none-any.whl.metadata (8.7 kB)\n", + " Downloading ipympl-0.9.6-py3-none-any.whl.metadata (8.7 kB)\n", "Requirement already satisfied: ipytree in /usr/local/lib/python3.10/dist-packages (from gdsfactory<7.17,>=7.16.0->gf180) (0.2.2)\n", "Requirement already satisfied: ipywidgets in /usr/local/lib/python3.10/dist-packages (from gdsfactory<7.17,>=7.16.0->gf180) (7.7.1)\n", "Requirement already satisfied: pyperclip in /usr/local/lib/python3.10/dist-packages (from cmd2->prettyprinttree) (1.9.0)\n", "Requirement already satisfied: wcwidth in /usr/local/lib/python3.10/dist-packages (from cmd2->prettyprinttree) (0.2.13)\n", "Requirement already satisfied: typing_extensions in /usr/local/lib/python3.10/dist-packages (from gdstk<0.10,>=0.9.49->gdsfactory<7.17,>=7.16.0->gf180) (4.12.2)\n", "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2<4->gdsfactory<7.17,>=7.16.0->gf180) (3.0.2)\n", - "Requirement already satisfied: klayout>=0.28.17 in /usr/local/lib/python3.10/dist-packages (from kfactory<0.12,>=0.9.1->kfactory[git,ipy]<0.12,>=0.9.1->gdsfactory<7.17,>=7.16.0->gf180) (0.29.9)\n", - "Requirement already satisfied: ruamel.yaml in /usr/local/lib/python3.10/dist-packages (from kfactory<0.12,>=0.9.1->kfactory[git,ipy]<0.12,>=0.9.1->gdsfactory<7.17,>=7.16.0->gf180) (0.18.6)\n", + "Requirement already satisfied: klayout>=0.28.17 in /usr/local/lib/python3.10/dist-packages (from kfactory<0.12,>=0.9.1->kfactory[git,ipy]<0.12,>=0.9.1->gdsfactory<7.17,>=7.16.0->gf180) (0.29.10)\n", + "Requirement already satisfied: ruamel.yaml in /usr/local/lib/python3.10/dist-packages (from kfactory<0.12,>=0.9.1->kfactory[git,ipy]<0.12,>=0.9.1->gdsfactory<7.17,>=7.16.0->gf180) (0.18.10)\n", "Requirement already satisfied: cachetools>=5.2.0 in /usr/local/lib/python3.10/dist-packages (from kfactory<0.12,>=0.9.1->kfactory[git,ipy]<0.12,>=0.9.1->gdsfactory<7.17,>=7.16.0->gf180) (5.5.0)\n", - "Requirement already satisfied: tomli in /usr/local/lib/python3.10/dist-packages (from kfactory<0.12,>=0.9.1->kfactory[git,ipy]<0.12,>=0.9.1->gdsfactory<7.17,>=7.16.0->gf180) (2.1.0)\n", + "Requirement already satisfied: tomli in /usr/local/lib/python3.10/dist-packages (from kfactory<0.12,>=0.9.1->kfactory[git,ipy]<0.12,>=0.9.1->gdsfactory<7.17,>=7.16.0->gf180) (2.2.1)\n", "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from kfactory<0.12,>=0.9.1->kfactory[git,ipy]<0.12,>=0.9.1->gdsfactory<7.17,>=7.16.0->gf180) (2.32.3)\n", "Requirement already satisfied: aenum in /usr/local/lib/python3.10/dist-packages (from kfactory<0.12,>=0.9.1->kfactory[git,ipy]<0.12,>=0.9.1->gdsfactory<7.17,>=7.16.0->gf180) (3.1.15)\n", "Requirement already satisfied: gitpython in /usr/local/lib/python3.10/dist-packages (from kfactory[git,ipy]<0.12,>=0.9.1->gdsfactory<7.17,>=7.16.0->gf180) (3.1.43)\n", "Requirement already satisfied: ipython in /usr/local/lib/python3.10/dist-packages (from kfactory[git,ipy]<0.12,>=0.9.1->gdsfactory<7.17,>=7.16.0->gf180) (7.34.0)\n", "Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4->gdsfactory<7.17,>=7.16.0->gf180) (1.3.1)\n", "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4->gdsfactory<7.17,>=7.16.0->gf180) (0.12.1)\n", - "Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4->gdsfactory<7.17,>=7.16.0->gf180) (4.55.0)\n", + "Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4->gdsfactory<7.17,>=7.16.0->gf180) (4.55.3)\n", "Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4->gdsfactory<7.17,>=7.16.0->gf180) (1.4.7)\n", "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4->gdsfactory<7.17,>=7.16.0->gf180) (24.2)\n", "Requirement already satisfied: pillow>=6.2.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4->gdsfactory<7.17,>=7.16.0->gf180) (11.0.0)\n", @@ -390,17 +427,20 @@ " Downloading pydantic_core-2.16.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (6.5 kB)\n", "INFO: pip is looking at multiple versions of pydantic-settings to determine which version is compatible with other requirements. This could take a while.\n", "Collecting pydantic-settings<3 (from gdsfactory<7.17,>=7.16.0->gf180)\n", + " Downloading pydantic_settings-2.7.0-py3-none-any.whl.metadata (3.5 kB)\n", + " Downloading pydantic_settings-2.6.1-py3-none-any.whl.metadata (3.5 kB)\n", " Downloading pydantic_settings-2.6.0-py3-none-any.whl.metadata (3.5 kB)\n", " Downloading pydantic_settings-2.5.2-py3-none-any.whl.metadata (3.5 kB)\n", " Downloading pydantic_settings-2.5.1-py3-none-any.whl.metadata (3.5 kB)\n", " Downloading pydantic_settings-2.5.0-py3-none-any.whl.metadata (3.5 kB)\n", " Downloading pydantic_settings-2.4.0-py3-none-any.whl.metadata (3.5 kB)\n", + "INFO: pip is still looking at multiple versions of pydantic-settings to determine which version is compatible with other requirements. This could take a while.\n", " Downloading pydantic_settings-2.3.4-py3-none-any.whl.metadata (3.3 kB)\n", " Downloading pydantic_settings-2.3.3-py3-none-any.whl.metadata (3.3 kB)\n", - "INFO: pip is still looking at multiple versions of pydantic-settings to determine which version is compatible with other requirements. This could take a while.\n", " Downloading pydantic_settings-2.3.2-py3-none-any.whl.metadata (3.3 kB)\n", " Downloading pydantic_settings-2.3.1-py3-none-any.whl.metadata (3.3 kB)\n", " Downloading pydantic_settings-2.3.0-py3-none-any.whl.metadata (3.3 kB)\n", + "INFO: This is taking longer than usual. You might need to provide the dependency resolver with stricter constraints to reduce runtime. See https://pip.pypa.io/warnings/backtracking for guidance. If you want to abort this run, press Ctrl + C.\n", " Downloading pydantic_settings-2.2.1-py3-none-any.whl.metadata (3.1 kB)\n", "Requirement already satisfied: python-dotenv>=0.21.0 in /usr/local/lib/python3.10/dist-packages (from pydantic-settings<3->gdsfactory<7.17,>=7.16.0->gf180) (1.0.1)\n", "Requirement already satisfied: markdown-it-py>=2.2.0 in /usr/local/lib/python3.10/dist-packages (from rich<14->gdsfactory<7.17,>=7.16.0->gf180) (3.0.0)\n", @@ -415,8 +455,8 @@ "Requirement already satisfied: jupyterlab-widgets>=1.0.0 in /usr/local/lib/python3.10/dist-packages (from ipywidgets->gdsfactory<7.17,>=7.16.0->gf180) (3.0.13)\n", "Requirement already satisfied: jupyter-client in /usr/local/lib/python3.10/dist-packages (from ipykernel->gdsfactory<7.17,>=7.16.0->gf180) (6.1.12)\n", "Requirement already satisfied: tornado>=4.2 in /usr/local/lib/python3.10/dist-packages (from ipykernel->gdsfactory<7.17,>=7.16.0->gf180) (6.3.3)\n", - "Requirement already satisfied: imageio>=2.33 in /usr/local/lib/python3.10/dist-packages (from scikit-image->gdsfactory<7.17,>=7.16.0->gf180) (2.36.0)\n", - "Requirement already satisfied: tifffile>=2022.8.12 in /usr/local/lib/python3.10/dist-packages (from scikit-image->gdsfactory<7.17,>=7.16.0->gf180) (2024.9.20)\n", + "Requirement already satisfied: imageio!=2.35.0,>=2.33 in /usr/local/lib/python3.10/dist-packages (from scikit-image->gdsfactory<7.17,>=7.16.0->gf180) (2.36.1)\n", + "Requirement already satisfied: tifffile>=2022.8.12 in /usr/local/lib/python3.10/dist-packages (from scikit-image->gdsfactory<7.17,>=7.16.0->gf180) (2024.12.12)\n", "Requirement already satisfied: lazy-loader>=0.4 in /usr/local/lib/python3.10/dist-packages (from scikit-image->gdsfactory<7.17,>=7.16.0->gf180) (0.4)\n", "Requirement already satisfied: setuptools>=18.5 in /usr/local/lib/python3.10/dist-packages (from ipython->kfactory[git,ipy]<0.12,>=0.9.1->gdsfactory<7.17,>=7.16.0->gf180) (75.1.0)\n", "Requirement already satisfied: jedi>=0.16 in /usr/local/lib/python3.10/dist-packages (from ipython->kfactory[git,ipy]<0.12,>=0.9.1->gdsfactory<7.17,>=7.16.0->gf180) (0.19.2)\n", @@ -427,7 +467,7 @@ "Requirement already satisfied: matplotlib-inline in /usr/local/lib/python3.10/dist-packages (from ipython->kfactory[git,ipy]<0.12,>=0.9.1->gdsfactory<7.17,>=7.16.0->gf180) (0.1.7)\n", "Requirement already satisfied: pexpect>4.3 in /usr/local/lib/python3.10/dist-packages (from ipython->kfactory[git,ipy]<0.12,>=0.9.1->gdsfactory<7.17,>=7.16.0->gf180) (4.9.0)\n", "Requirement already satisfied: mdurl~=0.1 in /usr/local/lib/python3.10/dist-packages (from markdown-it-py>=2.2.0->rich<14->gdsfactory<7.17,>=7.16.0->gf180) (0.1.2)\n", - "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.7->matplotlib<4->gdsfactory<7.17,>=7.16.0->gf180) (1.16.0)\n", + "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.7->matplotlib<4->gdsfactory<7.17,>=7.16.0->gf180) (1.17.0)\n", "Requirement already satisfied: notebook>=4.4.1 in /usr/local/lib/python3.10/dist-packages (from widgetsnbextension~=3.6.0->ipywidgets->gdsfactory<7.17,>=7.16.0->gf180) (6.5.5)\n", "Requirement already satisfied: gitdb<5,>=4.0.1 in /usr/local/lib/python3.10/dist-packages (from gitpython->kfactory[git,ipy]<0.12,>=0.9.1->gdsfactory<7.17,>=7.16.0->gf180) (4.0.11)\n", "Requirement already satisfied: jupyter-core>=4.6.0 in /usr/local/lib/python3.10/dist-packages (from jupyter-client->ipykernel->gdsfactory<7.17,>=7.16.0->gf180) (5.7.2)\n", @@ -435,9 +475,9 @@ "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->kfactory<0.12,>=0.9.1->kfactory[git,ipy]<0.12,>=0.9.1->gdsfactory<7.17,>=7.16.0->gf180) (3.4.0)\n", "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->kfactory<0.12,>=0.9.1->kfactory[git,ipy]<0.12,>=0.9.1->gdsfactory<7.17,>=7.16.0->gf180) (3.10)\n", "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->kfactory<0.12,>=0.9.1->kfactory[git,ipy]<0.12,>=0.9.1->gdsfactory<7.17,>=7.16.0->gf180) (2.2.3)\n", - "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->kfactory<0.12,>=0.9.1->kfactory[git,ipy]<0.12,>=0.9.1->gdsfactory<7.17,>=7.16.0->gf180) (2024.8.30)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->kfactory<0.12,>=0.9.1->kfactory[git,ipy]<0.12,>=0.9.1->gdsfactory<7.17,>=7.16.0->gf180) (2024.12.14)\n", "Requirement already satisfied: ruamel.yaml.clib>=0.2.7 in /usr/local/lib/python3.10/dist-packages (from ruamel.yaml->kfactory<0.12,>=0.9.1->kfactory[git,ipy]<0.12,>=0.9.1->gdsfactory<7.17,>=7.16.0->gf180) (0.2.12)\n", - "\u001b[33mWARNING: typer 0.13.0 does not provide the extra 'all'\u001b[0m\u001b[33m\n", + "\u001b[33mWARNING: typer 0.15.1 does not provide the extra 'all'\u001b[0m\u001b[33m\n", "\u001b[0mRequirement already satisfied: smmap<6,>=3.0.1 in /usr/local/lib/python3.10/dist-packages (from gitdb<5,>=4.0.1->gitpython->kfactory[git,ipy]<0.12,>=0.9.1->gdsfactory<7.17,>=7.16.0->gf180) (5.0.1)\n", "Requirement already satisfied: parso<0.9.0,>=0.8.4 in /usr/local/lib/python3.10/dist-packages (from jedi>=0.16->ipython->kfactory[git,ipy]<0.12,>=0.9.1->gdsfactory<7.17,>=7.16.0->gf180) (0.8.4)\n", "Requirement already satisfied: platformdirs>=2.5 in /usr/local/lib/python3.10/dist-packages (from jupyter-core>=4.6.0->jupyter-client->ipykernel->gdsfactory<7.17,>=7.16.0->gf180) (4.3.6)\n", @@ -447,7 +487,7 @@ "Requirement already satisfied: nest-asyncio>=1.5 in /usr/local/lib/python3.10/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->gdsfactory<7.17,>=7.16.0->gf180) (1.6.0)\n", "Requirement already satisfied: Send2Trash>=1.8.0 in /usr/local/lib/python3.10/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->gdsfactory<7.17,>=7.16.0->gf180) (1.8.3)\n", "Requirement already satisfied: terminado>=0.8.3 in /usr/local/lib/python3.10/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->gdsfactory<7.17,>=7.16.0->gf180) (0.18.1)\n", - "Requirement already satisfied: prometheus-client in /usr/local/lib/python3.10/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->gdsfactory<7.17,>=7.16.0->gf180) (0.21.0)\n", + "Requirement already satisfied: prometheus-client in /usr/local/lib/python3.10/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->gdsfactory<7.17,>=7.16.0->gf180) (0.21.1)\n", "Requirement already satisfied: nbclassic>=0.4.7 in /usr/local/lib/python3.10/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->gdsfactory<7.17,>=7.16.0->gf180) (1.1.0)\n", "Requirement already satisfied: ptyprocess>=0.5 in /usr/local/lib/python3.10/dist-packages (from pexpect>4.3->ipython->kfactory[git,ipy]<0.12,>=0.9.1->gdsfactory<7.17,>=7.16.0->gf180) (0.7.0)\n", "Requirement already satisfied: notebook-shim>=0.2.3 in /usr/local/lib/python3.10/dist-packages (from nbclassic>=0.4.7->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->gdsfactory<7.17,>=7.16.0->gf180) (0.2.4)\n", @@ -456,17 +496,17 @@ "Requirement already satisfied: defusedxml in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->gdsfactory<7.17,>=7.16.0->gf180) (0.7.1)\n", "Requirement already satisfied: jupyterlab-pygments in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->gdsfactory<7.17,>=7.16.0->gf180) (0.3.0)\n", "Requirement already satisfied: mistune<4,>=2.0.3 in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->gdsfactory<7.17,>=7.16.0->gf180) (3.0.2)\n", - "Requirement already satisfied: nbclient>=0.5.0 in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->gdsfactory<7.17,>=7.16.0->gf180) (0.10.0)\n", + "Requirement already satisfied: nbclient>=0.5.0 in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->gdsfactory<7.17,>=7.16.0->gf180) (0.10.1)\n", "Requirement already satisfied: pandocfilters>=1.4.1 in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->gdsfactory<7.17,>=7.16.0->gf180) (1.5.1)\n", "Requirement already satisfied: tinycss2 in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->gdsfactory<7.17,>=7.16.0->gf180) (1.4.0)\n", - "Requirement already satisfied: fastjsonschema>=2.15 in /usr/local/lib/python3.10/dist-packages (from nbformat->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->gdsfactory<7.17,>=7.16.0->gf180) (2.20.0)\n", + "Requirement already satisfied: fastjsonschema>=2.15 in /usr/local/lib/python3.10/dist-packages (from nbformat->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->gdsfactory<7.17,>=7.16.0->gf180) (2.21.1)\n", "Requirement already satisfied: jsonschema>=2.6 in /usr/local/lib/python3.10/dist-packages (from nbformat->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->gdsfactory<7.17,>=7.16.0->gf180) (4.23.0)\n", "Requirement already satisfied: argon2-cffi-bindings in /usr/local/lib/python3.10/dist-packages (from argon2-cffi->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->gdsfactory<7.17,>=7.16.0->gf180) (21.2.0)\n", "Requirement already satisfied: webencodings in /usr/local/lib/python3.10/dist-packages (from bleach!=5.0.0->nbconvert>=5->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->gdsfactory<7.17,>=7.16.0->gf180) (0.5.1)\n", - "Requirement already satisfied: attrs>=22.2.0 in /usr/local/lib/python3.10/dist-packages (from jsonschema>=2.6->nbformat->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->gdsfactory<7.17,>=7.16.0->gf180) (24.2.0)\n", + "Requirement already satisfied: attrs>=22.2.0 in /usr/local/lib/python3.10/dist-packages (from jsonschema>=2.6->nbformat->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->gdsfactory<7.17,>=7.16.0->gf180) (24.3.0)\n", "Requirement already satisfied: jsonschema-specifications>=2023.03.6 in /usr/local/lib/python3.10/dist-packages (from jsonschema>=2.6->nbformat->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->gdsfactory<7.17,>=7.16.0->gf180) (2024.10.1)\n", "Requirement already satisfied: referencing>=0.28.4 in /usr/local/lib/python3.10/dist-packages (from jsonschema>=2.6->nbformat->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->gdsfactory<7.17,>=7.16.0->gf180) (0.35.1)\n", - "Requirement already satisfied: rpds-py>=0.7.1 in /usr/local/lib/python3.10/dist-packages (from jsonschema>=2.6->nbformat->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->gdsfactory<7.17,>=7.16.0->gf180) (0.21.0)\n", + "Requirement already satisfied: rpds-py>=0.7.1 in /usr/local/lib/python3.10/dist-packages (from jsonschema>=2.6->nbformat->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->gdsfactory<7.17,>=7.16.0->gf180) (0.22.3)\n", "Requirement already satisfied: jupyter-server<3,>=1.8 in /usr/local/lib/python3.10/dist-packages (from notebook-shim>=0.2.3->nbclassic>=0.4.7->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->gdsfactory<7.17,>=7.16.0->gf180) (1.24.0)\n", "Requirement already satisfied: cffi>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from argon2-cffi-bindings->argon2-cffi->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->gdsfactory<7.17,>=7.16.0->gf180) (1.17.1)\n", "Requirement already satisfied: soupsieve>1.2 in /usr/local/lib/python3.10/dist-packages (from beautifulsoup4->nbconvert>=5->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->gdsfactory<7.17,>=7.16.0->gf180) (2.6)\n", @@ -476,35 +516,35 @@ "Requirement already satisfied: sniffio>=1.1 in /usr/local/lib/python3.10/dist-packages (from anyio<4,>=3.1.0->jupyter-server<3,>=1.8->notebook-shim>=0.2.3->nbclassic>=0.4.7->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->gdsfactory<7.17,>=7.16.0->gf180) (1.3.1)\n", "Requirement already satisfied: exceptiongroup in /usr/local/lib/python3.10/dist-packages (from anyio<4,>=3.1.0->jupyter-server<3,>=1.8->notebook-shim>=0.2.3->nbclassic>=0.4.7->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->gdsfactory<7.17,>=7.16.0->gf180) (1.2.2)\n", "Downloading gf180-0.1.0-py3-none-any.whl (135 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m135.6/135.6 kB\u001b[0m \u001b[31m7.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m135.6/135.6 kB\u001b[0m \u001b[31m11.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hDownloading PrettyPrintTree-2.0.1-py3-none-any.whl (14 kB)\n", "Downloading svgutils-0.3.4-py3-none-any.whl (10 kB)\n", "Downloading gdsfactory-7.16.0-py3-none-any.whl (834 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m834.2/834.2 kB\u001b[0m \u001b[31m24.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hDownloading cmd2-2.5.7-py3-none-any.whl (152 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m152.0/152.0 kB\u001b[0m \u001b[31m9.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m834.2/834.2 kB\u001b[0m \u001b[31m36.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading cmd2-2.5.8-py3-none-any.whl (152 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m152.9/152.9 kB\u001b[0m \u001b[31m12.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hDownloading colorama-0.4.6-py2.py3-none-any.whl (25 kB)\n", "Downloading gdstk-0.9.58-cp310-cp310-manylinux_2_28_x86_64.whl (533 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m534.0/534.0 kB\u001b[0m \u001b[31m29.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m534.0/534.0 kB\u001b[0m \u001b[31m30.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hDownloading kfactory-0.11.4-py3-none-any.whl (114 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m114.7/114.7 kB\u001b[0m \u001b[31m2.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m114.7/114.7 kB\u001b[0m \u001b[31m9.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hDownloading pydantic-2.6.4-py3-none-any.whl (394 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m394.9/394.9 kB\u001b[0m \u001b[31m16.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m394.9/394.9 kB\u001b[0m \u001b[31m25.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hDownloading pydantic_core-2.16.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.2/2.2 MB\u001b[0m \u001b[31m23.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.2/2.2 MB\u001b[0m \u001b[31m52.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hDownloading pydantic_settings-2.2.1-py3-none-any.whl (13 kB)\n", - "Downloading pyglet-1.5.29-py3-none-any.whl (1.1 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.1/1.1 MB\u001b[0m \u001b[31m17.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "Downloading pyglet-1.5.31-py3-none-any.whl (1.1 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.1/1.1 MB\u001b[0m \u001b[31m31.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hDownloading trimesh-4.1.8-py3-none-any.whl (690 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m690.6/690.6 kB\u001b[0m \u001b[31m21.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m690.6/690.6 kB\u001b[0m \u001b[31m43.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hDownloading ipycytoscape-1.3.3-py2.py3-none-any.whl (3.6 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.6/3.6 MB\u001b[0m \u001b[31m17.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hDownloading ipympl-0.9.4-py3-none-any.whl (516 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m516.3/516.3 kB\u001b[0m \u001b[31m19.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.6/3.6 MB\u001b[0m \u001b[31m82.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading ipympl-0.9.6-py3-none-any.whl (515 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m515.7/515.7 kB\u001b[0m \u001b[31m35.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hDownloading spectate-1.0.1-py2.py3-none-any.whl (11 kB)\n", "Building wheels for collected packages: flatdict\n", " Building wheel for flatdict (setup.py) ... \u001b[?25l\u001b[?25hdone\n", - " Created wheel for flatdict: filename=flatdict-4.0.1-py3-none-any.whl size=6928 sha256=7eace5c70f837ebb1492a776f963ae1e48d2f3fae66f353deb82bb4f4edbb8d8\n", + " Created wheel for flatdict: filename=flatdict-4.0.1-py3-none-any.whl size=6928 sha256=b99c0a37f24eaf1970d6fcc8425f8567c5a69259d43008524801cabf40a65214\n", " Stored in directory: /root/.cache/pip/wheels/71/12/62/88c5bf37619c2d7481eedb8abd0dde6674e88dce45a7805a6f\n", "Successfully built flatdict\n", "Installing collected packages: pyglet, flatdict, trimesh, svgutils, spectate, pydantic-core, gdstk, colorama, cmd2, pydantic, prettyprinttree, pydantic-settings, kfactory, ipympl, ipycytoscape, gdsfactory, gf180\n", @@ -521,9 +561,9 @@ " Uninstalling pydantic-2.8.2:\n", " Successfully uninstalled pydantic-2.8.2\n", " Attempting uninstall: pydantic-settings\n", - " Found existing installation: pydantic-settings 2.6.1\n", - " Uninstalling pydantic-settings-2.6.1:\n", - " Successfully uninstalled pydantic-settings-2.6.1\n", + " Found existing installation: pydantic-settings 2.7.1\n", + " Uninstalling pydantic-settings-2.7.1:\n", + " Successfully uninstalled pydantic-settings-2.7.1\n", " Attempting uninstall: kfactory\n", " Found existing installation: kfactory 0.18.4\n", " Uninstalling kfactory-0.18.4:\n", @@ -534,23 +574,23 @@ " Successfully uninstalled gdsfactory-8.5.6\n", "\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n", "albumentations 1.4.20 requires pydantic>=2.7.0, but you have pydantic 2.6.4 which is incompatible.\n", - "langchain 0.3.7 requires pydantic<3.0.0,>=2.7.4, but you have pydantic 2.6.4 which is incompatible.\n", + "langchain 0.3.12 requires pydantic<3.0.0,>=2.7.4, but you have pydantic 2.6.4 which is incompatible.\n", "sky130 0.12.2 requires gdsfactory~=8.5.2, but you have gdsfactory 7.16.0 which is incompatible.\u001b[0m\u001b[31m\n", - "\u001b[0mSuccessfully installed cmd2-2.5.7 colorama-0.4.6 flatdict-4.0.1 gdsfactory-7.16.0 gdstk-0.9.58 gf180-0.1.0 ipycytoscape-1.3.3 ipympl-0.9.4 kfactory-0.11.4 prettyprinttree-2.0.1 pydantic-2.6.4 pydantic-core-2.16.3 pydantic-settings-2.2.1 pyglet-1.5.29 spectate-1.0.1 svgutils-0.3.4 trimesh-4.1.8\n", + "\u001b[0mSuccessfully installed cmd2-2.5.8 colorama-0.4.6 flatdict-4.0.1 gdsfactory-7.16.0 gdstk-0.9.58 gf180-0.1.0 ipycytoscape-1.3.3 ipympl-0.9.6 kfactory-0.11.4 prettyprinttree-2.0.1 pydantic-2.6.4 pydantic-core-2.16.3 pydantic-settings-2.2.1 pyglet-1.5.31 spectate-1.0.1 svgutils-0.3.4 trimesh-4.1.8\n", "Collecting gdsfactory==7.7.0\n", " Using cached gdsfactory-7.7.0-py3-none-any.whl.metadata (10 kB)\n", "Requirement already satisfied: flatdict in /usr/local/lib/python3.10/dist-packages (from gdsfactory==7.7.0) (4.0.1)\n", "Requirement already satisfied: gdstk<1 in /usr/local/lib/python3.10/dist-packages (from gdsfactory==7.7.0) (0.9.58)\n", "Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from gdsfactory==7.7.0) (3.1.4)\n", - "Requirement already satisfied: loguru<1 in /usr/local/lib/python3.10/dist-packages (from gdsfactory==7.7.0) (0.7.2)\n", + "Requirement already satisfied: loguru<1 in /usr/local/lib/python3.10/dist-packages (from gdsfactory==7.7.0) (0.7.3)\n", "Requirement already satisfied: matplotlib in /usr/local/lib/python3.10/dist-packages (from gdsfactory==7.7.0) (3.8.0)\n", "Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from gdsfactory==7.7.0) (1.26.4)\n", "Requirement already satisfied: omegaconf<3 in /usr/local/lib/python3.10/dist-packages (from gdsfactory==7.7.0) (2.3.0)\n", - "Requirement already satisfied: orjson in /usr/local/lib/python3.10/dist-packages (from gdsfactory==7.7.0) (3.10.11)\n", + "Requirement already satisfied: orjson in /usr/local/lib/python3.10/dist-packages (from gdsfactory==7.7.0) (3.10.12)\n", "Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from gdsfactory==7.7.0) (2.2.2)\n", "Requirement already satisfied: pydantic<3,>=2 in /usr/local/lib/python3.10/dist-packages (from gdsfactory==7.7.0) (2.6.4)\n", "Requirement already satisfied: pydantic-settings in /usr/local/lib/python3.10/dist-packages (from gdsfactory==7.7.0) (2.2.1)\n", - "Requirement already satisfied: pydantic-extra-types in /usr/local/lib/python3.10/dist-packages (from gdsfactory==7.7.0) (2.10.0)\n", + "Requirement already satisfied: pydantic-extra-types in /usr/local/lib/python3.10/dist-packages (from gdsfactory==7.7.0) (2.10.1)\n", "Requirement already satisfied: pyyaml in /usr/local/lib/python3.10/dist-packages (from gdsfactory==7.7.0) (6.0.2)\n", "Requirement already satisfied: qrcode in /usr/local/lib/python3.10/dist-packages (from gdsfactory==7.7.0) (8.0)\n", "Requirement already satisfied: rectpack in /usr/local/lib/python3.10/dist-packages (from gdsfactory==7.7.0) (0.2.2)\n", @@ -558,9 +598,9 @@ "Requirement already satisfied: scipy in /usr/local/lib/python3.10/dist-packages (from gdsfactory==7.7.0) (1.13.1)\n", "Requirement already satisfied: shapely<3 in /usr/local/lib/python3.10/dist-packages (from gdsfactory==7.7.0) (2.0.6)\n", "Requirement already satisfied: toolz in /usr/local/lib/python3.10/dist-packages (from gdsfactory==7.7.0) (0.12.1)\n", - "Requirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (from gdsfactory==7.7.0) (4.66.6)\n", - "Requirement already satisfied: types-PyYAML in /usr/local/lib/python3.10/dist-packages (from gdsfactory==7.7.0) (6.0.12.20240917)\n", - "Requirement already satisfied: typer in /usr/local/lib/python3.10/dist-packages (from gdsfactory==7.7.0) (0.13.0)\n", + "Requirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (from gdsfactory==7.7.0) (4.67.1)\n", + "Requirement already satisfied: types-PyYAML in /usr/local/lib/python3.10/dist-packages (from gdsfactory==7.7.0) (6.0.12.20241230)\n", + "Requirement already satisfied: typer in /usr/local/lib/python3.10/dist-packages (from gdsfactory==7.7.0) (0.15.1)\n", "Requirement already satisfied: watchdog in /usr/local/lib/python3.10/dist-packages (from gdsfactory==7.7.0) (4.0.2)\n", "Requirement already satisfied: typing_extensions in /usr/local/lib/python3.10/dist-packages (from gdstk<1->gdsfactory==7.7.0) (4.12.2)\n", "Requirement already satisfied: antlr4-python3-runtime==4.9.* in /usr/local/lib/python3.10/dist-packages (from omegaconf<3->gdsfactory==7.7.0) (4.9.3)\n", @@ -569,7 +609,7 @@ "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->gdsfactory==7.7.0) (3.0.2)\n", "Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->gdsfactory==7.7.0) (1.3.1)\n", "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib->gdsfactory==7.7.0) (0.12.1)\n", - "Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib->gdsfactory==7.7.0) (4.55.0)\n", + "Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib->gdsfactory==7.7.0) (4.55.3)\n", "Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->gdsfactory==7.7.0) (1.4.7)\n", "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib->gdsfactory==7.7.0) (24.2)\n", "Requirement already satisfied: pillow>=6.2.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib->gdsfactory==7.7.0) (11.0.0)\n", @@ -583,9 +623,9 @@ "Requirement already satisfied: click>=8.0.0 in /usr/local/lib/python3.10/dist-packages (from typer->gdsfactory==7.7.0) (8.1.7)\n", "Requirement already satisfied: shellingham>=1.3.0 in /usr/local/lib/python3.10/dist-packages (from typer->gdsfactory==7.7.0) (1.5.4)\n", "Requirement already satisfied: mdurl~=0.1 in /usr/local/lib/python3.10/dist-packages (from markdown-it-py>=2.2.0->rich->gdsfactory==7.7.0) (0.1.2)\n", - "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.7->matplotlib->gdsfactory==7.7.0) (1.16.0)\n", + "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.7->matplotlib->gdsfactory==7.7.0) (1.17.0)\n", "Downloading gdsfactory-7.7.0-py3-none-any.whl (801 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m801.2/801.2 kB\u001b[0m \u001b[31m4.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m801.2/801.2 kB\u001b[0m \u001b[31m14.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hInstalling collected packages: gdsfactory\n", " Attempting uninstall: gdsfactory\n", " Found existing installation: gdsfactory 7.16.0\n", @@ -604,25 +644,33 @@ "litex-hub/noarch (.. ⣾ \n", "main/linux-64 (che.. ⣾ \n", "main/noarch (check.. ⣾ \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 0.2s\n", - "litex-hub/noarch (.. ⣾ \u001b[2K\u001b[1A\u001b[2K\u001b[0G\u001b[?25h\u001b[?25l\u001b[2K\u001b[0G[+] 0.0s\n", + "litex-hub/linux-64.. ⣾ \n", + "litex-hub/noarch (.. ⣾ \n", + "main/linux-64 (che.. ⣾ \n", + "main/noarch (check.. ⣾ \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 0.3s\n", + "litex-hub/linux-64.. ⣾ \n", + "main/linux-64 (che.. ⣾ \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 0.4s\n", + "litex-hub/linux-64.. ⣾ \u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 0.5s\n", + "litex-hub/linux-64.. ⣾ \u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 0.6s\n", + "litex-hub/linux-64.. ⣾ \u001b[2K\u001b[1A\u001b[2K\u001b[0G\u001b[?25h\u001b[?25l\u001b[2K\u001b[0G[+] 0.0s\n", "\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 0.1s\n", - "\u001b[2K\u001b[1A\u001b[2K\u001b[0Glitex-hub/noarch 19.5kB @ 92.6kB/s 0.0s\n", - "[+] 0.2s\n", - "litex-hub/linux-64 | \n", - "main/linux-64 | \n", - "main/noarch | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0Gmain/noarch \n", + "main/linux-64 | \n", + "main/noarch | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 0.2s\n", + "main/linux-64 | \n", + "main/noarch | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0Glitex-hub/noarch 19.5kB @ 54.0kB/s 0.1s\n", "[+] 0.3s\n", "litex-hub/linux-64 | \n", - "main/linux-64 5%\u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 0.4s\n", - "litex-hub/linux-64 | \n", - "main/linux-64 42%\u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0Gmain/linux-64 \n", + "main/linux-64 | \n", + "main/noarch | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 0.4s\n", + "litex-hub/linux-64 3%\n", + "main/linux-64 2%\n", + "main/noarch 15%\u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0Gmain/noarch \n", "[+] 0.5s\n", - "litex-hub/linux-64 | \u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 0.6s\n", - "litex-hub/linux-64 | \u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 0.7s\n", - "litex-hub/linux-64 | \u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 0.8s\n", - "litex-hub/linux-64 | \u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 0.9s\n", - "litex-hub/linux-64 | \u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 1.0s\n", - "litex-hub/linux-64 2%\u001b[2K\u001b[1A\u001b[2K\u001b[0Glitex-hub/linux-64 \n", + "litex-hub/linux-64 27%\n", + "main/linux-64 10%\u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0Glitex-hub/linux-64 \n", + "[+] 0.6s\n", + "main/linux-64 24%\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 0.7s\n", + "main/linux-64 82%\u001b[2K\u001b[1A\u001b[2K\u001b[0Gmain/linux-64 \n", "\u001b[?25h\n", "\n", "Transaction\n", @@ -647,7 +695,7 @@ " \u001b[32m+ certifi \u001b[0m 2022.12.7 py37h06a4308_0 main 155kB\n", " \u001b[32m+ curl \u001b[0m 8.2.1 h37d81fd_0 main 89kB\n", " \u001b[32m+ dbus \u001b[0m 1.13.18 hb2f20db_0 main 600kB\n", - " \u001b[32m+ expat \u001b[0m 2.6.3 h6a678d5_0 main 201kB\n", + " \u001b[32m+ expat \u001b[0m 2.6.4 h6a678d5_0 main 201kB\n", " \u001b[32m+ fontconfig \u001b[0m 2.13.0 h9420a91_0 main 298kB\n", " \u001b[32m+ freetype \u001b[0m 2.12.1 h4a9f257_0 main 972kB\n", " \u001b[32m+ glib \u001b[0m 2.78.4 h6a678d5_0 main 499kB\n", @@ -714,200 +762,200 @@ "Extracting 0%\u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 0.4s\n", "Downloading (5) 0%\n", "Extracting 0%\u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 0.5s\n", - "Downloading (5) 1%\n", + "Downloading (5) 0%\n", "Extracting 0%\u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 0.6s\n", - "Downloading (5) 1%\n", + "Downloading (5) 0%\n", "Extracting 0%\u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 0.7s\n", - "Downloading (5) 11%\n", + "Downloading (5) 1%\n", "Extracting 0%\u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 0.8s\n", - "Downloading (5) 22%\n", - "Extracting 0%\u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0Glibgcc-ng 8.9MB @ 7.5MB/s 0.7s\n", - "[+] 0.9s\n", - "Downloading (5) 37%\n", - "Extracting (1) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 1.0s\n", - "Downloading (5) 43%\n", - "Extracting (1) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 1.1s\n", - "Downloading (5) 48%\n", - "Extracting (1) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0Gklayout 26.7MB @ 23.4MB/s 1.1s\n", - "[+] 1.2s\n", - "Downloading (5) 51%\n", - "Extracting (1) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0Gicu 23.8MB @ 18.1MB/s 1.2s\n", - "[+] 1.3s\n", - "Downloading (5) 56%\n", - "Extracting (1) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 1.4s\n", - "Downloading (5) 62%\n", - "Extracting (1) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 1.5s\n", - "Downloading (5) 63%\n", + "Downloading (5) 1%\n", + "Extracting 0%\u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 0.9s\n", + "Downloading (5) 1%\n", + "Extracting 0%\u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 1.0s\n", + "Downloading (5) 3%\n", + "Extracting 0%\u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 1.1s\n", + "Downloading (5) 8%\n", + "Extracting 0%\u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 1.2s\n", + "Downloading (5) 18%\n", + "Extracting 0%\u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 1.3s\n", + "Downloading (5) 25%\n", + "Extracting 0%\u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0Glibgcc-ng 8.9MB @ 5.5MB/s 1.3s\n", + "[+] 1.4s\n", + "Downloading (5) 35%\n", + "Extracting 0%\u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 1.5s\n", + "Downloading (5) 45%\n", "Extracting (1) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 1.6s\n", - "Downloading (5) 67%\n", - "Extracting (2) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0Glibstdcxx-ng 6.4MB @ 7.9MB/s 0.8s\n", + "Downloading (5) 53%\n", + "Extracting (1) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0Gklayout 26.7MB @ 15.4MB/s 1.6s\n", + "icu 23.8MB @ 14.6MB/s 1.6s\n", "[+] 1.7s\n", + "Downloading (5) 57%\n", + "Extracting (1) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 1.8s\n", + "Downloading (5) 64%\n", + "Extracting (1) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 1.9s\n", + "Downloading (5) 68%\n", + "Extracting (1) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 2.0s\n", "Downloading (5) 71%\n", - "Extracting (3) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 1.8s\n", - "Downloading (5) 77%\n", - "Extracting (4) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 1.9s\n", - "Downloading (5) 83%\n", - "Extracting (4) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0Gruby 5.3MB @ 6.4MB/s 0.8s\n", - "python 48.7MB @ 24.5MB/s 1.9s\n", - "[+] 2.0s\n", - "Downloading (5) 86%\n", - "Extracting (4) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 2.1s\n", - "Downloading (5) 89%\n", - "Extracting (5) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 2.2s\n", - "Downloading (5) 92%\n", - "Extracting (5) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0Gpip 2.8MB @ 10.3MB/s 0.2s\n", + "Extracting (1) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 2.1s\n", + "Downloading (5) 75%\n", + "Extracting (2) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 2.2s\n", + "Downloading (5) 78%\n", + "Extracting (3) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0Gpython 48.7MB @ 22.0MB/s 2.2s\n", "[+] 2.3s\n", - "Downloading (5) 93%\n", - "Extracting (6) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0Gtk 3.6MB @ 4.5MB/s 0.7s\n", - "qt 90.0MB @ 37.6MB/s 2.3s\n", + "Downloading (5) 82%\n", + "Extracting (3) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0Glibstdcxx-ng 6.4MB @ 6.3MB/s 1.0s\n", "[+] 2.4s\n", + "Downloading (5) 85%\n", + "Extracting (3) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 2.5s\n", + "Downloading (5) 87%\n", + "Extracting (4) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 2.6s\n", + "Downloading (5) 90%\n", + "Extracting (4) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0Gruby 5.3MB @ 4.5MB/s 1.0s\n", + "openssl 4.0MB @ 3.8MB/s 1.1s\n", + "[+] 2.7s\n", + "Downloading (5) 91%\n", + "Extracting (4) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 2.8s\n", + "Downloading (5) 94%\n", + "Extracting (6) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0Gpcre2 3.3MB @ 4.6MB/s 0.5s\n", + "[+] 2.9s\n", "Downloading (5) 95%\n", - "Extracting (6) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 2.5s\n", - "Downloading (5) 96%\n", - "Extracting (7) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0Gpcre2 3.3MB @ 4.1MB/s 0.6s\n", - "[+] 2.6s\n", - "Downloading (5) 96%\n", - "Extracting (7) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 2.7s\n", + "Extracting (6) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0Gqt 90.0MB @ 30.0MB/s 2.9s\n", + "[+] 3.0s\n", + "Downloading (5) 95%\n", + "Extracting (7) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 3.1s\n", "Downloading (5) 96%\n", - "Extracting (8) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0Gopenssl 4.0MB @ 2.3MB/s 1.5s\n", - "[+] 2.8s\n", + "Extracting (8) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 3.2s\n", "Downloading (5) 97%\n", - "Extracting (8) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0Ggst-plugins-base 2.3MB @ 2.1MB/s 0.6s\n", - "sqlite 1.7MB @ 2.3MB/s 0.6s\n", - "[+] 2.9s\n", + "Extracting (8) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0Gtk 3.6MB @ 3.4MB/s 1.0s\n", + "[+] 3.3s\n", + "Downloading (5) 97%\n", + "Extracting (9) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0Ggstreamer 1.7MB @ 1.1MB/s 0.4s\n", + "[+] 3.4s\n", "Downloading (5) 98%\n", - "Extracting (9) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0Ggstreamer 1.7MB @ 3.0MB/s 0.6s\n", - "setuptools 1.4MB @ 6.6MB/s 0.2s\n", - "[+] 3.0s\n", + "Extracting (9) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0Gpip 2.8MB @ 2.2MB/s 0.8s\n", + "[+] 3.5s\n", "Downloading (5) 98%\n", - "Extracting (11) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0Glibglib 1.6MB @ 2.8MB/s 0.5s\n", - "[+] 3.1s\n", + "Extracting (10) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0Ggst-plugins-base 2.3MB @ 2.7MB/s 0.8s\n", + "[+] 3.6s\n", + "Downloading (5) 98%\n", + "Extracting (12) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0Gsqlite 1.7MB @ 1.9MB/s 0.8s\n", + "[+] 3.7s\n", + "Downloading (5) 97%\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 3.8s\n", + "Downloading (5) 97%\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 3.9s\n", "Downloading (5) 98%\n", - "Extracting (14) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 3.2s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0Glibiconv 1.4MB @ ??.?MB/s 0.4s\n", + "libglib 1.6MB @ 1.3MB/s 0.8s\n", + "[+] 4.0s\n", "Downloading (5) 98%\n", - "Extracting (15) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 3.3s\n", + "Extracting (14) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 4.1s\n", "Downloading (5) 98%\n", - "Extracting (15) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0Glibiconv 1.4MB @ 1.9MB/s 0.5s\n", - "[+] 3.4s\n", - "Downloading (4) 99%\n", - "Extracting (15) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0Glibgit2 1.2MB @ 2.4MB/s 0.5s\n", - "libxml2 1.4MB @ 1.5MB/s 0.5s\n", - "krb5 1.4MB @ 1.4MB/s 0.6s\n", - "[+] 3.5s\n", + "Extracting (15) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0Gsetuptools 1.4MB @ 972.9kB/s 0.8s\n", + "[+] 4.2s\n", + "Downloading (5) 98%\n", + "Extracting (15) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 4.3s\n", + "Downloading (5) 98%\n", + "Extracting (16) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0Gncurses 1.2MB @ 975.7kB/s 0.4s\n", + "krb5 1.4MB @ 1.2MB/s 0.9s\n", + "[+] 4.4s\n", + "Downloading (5) 98%\n", + "Extracting (17) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 4.5s\n", + "Downloading (5) 98%\n", + "Extracting (18) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 4.6s\n", "Downloading (5) 99%\n", - "Extracting (19) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 3.6s\n", + "Extracting (18) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0Glibgit2 1.2MB @ 1.2MB/s 0.8s\n", + "libxml2 1.4MB @ 782.5kB/s 1.0s\n", + "gmp 822.4kB @ ??.?MB/s 0.4s\n", + "[+] 4.7s\n", "Downloading (5) 99%\n", - "Extracting (19) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0Gncurses 1.2MB @ 646.4kB/s 0.6s\n", - "[+] 3.7s\n", + "Extracting (20) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 4.8s\n", "Downloading (5) 99%\n", - "Extracting (19) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 3.8s\n", + "Extracting (21) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 4.9s\n", "Downloading (5) 99%\n", - "Extracting (20) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0Gfreetype 972.0kB @ 1.4MB/s 0.4s\n", - "ld_impl_linux-64 723.1kB @ 1.0MB/s 0.4s\n", - "gmp 822.4kB @ 1.1MB/s 0.5s\n", - "xz 716.9kB @ 644.2kB/s 0.4s\n", - "[+] 3.9s\n", + "Extracting (22) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 5.0s\n", "Downloading (5) 99%\n", - "Extracting (22) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 4.0s\n", + "Extracting (22) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0Gfreetype 972.0kB @ 969.6kB/s 0.8s\n", + "[+] 5.1s\n", "Downloading (5) 99%\n", - "Extracting (24) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0Glibxcb 623.5kB @ 943.4kB/s 0.3s\n", - "[+] 4.1s\n", + "Extracting (23) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0Gld_impl_linux-64 723.1kB @ 809.7kB/s 0.7s\n", + "[+] 5.2s\n", "Downloading (5) 99%\n", - "Extracting (24) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 4.2s\n", + "Extracting (24) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 5.3s\n", + "Downloading (5) 100%\n", + "Extracting (24) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0Gxz 716.9kB @ 597.6kB/s 0.7s\n", + "libxcb 623.5kB @ 637.7kB/s 0.6s\n", + "libnghttp2 716.6kB @ 598.3kB/s 0.7s\n", + "[+] 5.4s\n", "Downloading (5) 99%\n", - "Extracting (25) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0Glibnghttp2 716.6kB @ 513.2kB/s 0.5s\n", - "dbus 600.2kB @ 1.0MB/s 0.4s\n", - "[+] 4.3s\n", + "Extracting (27) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0Gdbus 600.2kB @ 472.3kB/s 0.4s\n", + "libgomp 573.2kB @ ??.?MB/s 0.4s\n", + "[+] 5.5s\n", "Downloading (5) 100%\n", - "Extracting (27) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0Gglib 499.0kB @ 907.0kB/s 0.5s\n", - "[+] 4.4s\n", + "Extracting (29) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 5.6s\n", "Downloading (5) 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0Glibgomp 573.2kB @ 808.8kB/s 0.5s\n", - "[+] 4.5s\n", + "Extracting (29) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0Greadline 467.7kB @ 542.4kB/s 0.3s\n", + "[+] 5.7s\n", "Downloading (5) 100%\n", - "Extracting (30) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 4.6s\n", + "Extracting (29) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0Gbzip2 427.5kB @ ??.?MB/s 0.4s\n", + "libcurl 386.4kB @ ??.?MB/s 0.4s\n", + "[+] 5.8s\n", "Downloading (5) 100%\n", - "Extracting (30) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0Gbzip2 427.5kB @ 910.9kB/s 0.4s\n", - "[+] 4.7s\n", + "Extracting (32) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0Gglib 499.0kB @ ??.?MB/s 0.5s\n", + "[+] 5.9s\n", "Downloading (5) 100%\n", - "Extracting (31) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0Glibcurl 386.4kB @ 329.6kB/s 0.5s\n", - "libpng 362.6kB @ 665.0kB/s 0.4s\n", - "[+] 4.8s\n", + "Extracting (33) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 6.0s\n", "Downloading (5) 100%\n", - "Extracting (32) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0Glibssh2 311.8kB @ 415.3kB/s 0.4s\n", - "[+] 4.9s\n", + "Extracting (33) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0Gfontconfig 297.6kB @ ??.?MB/s 0.3s\n", + "[+] 6.1s\n", "Downloading (5) 100%\n", - "Extracting (34) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 5.0s\n", + "Extracting (34) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0Glibpng 362.6kB @ 297.8kB/s 0.6s\n", + "jpeg 283.5kB @ ??.?MB/s 0.3s\n", + "[+] 6.2s\n", "Downloading (5) 100%\n", - "Extracting (34) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0Gfontconfig 297.6kB @ 487.0kB/s 0.4s\n", - "[+] 5.1s\n", + "Extracting (36) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0Gexpat 201.4kB @ 513.3kB/s 0.4s\n", + "[+] 6.3s\n", "Downloading (5) 100%\n", - "Extracting (35) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0Gjpeg 283.5kB @ 520.7kB/s 0.3s\n", - "[+] 5.2s\n", + "Extracting (37) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0Glibssh2 311.8kB @ 210.0kB/s 0.7s\n", + "[+] 6.4s\n", "Downloading (5) 100%\n", - "Extracting (36) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 5.3s\n", + "Extracting (37) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0Glibedit 195.8kB @ ??.?MB/s 0.4s\n", + "[+] 6.5s\n", "Downloading (5) 100%\n", - "Extracting (36) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0Gexpat 200.8kB @ 335.1kB/s 0.5s\n", - "libedit 195.8kB @ 147.4kB/s 0.5s\n", - "[+] 5.4s\n", + "Extracting (39) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 6.6s\n", "Downloading (5) 100%\n", - "Extracting (38) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0Gcertifi 155.3kB @ 375.3kB/s 0.4s\n", - "[+] 5.5s\n", + "Extracting (39) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0Glibffi 154.0kB @ 141.3kB/s 0.5s\n", + "[+] 6.7s\n", "Downloading (5) 100%\n", - "Extracting (39) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0Glibffi 154.0kB @ 182.5kB/s 0.4s\n", - "readline 467.7kB @ 121.4kB/s 1.5s\n", - "[+] 5.6s\n", + "Extracting (40) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0Gcertifi 155.3kB @ 109.4kB/s 0.7s\n", + "zlib 127.1kB @ ??.?MB/s 0.4s\n", + "ca-certificates 141.1kB @ 113.5kB/s 0.6s\n", + "[+] 6.8s\n", "Downloading (5) 100%\n", - "Extracting (41) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 5.7s\n", + "Extracting (42) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0Gc-ares 116.3kB @ ??.?MB/s 0.4s\n", + "[+] 6.9s\n", "Downloading (5) 100%\n", - "Extracting (41) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0Gzlib 127.1kB @ 349.0kB/s 0.4s\n", - "ca-certificates 141.1kB @ 46.3kB/s 0.4s\n", - "[+] 5.8s\n", + "Extracting (43) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 7.0s\n", "Downloading (5) 100%\n", - "Extracting (43) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0Gc-ares 116.3kB @ 281.7kB/s 0.4s\n", - "[+] 5.9s\n", + "Extracting (43) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0Gglib-tools 112.6kB @ ??.?MB/s 0.4s\n", + "[+] 7.1s\n", "Downloading (5) 100%\n", - "Extracting (44) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0Gglib-tools 112.6kB @ 52.7kB/s 0.4s\n", - "libev 108.9kB @ 52.7kB/s 0.4s\n", - "[+] 6.0s\n", + "Extracting (44) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0Gcurl 88.8kB @ ??.?MB/s 0.4s\n", + "wheel 58.7kB @ ??.?MB/s 0.3s\n", + "[+] 7.2s\n", "Downloading (5) 100%\n", - "Extracting (46) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0Gcurl 88.8kB @ 54.7kB/s 0.3s\n", - "[+] 6.1s\n", + "Extracting (46) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 7.3s\n", "Downloading (5) 100%\n", - "Extracting (47) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0Gyaml 87.1kB @ 219.3kB/s 0.4s\n", - "libuuid 29.2kB @ 71.3kB/s 0.2s\n", - "wheel 58.7kB @ 61.2kB/s 0.3s\n", - "[+] 6.2s\n", + "Extracting (46) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0Glibev 108.9kB @ 127.9kB/s 0.6s\n", + "libuuid 29.2kB @ ??.?MB/s 0.3s\n", + "yaml 87.1kB @ 130.3kB/s 0.6s\n", + "[+] 7.4s\n", "Downloading (2) 100%\n", - "Extracting (50) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G_openmp_mutex 20.8kB @ 70.1kB/s 0.3s\n", - "[+] 6.3s\n", + "Extracting (49) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G_openmp_mutex 20.8kB @ ??.?MB/s 0.3s\n", + "[+] 7.5s\n", "Downloading (1) 100%\n", - "Extracting (51) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G_libgcc_mutex 3.1kB @ 11.3kB/s 0.3s\n", - "[+] 6.4s\n", - "Downloading 100%\n", - "Extracting (52) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 6.5s\n", - "Downloading 100%\n", - "Extracting (52) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 6.6s\n", - "Downloading 100%\n", - "Extracting (51) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 6.7s\n", - "Downloading 100%\n", - "Extracting (51) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 6.8s\n", - "Downloading 100%\n", - "Extracting (51) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 6.9s\n", - "Downloading 100%\n", - "Extracting (51) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 7.0s\n", - "Downloading 100%\n", - "Extracting (51) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 7.1s\n", - "Downloading 100%\n", - "Extracting (51) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 7.2s\n", - "Downloading 100%\n", - "Extracting (51) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 7.3s\n", - "Downloading 100%\n", - "Extracting (51) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 7.4s\n", - "Downloading 100%\n", - "Extracting (51) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 7.5s\n", - "Downloading 100%\n", - "Extracting (51) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 7.6s\n", + "Extracting (50) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G_libgcc_mutex 3.1kB @ 7.4kB/s 0.4s\n", + "[+] 7.6s\n", "Downloading 100%\n", "Extracting (51) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 7.7s\n", "Downloading 100%\n", @@ -929,695 +977,695 @@ "Downloading 100%\n", "Extracting (51) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 8.6s\n", "Downloading 100%\n", - "Extracting (51) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 8.7s\n", + "Extracting (50) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 8.7s\n", "Downloading 100%\n", - "Extracting (51) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 8.8s\n", + "Extracting (50) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 8.8s\n", "Downloading 100%\n", - "Extracting (51) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 8.9s\n", + "Extracting (50) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 8.9s\n", "Downloading 100%\n", - "Extracting (51) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 9.0s\n", + "Extracting (50) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 9.0s\n", "Downloading 100%\n", - "Extracting (51) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 9.1s\n", + "Extracting (50) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 9.1s\n", "Downloading 100%\n", - "Extracting (51) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 9.2s\n", + "Extracting (50) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 9.2s\n", "Downloading 100%\n", - "Extracting (51) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 9.3s\n", + "Extracting (50) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 9.3s\n", "Downloading 100%\n", - "Extracting (51) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 9.4s\n", + "Extracting (50) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 9.4s\n", "Downloading 100%\n", - "Extracting (51) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 9.5s\n", + "Extracting (50) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 9.5s\n", "Downloading 100%\n", - "Extracting (51) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 9.6s\n", + "Extracting (50) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 9.6s\n", "Downloading 100%\n", - "Extracting (51) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 9.7s\n", + "Extracting (50) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 9.7s\n", "Downloading 100%\n", - "Extracting (51) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 9.8s\n", + "Extracting (50) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 9.8s\n", "Downloading 100%\n", - "Extracting (51) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 9.9s\n", + "Extracting (50) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 9.9s\n", "Downloading 100%\n", - "Extracting (51) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 10.0s\n", + "Extracting (50) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 10.0s\n", "Downloading 100%\n", - "Extracting (51) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 10.1s\n", + "Extracting (50) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 10.1s\n", "Downloading 100%\n", - "Extracting (51) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 10.2s\n", + "Extracting (50) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 10.2s\n", "Downloading 100%\n", - "Extracting (51) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 10.3s\n", + "Extracting (50) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 10.3s\n", "Downloading 100%\n", - "Extracting (51) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 10.4s\n", + "Extracting (50) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 10.4s\n", "Downloading 100%\n", - "Extracting (51) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 10.5s\n", + "Extracting (50) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 10.5s\n", "Downloading 100%\n", - "Extracting (51) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 10.6s\n", + "Extracting (50) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 10.6s\n", "Downloading 100%\n", - "Extracting (51) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 10.7s\n", + "Extracting (50) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 10.7s\n", "Downloading 100%\n", - "Extracting (51) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 10.8s\n", + "Extracting (50) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 10.8s\n", "Downloading 100%\n", - "Extracting (51) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 10.9s\n", + "Extracting (50) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 10.9s\n", "Downloading 100%\n", - "Extracting (51) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 11.0s\n", + "Extracting (50) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 11.0s\n", "Downloading 100%\n", - "Extracting (51) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 11.1s\n", + "Extracting (50) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 11.1s\n", "Downloading 100%\n", - "Extracting (51) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 11.2s\n", + "Extracting (50) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 11.2s\n", "Downloading 100%\n", - "Extracting (51) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 11.3s\n", + "Extracting (50) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 11.3s\n", "Downloading 100%\n", - "Extracting (51) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 11.4s\n", + "Extracting (50) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 11.4s\n", "Downloading 100%\n", - "Extracting (51) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 11.5s\n", + "Extracting (50) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 11.5s\n", "Downloading 100%\n", - "Extracting (51) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 11.6s\n", + "Extracting (50) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 11.6s\n", "Downloading 100%\n", - "Extracting (51) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 11.7s\n", + "Extracting (50) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 11.7s\n", "Downloading 100%\n", - "Extracting (51) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 11.8s\n", + "Extracting (50) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 11.8s\n", "Downloading 100%\n", - "Extracting (51) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 11.9s\n", + "Extracting (50) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 11.9s\n", "Downloading 100%\n", - "Extracting (51) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 12.0s\n", + "Extracting (49) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 12.0s\n", "Downloading 100%\n", - "Extracting (51) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 12.1s\n", + "Extracting (49) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 12.1s\n", "Downloading 100%\n", - "Extracting (51) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 12.2s\n", + "Extracting (49) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 12.2s\n", "Downloading 100%\n", - "Extracting (51) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 12.3s\n", + "Extracting (48) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 12.3s\n", "Downloading 100%\n", - "Extracting (51) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 12.4s\n", + "Extracting (48) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 12.4s\n", "Downloading 100%\n", - "Extracting (51) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 12.5s\n", + "Extracting (48) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 12.5s\n", "Downloading 100%\n", - "Extracting (51) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 12.6s\n", + "Extracting (48) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 12.6s\n", "Downloading 100%\n", - "Extracting (51) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 12.7s\n", + "Extracting (48) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 12.7s\n", "Downloading 100%\n", - "Extracting (51) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 12.8s\n", + "Extracting (48) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 12.8s\n", "Downloading 100%\n", - "Extracting (51) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 12.9s\n", + "Extracting (46) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 12.9s\n", "Downloading 100%\n", - "Extracting (51) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 13.0s\n", + "Extracting (46) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 13.0s\n", "Downloading 100%\n", - "Extracting (51) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 13.1s\n", + "Extracting (45) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 13.1s\n", "Downloading 100%\n", - "Extracting (51) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 13.2s\n", + "Extracting (44) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 13.2s\n", "Downloading 100%\n", - "Extracting (51) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 13.3s\n", + "Extracting (44) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 13.3s\n", "Downloading 100%\n", - "Extracting (51) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 13.4s\n", + "Extracting (44) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 13.4s\n", "Downloading 100%\n", - "Extracting (51) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 13.5s\n", + "Extracting (44) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 13.5s\n", "Downloading 100%\n", - "Extracting (51) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 13.6s\n", + "Extracting (44) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 13.6s\n", "Downloading 100%\n", - "Extracting (51) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 13.7s\n", + "Extracting (44) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 13.7s\n", "Downloading 100%\n", - "Extracting (51) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 13.8s\n", + "Extracting (44) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 13.8s\n", "Downloading 100%\n", - "Extracting (51) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 13.9s\n", + "Extracting (44) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 13.9s\n", "Downloading 100%\n", - "Extracting (51) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 14.0s\n", + "Extracting (44) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 14.0s\n", "Downloading 100%\n", - "Extracting (50) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 14.1s\n", + "Extracting (44) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 14.1s\n", "Downloading 100%\n", - "Extracting (50) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 14.2s\n", + "Extracting (44) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 14.2s\n", "Downloading 100%\n", - "Extracting (50) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 14.3s\n", + "Extracting (44) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 14.3s\n", "Downloading 100%\n", - "Extracting (50) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 14.4s\n", + "Extracting (44) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 14.4s\n", "Downloading 100%\n", - "Extracting (50) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 14.5s\n", + "Extracting (42) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 14.5s\n", "Downloading 100%\n", - "Extracting (49) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 14.6s\n", + "Extracting (42) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 14.6s\n", "Downloading 100%\n", - "Extracting (49) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 14.7s\n", + "Extracting (42) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 14.7s\n", "Downloading 100%\n", - "Extracting (49) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 14.8s\n", + "Extracting (42) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 14.8s\n", "Downloading 100%\n", - "Extracting (47) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 14.9s\n", + "Extracting (42) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 14.9s\n", "Downloading 100%\n", - "Extracting (47) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 15.0s\n", + "Extracting (42) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 15.0s\n", "Downloading 100%\n", - "Extracting (47) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 15.1s\n", + "Extracting (42) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 15.1s\n", "Downloading 100%\n", - "Extracting (46) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 15.2s\n", + "Extracting (41) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 15.2s\n", "Downloading 100%\n", - "Extracting (46) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 15.3s\n", + "Extracting (41) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 15.3s\n", "Downloading 100%\n", - "Extracting (46) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 15.4s\n", + "Extracting (41) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 15.4s\n", "Downloading 100%\n", - "Extracting (46) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 15.5s\n", + "Extracting (41) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 15.5s\n", "Downloading 100%\n", - "Extracting (45) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 15.6s\n", + "Extracting (41) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 15.6s\n", "Downloading 100%\n", - "Extracting (44) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 15.7s\n", + "Extracting (40) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 15.7s\n", "Downloading 100%\n", - "Extracting (43) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 15.8s\n", + "Extracting (40) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 15.8s\n", "Downloading 100%\n", - "Extracting (43) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 15.9s\n", + "Extracting (40) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 15.9s\n", "Downloading 100%\n", - "Extracting (43) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 16.0s\n", + "Extracting (40) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 16.0s\n", "Downloading 100%\n", - "Extracting (42) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 16.1s\n", + "Extracting (39) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 16.1s\n", "Downloading 100%\n", - "Extracting (42) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 16.2s\n", + "Extracting (38) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 16.2s\n", "Downloading 100%\n", - "Extracting (42) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 16.3s\n", + "Extracting (37) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 16.3s\n", "Downloading 100%\n", - "Extracting (42) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 16.4s\n", + "Extracting (34) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 16.4s\n", "Downloading 100%\n", - "Extracting (42) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 16.5s\n", + "Extracting (34) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 16.5s\n", "Downloading 100%\n", - "Extracting (41) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 16.6s\n", + "Extracting (33) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 16.6s\n", "Downloading 100%\n", - "Extracting (41) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 16.7s\n", + "Extracting (32) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 16.7s\n", "Downloading 100%\n", - "Extracting (41) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 16.8s\n", + "Extracting (32) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 16.8s\n", "Downloading 100%\n", - "Extracting (41) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 16.9s\n", + "Extracting (32) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 16.9s\n", "Downloading 100%\n", - "Extracting (41) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 17.0s\n", + "Extracting (32) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 17.0s\n", "Downloading 100%\n", - "Extracting (40) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 17.1s\n", + "Extracting (32) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 17.1s\n", "Downloading 100%\n", - "Extracting (40) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 17.2s\n", + "Extracting (32) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 17.2s\n", "Downloading 100%\n", - "Extracting (39) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 17.3s\n", + "Extracting (32) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 17.3s\n", "Downloading 100%\n", - "Extracting (39) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 17.4s\n", + "Extracting (32) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 17.4s\n", "Downloading 100%\n", - "Extracting (39) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 17.5s\n", + "Extracting (32) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 17.5s\n", "Downloading 100%\n", - "Extracting (39) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 17.6s\n", + "Extracting (32) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 17.6s\n", "Downloading 100%\n", - "Extracting (39) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 17.7s\n", + "Extracting (32) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 17.7s\n", "Downloading 100%\n", - "Extracting (39) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 17.8s\n", + "Extracting (32) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 17.8s\n", "Downloading 100%\n", - "Extracting (39) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 17.9s\n", + "Extracting (32) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 17.9s\n", "Downloading 100%\n", - "Extracting (39) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 18.0s\n", + "Extracting (32) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 18.0s\n", "Downloading 100%\n", - "Extracting (39) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 18.1s\n", + "Extracting (32) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 18.1s\n", "Downloading 100%\n", - "Extracting (39) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 18.2s\n", + "Extracting (32) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 18.2s\n", "Downloading 100%\n", - "Extracting (39) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 18.3s\n", + "Extracting (32) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 18.3s\n", "Downloading 100%\n", - "Extracting (39) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 18.4s\n", + "Extracting (30) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 18.4s\n", "Downloading 100%\n", - "Extracting (39) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 18.5s\n", + "Extracting (30) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 18.5s\n", "Downloading 100%\n", - "Extracting (39) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 18.6s\n", + "Extracting (30) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 18.6s\n", "Downloading 100%\n", - "Extracting (39) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 18.7s\n", + "Extracting (29) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 18.7s\n", "Downloading 100%\n", - "Extracting (39) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 18.8s\n", + "Extracting (29) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 18.8s\n", "Downloading 100%\n", - "Extracting (39) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 18.9s\n", + "Extracting (29) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 18.9s\n", "Downloading 100%\n", - "Extracting (39) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 19.0s\n", + "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 19.0s\n", "Downloading 100%\n", - "Extracting (39) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 19.1s\n", + "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 19.1s\n", "Downloading 100%\n", - "Extracting (39) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 19.2s\n", + "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 19.2s\n", "Downloading 100%\n", - "Extracting (39) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 19.3s\n", + "Extracting (27) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 19.3s\n", "Downloading 100%\n", - "Extracting (39) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 19.4s\n", + "Extracting (27) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 19.4s\n", "Downloading 100%\n", - "Extracting (39) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 19.5s\n", + "Extracting (27) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 19.5s\n", "Downloading 100%\n", - "Extracting (38) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 19.6s\n", + "Extracting (27) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 19.6s\n", "Downloading 100%\n", - "Extracting (38) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 19.7s\n", + "Extracting (27) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 19.7s\n", "Downloading 100%\n", - "Extracting (38) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 19.8s\n", + "Extracting (27) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 19.8s\n", "Downloading 100%\n", - "Extracting (38) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 19.9s\n", + "Extracting (26) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 19.9s\n", "Downloading 100%\n", - "Extracting (36) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 20.0s\n", + "Extracting (26) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 20.0s\n", "Downloading 100%\n", - "Extracting (36) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 20.1s\n", + "Extracting (25) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 20.1s\n", "Downloading 100%\n", - "Extracting (35) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 20.2s\n", + "Extracting (25) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 20.2s\n", "Downloading 100%\n", - "Extracting (35) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 20.3s\n", + "Extracting (24) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 20.3s\n", "Downloading 100%\n", - "Extracting (35) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 20.4s\n", + "Extracting (23) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 20.4s\n", "Downloading 100%\n", - "Extracting (34) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 20.5s\n", + "Extracting (23) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 20.5s\n", "Downloading 100%\n", - "Extracting (33) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 20.6s\n", + "Extracting (23) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 20.6s\n", "Downloading 100%\n", - "Extracting (33) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 20.7s\n", + "Extracting (23) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 20.7s\n", "Downloading 100%\n", - "Extracting (33) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 20.8s\n", + "Extracting (23) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 20.8s\n", "Downloading 100%\n", - "Extracting (33) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 20.9s\n", + "Extracting (23) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 20.9s\n", "Downloading 100%\n", - "Extracting (33) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 21.0s\n", + "Extracting (23) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 21.0s\n", "Downloading 100%\n", - "Extracting (33) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 21.1s\n", + "Extracting (23) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 21.1s\n", "Downloading 100%\n", - "Extracting (33) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 21.2s\n", + "Extracting (23) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 21.2s\n", "Downloading 100%\n", - "Extracting (33) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 21.3s\n", + "Extracting (23) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 21.3s\n", "Downloading 100%\n", - "Extracting (33) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 21.4s\n", + "Extracting (23) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 21.4s\n", "Downloading 100%\n", - "Extracting (33) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 21.5s\n", + "Extracting (23) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 21.5s\n", "Downloading 100%\n", - "Extracting (33) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 21.6s\n", + "Extracting (23) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 21.6s\n", "Downloading 100%\n", - "Extracting (33) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 21.7s\n", + "Extracting (23) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 21.7s\n", "Downloading 100%\n", - "Extracting (33) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 21.8s\n", + "Extracting (23) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 21.8s\n", "Downloading 100%\n", - "Extracting (33) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 21.9s\n", + "Extracting (23) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 21.9s\n", "Downloading 100%\n", - "Extracting (33) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 22.0s\n", + "Extracting (23) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 22.0s\n", "Downloading 100%\n", - "Extracting (33) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 22.1s\n", + "Extracting (22) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 22.1s\n", "Downloading 100%\n", - "Extracting (31) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 22.2s\n", + "Extracting (22) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 22.2s\n", "Downloading 100%\n", - "Extracting (31) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 22.3s\n", + "Extracting (22) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 22.3s\n", "Downloading 100%\n", - "Extracting (31) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 22.4s\n", + "Extracting (22) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 22.4s\n", "Downloading 100%\n", - "Extracting (31) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 22.5s\n", + "Extracting (22) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 22.5s\n", "Downloading 100%\n", - "Extracting (31) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 22.6s\n", + "Extracting (22) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 22.6s\n", "Downloading 100%\n", - "Extracting (31) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 22.7s\n", + "Extracting (22) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 22.7s\n", "Downloading 100%\n", - "Extracting (30) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 22.8s\n", + "Extracting (22) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 22.8s\n", "Downloading 100%\n", - "Extracting (30) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 22.9s\n", + "Extracting (22) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 22.9s\n", "Downloading 100%\n", - "Extracting (30) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 23.0s\n", + "Extracting (22) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 23.0s\n", "Downloading 100%\n", - "Extracting (30) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 23.1s\n", + "Extracting (22) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 23.1s\n", "Downloading 100%\n", - "Extracting (30) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 23.2s\n", + "Extracting (22) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 23.2s\n", "Downloading 100%\n", - "Extracting (30) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 23.3s\n", + "Extracting (22) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 23.3s\n", "Downloading 100%\n", - "Extracting (30) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 23.4s\n", + "Extracting (22) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 23.4s\n", "Downloading 100%\n", - "Extracting (29) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 23.5s\n", + "Extracting (22) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 23.5s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 23.6s\n", + "Extracting (22) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 23.6s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 23.7s\n", + "Extracting (22) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 23.7s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 23.8s\n", + "Extracting (22) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 23.8s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 23.9s\n", + "Extracting (22) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 23.9s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 24.0s\n", + "Extracting (22) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 24.0s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 24.1s\n", + "Extracting (22) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 24.1s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 24.2s\n", + "Extracting (22) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 24.2s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 24.3s\n", + "Extracting (22) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 24.3s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 24.4s\n", + "Extracting (21) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 24.4s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 24.5s\n", + "Extracting (20) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 24.5s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 24.6s\n", + "Extracting (19) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 24.6s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 24.7s\n", + "Extracting (19) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 24.7s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 24.8s\n", + "Extracting (18) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 24.8s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 24.9s\n", + "Extracting (17) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 24.9s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 25.0s\n", + "Extracting (17) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 25.0s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 25.1s\n", + "Extracting (15) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 25.1s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 25.2s\n", + "Extracting (15) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 25.2s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 25.3s\n", + "Extracting (15) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 25.3s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 25.4s\n", + "Extracting (15) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 25.4s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 25.5s\n", + "Extracting (15) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 25.5s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 25.6s\n", + "Extracting (14) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 25.6s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 25.7s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 25.7s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 25.8s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 25.8s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 25.9s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 25.9s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 26.0s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 26.0s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 26.1s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 26.1s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 26.2s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 26.2s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 26.3s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 26.3s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 26.4s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 26.4s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 26.5s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 26.5s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 26.6s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 26.6s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 26.7s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 26.7s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 26.8s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 26.8s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 26.9s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 26.9s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 27.0s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 27.0s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 27.1s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 27.1s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 27.2s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 27.2s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 27.3s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 27.3s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 27.4s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 27.4s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 27.5s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 27.5s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 27.6s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 27.6s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 27.7s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 27.7s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 27.8s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 27.8s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 27.9s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 27.9s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 28.0s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 28.0s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 28.1s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 28.1s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 28.2s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 28.2s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 28.3s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 28.3s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 28.4s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 28.4s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 28.5s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 28.5s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 28.6s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 28.6s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 28.7s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 28.7s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 28.8s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 28.8s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 28.9s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 28.9s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 29.0s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 29.0s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 29.1s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 29.1s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 29.2s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 29.2s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 29.3s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 29.3s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 29.4s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 29.4s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 29.5s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 29.5s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 29.6s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 29.6s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 29.7s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 29.7s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 29.8s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 29.8s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 29.9s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 29.9s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 30.0s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 30.0s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 30.1s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 30.1s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 30.2s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 30.2s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 30.3s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 30.3s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 30.4s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 30.4s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 30.5s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 30.5s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 30.6s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 30.6s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 30.7s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 30.7s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 30.8s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 30.8s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 30.9s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 30.9s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 31.0s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 31.0s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 31.1s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 31.1s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 31.2s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 31.2s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 31.3s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 31.3s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 31.4s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 31.4s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 31.5s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 31.5s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 31.6s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 31.6s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 31.7s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 31.7s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 31.8s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 31.8s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 31.9s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 31.9s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 32.0s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 32.0s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 32.1s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 32.1s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 32.2s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 32.2s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 32.3s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 32.3s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 32.4s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 32.4s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 32.5s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 32.5s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 32.6s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 32.6s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 32.7s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 32.7s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 32.8s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 32.8s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 32.9s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 32.9s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 33.0s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 33.0s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 33.1s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 33.1s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 33.2s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 33.2s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 33.3s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 33.3s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 33.4s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 33.4s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 33.5s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 33.5s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 33.6s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 33.6s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 33.7s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 33.7s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 33.8s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 33.8s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 33.9s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 33.9s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 34.0s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 34.0s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 34.1s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 34.1s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 34.2s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 34.2s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 34.3s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 34.3s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 34.4s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 34.4s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 34.5s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 34.5s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 34.6s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 34.6s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 34.7s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 34.7s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 34.8s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 34.8s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 34.9s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 34.9s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 35.0s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 35.0s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 35.1s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 35.1s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 35.2s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 35.2s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 35.3s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 35.3s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 35.4s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 35.4s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 35.5s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 35.5s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 35.6s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 35.6s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 35.7s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 35.7s\n", "Downloading 100%\n", - "Extracting (28) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 35.8s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 35.8s\n", "Downloading 100%\n", - "Extracting (27) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 35.9s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 35.9s\n", "Downloading 100%\n", - "Extracting (27) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 36.0s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 36.0s\n", "Downloading 100%\n", - "Extracting (27) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 36.1s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 36.1s\n", "Downloading 100%\n", - "Extracting (26) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 36.2s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 36.2s\n", "Downloading 100%\n", - "Extracting (26) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 36.3s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 36.3s\n", "Downloading 100%\n", - "Extracting (26) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 36.4s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 36.4s\n", "Downloading 100%\n", - "Extracting (25) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 36.5s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 36.5s\n", "Downloading 100%\n", - "Extracting (24) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 36.6s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 36.6s\n", "Downloading 100%\n", - "Extracting (24) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 36.7s\n", + "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 36.7s\n", "Downloading 100%\n", - "Extracting (24) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 36.8s\n", + "Extracting (12) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 36.8s\n", "Downloading 100%\n", - "Extracting (24) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 36.9s\n", + "Extracting (12) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 36.9s\n", "Downloading 100%\n", - "Extracting (24) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 37.0s\n", + "Extracting (12) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 37.0s\n", "Downloading 100%\n", - "Extracting (24) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 37.1s\n", + "Extracting (12) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 37.1s\n", "Downloading 100%\n", - "Extracting (24) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 37.2s\n", + "Extracting (12) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 37.2s\n", "Downloading 100%\n", - "Extracting (24) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 37.3s\n", + "Extracting (12) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 37.3s\n", "Downloading 100%\n", - "Extracting (24) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 37.4s\n", + "Extracting (11) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 37.4s\n", "Downloading 100%\n", - "Extracting (24) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 37.5s\n", + "Extracting (10) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 37.5s\n", "Downloading 100%\n", - "Extracting (23) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 37.6s\n", + "Extracting (10) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 37.6s\n", "Downloading 100%\n", - "Extracting (23) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 37.7s\n", + "Extracting (10) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 37.7s\n", "Downloading 100%\n", - "Extracting (23) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 37.8s\n", + "Extracting (10) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 37.8s\n", "Downloading 100%\n", - "Extracting (22) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 37.9s\n", + "Extracting (9) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 37.9s\n", "Downloading 100%\n", - "Extracting (22) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 38.0s\n", + "Extracting (9) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 38.0s\n", "Downloading 100%\n", - "Extracting (22) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 38.1s\n", + "Extracting (8) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 38.1s\n", "Downloading 100%\n", - "Extracting (22) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 38.2s\n", + "Extracting (8) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 38.2s\n", "Downloading 100%\n", - "Extracting (22) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 38.3s\n", + "Extracting (8) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 38.3s\n", "Downloading 100%\n", - "Extracting (22) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 38.4s\n", + "Extracting (8) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 38.4s\n", "Downloading 100%\n", - "Extracting (22) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 38.5s\n", + "Extracting (8) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 38.5s\n", "Downloading 100%\n", - "Extracting (22) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 38.6s\n", + "Extracting (8) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 38.6s\n", "Downloading 100%\n", - "Extracting (22) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 38.7s\n", + "Extracting (8) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 38.7s\n", "Downloading 100%\n", - "Extracting (22) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 38.8s\n", + "Extracting (8) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 38.8s\n", "Downloading 100%\n", - "Extracting (21) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 38.9s\n", + "Extracting (7) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 38.9s\n", "Downloading 100%\n", - "Extracting (21) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 39.0s\n", + "Extracting (7) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 39.0s\n", "Downloading 100%\n", - "Extracting (21) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 39.1s\n", + "Extracting (7) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 39.1s\n", "Downloading 100%\n", - "Extracting (21) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 39.2s\n", + "Extracting (7) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 39.2s\n", "Downloading 100%\n", - "Extracting (21) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 39.3s\n", + "Extracting (6) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 39.3s\n", "Downloading 100%\n", - "Extracting (21) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 39.4s\n", + "Extracting (6) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 39.4s\n", "Downloading 100%\n", - "Extracting (21) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 39.5s\n", + "Extracting (6) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 39.5s\n", "Downloading 100%\n", - "Extracting (20) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 39.6s\n", + "Extracting (6) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 39.6s\n", "Downloading 100%\n", - "Extracting (20) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 39.7s\n", + "Extracting (6) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 39.7s\n", "Downloading 100%\n", - "Extracting (20) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 39.8s\n", + "Extracting (6) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 39.8s\n", "Downloading 100%\n", - "Extracting (18) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 39.9s\n", + "Extracting (5) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 39.9s\n", "Downloading 100%\n", - "Extracting (18) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 40.0s\n", + "Extracting (4) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 40.0s\n", "Downloading 100%\n", - "Extracting (18) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 40.1s\n", + "Extracting (4) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 40.1s\n", "Downloading 100%\n", - "Extracting (18) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 40.2s\n", + "Extracting (4) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 40.2s\n", "Downloading 100%\n", - "Extracting (17) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 40.3s\n", + "Extracting (4) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 40.3s\n", "Downloading 100%\n", - "Extracting (17) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 40.4s\n", + "Extracting (3) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 40.4s\n", "Downloading 100%\n", - "Extracting (17) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 40.5s\n", + "Extracting (3) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 40.5s\n", "Downloading 100%\n", - "Extracting (17) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 40.6s\n", + "Extracting (1) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 40.6s\n", "Downloading 100%\n", - "Extracting (17) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 40.7s\n", + "Extracting (1) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 40.7s\n", "Downloading 100%\n", - "Extracting (17) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 40.8s\n", + "Extracting (1) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 40.8s\n", "Downloading 100%\n", - "Extracting (17) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 40.9s\n", + "Extracting (1) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 40.9s\n", "Downloading 100%\n", - "Extracting (17) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 41.0s\n", + "Extracting (1) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 41.0s\n", "Downloading 100%\n", - "Extracting (15) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 41.1s\n", + "Extracting (1) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 41.1s\n", "Downloading 100%\n", - "Extracting (15) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 41.2s\n", + "Extracting (1) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 41.2s\n", "Downloading 100%\n", - "Extracting (15) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 41.3s\n", + "Extracting (1) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 41.3s\n", "Downloading 100%\n", - "Extracting (14) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 41.4s\n", + "Extracting (1) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 41.4s\n", "Downloading 100%\n", - "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 41.5s\n", + "Extracting (1) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 41.5s\n", "Downloading 100%\n", - "Extracting (13) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 41.6s\n", + "Extracting (1) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 41.6s\n", "Downloading 100%\n", - "Extracting (12) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 41.7s\n", + "Extracting (1) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 41.7s\n", "Downloading 100%\n", - "Extracting (11) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 41.8s\n", + "Extracting (1) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 41.8s\n", "Downloading 100%\n", - "Extracting (9) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 41.9s\n", + "Extracting (1) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 41.9s\n", "Downloading 100%\n", - "Extracting (8) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 42.0s\n", + "Extracting (1) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 42.0s\n", "Downloading 100%\n", - "Extracting (7) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 42.1s\n", + "Extracting (1) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 42.1s\n", "Downloading 100%\n", - "Extracting (5) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 42.2s\n", + "Extracting (1) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 42.2s\n", "Downloading 100%\n", - "Extracting (4) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 42.3s\n", + "Extracting (1) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 42.3s\n", "Downloading 100%\n", - "Extracting (4) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 42.4s\n", + "Extracting (1) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 42.4s\n", "Downloading 100%\n", - "Extracting (3) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 42.5s\n", + "Extracting (1) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 42.5s\n", "Downloading 100%\n", - "Extracting (3) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 42.6s\n", + "Extracting (1) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 42.6s\n", "Downloading 100%\n", - "Extracting (3) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 42.7s\n", + "Extracting (1) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 42.7s\n", "Downloading 100%\n", - "Extracting (3) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 42.8s\n", + "Extracting (1) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 42.8s\n", "Downloading 100%\n", - "Extracting (3) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 42.9s\n", + "Extracting (1) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 42.9s\n", "Downloading 100%\n", - "Extracting (3) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 43.0s\n", + "Extracting (1) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 43.0s\n", "Downloading 100%\n", - "Extracting (2) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 43.1s\n", + "Extracting (1) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 43.1s\n", "Downloading 100%\n", "Extracting (1) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 43.2s\n", "Downloading 100%\n", @@ -1637,40 +1685,6 @@ "Downloading 100%\n", "Extracting (1) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 44.0s\n", "Downloading 100%\n", - "Extracting (1) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 44.1s\n", - "Downloading 100%\n", - "Extracting (1) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 44.2s\n", - "Downloading 100%\n", - "Extracting (1) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 44.3s\n", - "Downloading 100%\n", - "Extracting (1) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 44.4s\n", - "Downloading 100%\n", - "Extracting (1) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 44.5s\n", - "Downloading 100%\n", - "Extracting (1) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 44.6s\n", - "Downloading 100%\n", - "Extracting (1) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 44.7s\n", - "Downloading 100%\n", - "Extracting (1) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 44.8s\n", - "Downloading 100%\n", - "Extracting (1) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 44.9s\n", - "Downloading 100%\n", - "Extracting (1) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 45.0s\n", - "Downloading 100%\n", - "Extracting (1) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 45.1s\n", - "Downloading 100%\n", - "Extracting (1) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 45.2s\n", - "Downloading 100%\n", - "Extracting (1) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 45.3s\n", - "Downloading 100%\n", - "Extracting (1) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 45.4s\n", - "Downloading 100%\n", - "Extracting (1) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 45.5s\n", - "Downloading 100%\n", - "Extracting (1) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 45.6s\n", - "Downloading 100%\n", - "Extracting (1) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G[+] 45.7s\n", - "Downloading 100%\n", "Extracting (1) | \u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[0G\u001b[?25hLinking _libgcc_mutex-0.1-main\n", "Linking libstdcxx-ng-11.2.0-h1234567_1\n", "Linking ld_impl_linux-64-2.40-h12ee557_0\n", @@ -1693,7 +1707,7 @@ "Linking libxcb-1.15-h7f8727e_0\n", "Linking jpeg-9e-h5eee18b_3\n", "Linking icu-58.2-he6710b0_3\n", - "Linking expat-2.6.3-h6a678d5_0\n", + "Linking expat-2.6.4-h6a678d5_0\n", "Linking libedit-3.1.20230828-h5eee18b_0\n", "Linking readline-8.2-h5eee18b_0\n", "Linking tk-8.6.14-h39e8969_0\n", @@ -1730,7 +1744,7 @@ } ], "source": [ - "#@title Setup the environment for the OpenFASOC GDSFactory generator\n", + "#@title OpenFASOC GDSFactory generator\n", "# You only need to run this block once!\n", "\n", "# Clone OpenFASoC\n", @@ -1758,14 +1772,14 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": { "cellView": "form", "colab": { "base_uri": "https://localhost:8080/" }, "id": "Dhc4JfGrfs_m", - "outputId": "cc9cfbaf-b047-49d0-96c4-3a5ae0d8c1f5" + "outputId": "ae141ab9-300f-4b13-c7d9-3df795556bf8" }, "outputs": [ { @@ -1779,7 +1793,7 @@ } ], "source": [ - "#@title Setup the environment for the OpenFASOC GDSFactory generator II\n", + "#@title OpenFASOC GDSFactory generator II\n", "# Adding micro-mamba binary directory to the PATH\n", "# This directory contains Klayout\n", "import pathlib\n", @@ -1796,9 +1810,10 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": { - "id": "yHHUX1RNCyH1" + "id": "yHHUX1RNCyH1", + "cellView": "form" }, "outputs": [], "source": [ @@ -1808,7 +1823,7 @@ "from glayout.flow.placement.two_transistor_interdigitized import two_nfet_interdigitized,two_pfet_interdigitized\n", "from glayout.flow.pdk.util.comp_utils import prec_ref_center, movey, movex, evaluate_bbox\n", "from glayout.flow.routing.smart_route import smart_route, c_route\n", - "\n", + "from glayout.flow.primitives.fet import nmos,pmos\n", "from glayout.flow.pdk.sky130_mapped import sky130_mapped_pdk\n", "\n", "from glayout.flow.pdk.sky130_mapped import sky130_mapped_pdk as sky130\n", @@ -1825,7 +1840,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": { "cellView": "form", "id": "AWhGytWxf50S" @@ -1863,7 +1878,7 @@ }, "source": [ "# 3. Manual design\n", - "Let's start first seeing how we would design the Miyahara comparator manually. It is important to have this starting point in order to see that eventhough in the long term is an automatic process, because we can change the width, lenght, the pdk (!the most important)... the first design is basically hard coding. With that example will see how the project presented in this Notebook adds value to the existing state of the art." + "Let's start first seeing how we would design the Miyahara comparator manually. It is important to have this starting point in order to see that even though in the long term is an automatic process, because we can change the width, lenght, the pdk (!the most important)... **the first design is basically hard coding**. By using this example, we can demonstrate how the project presented in this notebook enhances the current state of the art." ] }, { @@ -1872,24 +1887,22 @@ "id": "V9u754BP_4RH" }, "source": [ - "From the main block we can distinguish a basic structure from which we can build the circuit. A pair of transistors is the most basic concept we can observe. We don't want to talk about a differential pair because we can see three configurations.\n", + "\"From the main block presented in the following figure, we can identify a basic structure to build the circuit. The most fundamental concept we observe is a pair of transistors. It's important to note that we aren't referring to a differential pair, as there are three possible configurations.\n", "\n", "\n", "* Differential Pair\n", "* NMOS - NMOS Pair\n", "* PMOS - NMOS Pair\n", "\n", - "So the concept is to build a piece of code able to create this diffrent configurations and based on that add the other transistors with which we will be able to build the Miyahara comparator.\n", - "Also with this building process it will be easier to build other comparators with such a few time.\n", - "\n", - "From the image below we can distinguish four stages/levels of code:\n", + "The concept is to develop a piece of code capable of creating different configurations. Based on these configurations, we can then add other transistors necessary to construct the Miyahara comparator. This building process will also streamline the creation of other comparators in a significantly shorter time frame.\n", "\n", + "From the image below, we can identify four stages/levels of code:\n", "\n", "* 1rst purple: basic block of a pair of transistors each with diferent selectable properties\n", "* 2nd green: to those basic blocks add some \"spare\" transistors which make the top and part of bottom circuit\n", "* 3rd orange: finish builing the bottom circuit\n", "* 4th blue: join top and bottom.\n", - "* (not yet) 5th: build the external circuit\n", + "* (not yet) 5th: build the external circuit - switching system\n", "\n", "\n", "\n", @@ -1897,23 +1910,15 @@ "\n" ] }, - { - "cell_type": "markdown", - "metadata": { - "id": "_29ES263R0HG" - }, - "source": [ - "### Purple" - ] - }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": { "id": "O0r1A35a-vOk" }, "outputs": [], "source": [ + "#Purple blocks main function\n", "def TransistorPair(pdk: MappedPDK, type, same, width, length,portName):\n", " TransistorPair = Component(name=\"TransistorPair\")\n", "\n", @@ -1921,8 +1926,8 @@ " Aquest bloc serveix com a base per al circuit, són els blocs liles\n", " Simplement son dos transistors connectats junts\n", " '''\n", - " portNameP = portName+\"_p_\"\n", - " portNameN = portName+\"_n_\"\n", + " portNameP = portName + \"_p_\"\n", + " portNameN = portName + \"_n_\"\n", " if same == True:\n", " if type == \"PMOS\":\n", " diffp = two_pfet_interdigitized(pdk, numcols=2, dummy=True, with_substrate_tap=False, with_tie=True, width=width, length=length, rmult=1)\n", @@ -1957,37 +1962,44 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "metadata": { "colab": { "base_uri": "https://localhost:8080/", - "height": 678 + "height": 0 }, "id": "aaPJPgiuilQY", - "outputId": "b0ba783a-737b-4b6b-ee89-1bc158818cfd" + "outputId": "a90dcad4-8b13-4751-cd1e-819330b8e0dc" }, "outputs": [ { - "name": "stderr", "output_type": "stream", + "name": "stderr", "text": [ - ":10: UserWarning: Unnamed cells, 2 in 'TransistorPair$1'\n", + "\u001b[32m2025-01-07 08:44:45.577\u001b[0m | \u001b[33m\u001b[1mWARNING \u001b[0m | \u001b[36mgdsfactory.pdk\u001b[0m:\u001b[36mget_active_pdk\u001b[0m:\u001b[36m733\u001b[0m - \u001b[33m\u001b[1mNo active PDK. Activating generic PDK.\n", + "\u001b[0m\n", + "\u001b[32m2025-01-07 08:44:47.867\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mgdsfactory.technology.layer_views\u001b[0m:\u001b[36m__init__\u001b[0m:\u001b[36m790\u001b[0m - \u001b[1mImporting LayerViews from YAML file: '/usr/local/lib/python3.10/dist-packages/gdsfactory/generic_tech/layer_views.yaml'.\u001b[0m\n", + "\u001b[32m2025-01-07 08:44:47.872\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mgdsfactory.pdk\u001b[0m:\u001b[36mactivate\u001b[0m:\u001b[36m337\u001b[0m - \u001b[1m'generic' PDK is now active\u001b[0m\n", + "\u001b[32m2025-01-07 08:44:47.946\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mgdsfactory.pdk\u001b[0m:\u001b[36mactivate\u001b[0m:\u001b[36m337\u001b[0m - \u001b[1m'sky130' PDK is now active\u001b[0m\n", + ":12: UserWarning: Unnamed cells, 2 in 'TransistorPair'\n", " prueba_PMOSNMOS.write_gds('prueba_PMOSNMOS.gds')\n", - "\u001b[32m2024-11-29 09:30:22.983\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mgdsfactory.component\u001b[0m:\u001b[36m_write_library\u001b[0m:\u001b[36m1851\u001b[0m - \u001b[1mWrote to 'prueba_PMOSNMOS.gds'\u001b[0m\n" + "\u001b[32m2025-01-07 08:45:20.991\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mgdsfactory.component\u001b[0m:\u001b[36m_write_library\u001b[0m:\u001b[36m1851\u001b[0m - \u001b[1mWrote to 'prueba_PMOSNMOS.gds'\u001b[0m\n" ] }, { + "output_type": "display_data", "data": { - "image/svg+xml": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n", "text/plain": [ "" - ] + ], + "image/svg+xml": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n" }, - "metadata": {}, - "output_type": "display_data" + "metadata": {} } ], "source": [ + "#Each type of purple block\n", + "\n", "# prueba_PMOS = TransistorPair(sky130_mapped_pdk, \"PMOS\", True, 2, 2,portName = \"PMOS_PMOS\")\n", "# prueba_PMOS.write_gds('prueba_PMOS.gds')\n", "# display_gds('prueba_PMOS.gds',scale=3)\n", @@ -1998,22 +2010,12 @@ "\n", "prueba_PMOSNMOS = TransistorPair(sky130_mapped_pdk, \"\", False, 2, 2,portName = \"PMOS_NMOS\")\n", "prueba_PMOSNMOS.write_gds('prueba_PMOSNMOS.gds')\n", - "\n", - "display_gds('prueba_PMOSNMOS.gds',scale=3)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "_BSxOKxUR3eB" - }, - "source": [ - "### Green TOP" + "display_gds('prueba_PMOSNMOS.gds',scale=1.5)" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "metadata": { "id": "ZTBn8nmwR6YX" }, @@ -2041,45 +2043,45 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "metadata": { "colab": { "base_uri": "https://localhost:8080/", - "height": 1000 + "height": 0 }, "id": "6JSu1LUa-yrc", - "outputId": "62663116-d6b6-46b4-9b92-833842800a2c" + "outputId": "a8e0632e-6c33-4a76-9b41-c29cc5fc13f6" }, "outputs": [ { - "name": "stderr", "output_type": "stream", + "name": "stderr", "text": [ - ":2: UserWarning: Unnamed cells, 4 in 'HalfTopBlock'\n", + ":2: UserWarning: Unnamed cells, 4 in 'HalfTopBlock'\n", " LeftTopBlock.write_gds('LeftTopBlock.gds')\n", - "\u001b[32m2024-11-29 09:31:36.718\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mgdsfactory.component\u001b[0m:\u001b[36m_write_library\u001b[0m:\u001b[36m1851\u001b[0m - \u001b[1mWrote to 'LeftTopBlock.gds'\u001b[0m\n" + "\u001b[32m2025-01-07 08:46:05.914\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mgdsfactory.component\u001b[0m:\u001b[36m_write_library\u001b[0m:\u001b[36m1851\u001b[0m - \u001b[1mWrote to 'LeftTopBlock.gds'\u001b[0m\n" ] }, { + "output_type": "display_data", "data": { - "image/svg+xml": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n", "text/plain": [ "" - ] + ], + "image/svg+xml": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n" }, - "metadata": {}, - "output_type": "display_data" + "metadata": {} } ], "source": [ "LeftTopBlock = HalfTopBlock(sky130_mapped_pdk,2,2)\n", "LeftTopBlock.write_gds('LeftTopBlock.gds')\n", - "display_gds('LeftTopBlock.gds',scale=3)" + "display_gds('LeftTopBlock.gds',scale=1.5)" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "metadata": { "id": "XxrpQnSOAVvJ" }, @@ -2105,56 +2107,45 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 11, "metadata": { "colab": { "base_uri": "https://localhost:8080/", - "height": 1000 + "height": 0 }, "id": "Kdo-Op8FBfmE", - "outputId": "b53f4db9-30c2-4de9-90d7-9533f714ced7" + "outputId": "904eb68a-abf2-4cb7-a70b-1e98b2eecf7c" }, "outputs": [ { - "name": "stderr", "output_type": "stream", + "name": "stderr", "text": [ - ":2: UserWarning: Unnamed cells, 8 in 'TopBlock$1'\n", + ":2: UserWarning: Unnamed cells, 8 in 'TopBlock'\n", " TopBlock_component.write_gds('TopBlock.gds')\n", - "\u001b[32m2024-11-29 10:04:40.067\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mgdsfactory.component\u001b[0m:\u001b[36m_write_library\u001b[0m:\u001b[36m1851\u001b[0m - \u001b[1mWrote to 'TopBlock.gds'\u001b[0m\n" + "\u001b[32m2025-01-07 08:47:37.928\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mgdsfactory.component\u001b[0m:\u001b[36m_write_library\u001b[0m:\u001b[36m1851\u001b[0m - \u001b[1mWrote to 'TopBlock.gds'\u001b[0m\n" ] }, { + "output_type": "display_data", "data": { - "image/svg+xml": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n", "text/plain": [ "" - ] + ], + "image/svg+xml": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n" }, - "metadata": {}, - "output_type": "display_data" + "metadata": {} } ], "source": [ "TopBlock_component = TopBlock(sky130_mapped_pdk,2,2)\n", "TopBlock_component.write_gds('TopBlock.gds')\n", - "display_gds('TopBlock.gds',scale=3)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "zunD-rgr_w8S" - }, - "outputs": [], - "source": [ - "# Draw the layout with pmos nmos" + "display_gds('TopBlock.gds',scale=1.5)" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 12, "metadata": { "id": "pIHaqaPUSYiJ" }, @@ -2179,45 +2170,45 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 13, "metadata": { "colab": { "base_uri": "https://localhost:8080/", - "height": 504 + "height": 0 }, "id": "6Ipo37ckF6sS", - "outputId": "8e1d867a-1add-4325-f02e-26b99a46b21d" + "outputId": "421dfe62-0da7-407c-9bd5-2dd1dc42264e" }, "outputs": [ { - "name": "stderr", "output_type": "stream", + "name": "stderr", "text": [ - ":2: UserWarning: Unnamed cells, 2 in 'HalfBottomBlock$3'\n", + ":2: UserWarning: Unnamed cells, 2 in 'HalfBottomBlock'\n", " HalfBottomBlock_component.write_gds('HalfBottomBlock.gds')\n", - "\u001b[32m2024-11-29 09:36:56.164\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mgdsfactory.component\u001b[0m:\u001b[36m_write_library\u001b[0m:\u001b[36m1851\u001b[0m - \u001b[1mWrote to 'HalfBottomBlock.gds'\u001b[0m\n" + "\u001b[32m2025-01-07 08:47:49.219\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mgdsfactory.component\u001b[0m:\u001b[36m_write_library\u001b[0m:\u001b[36m1851\u001b[0m - \u001b[1mWrote to 'HalfBottomBlock.gds'\u001b[0m\n" ] }, { + "output_type": "display_data", "data": { - "image/svg+xml": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n", "text/plain": [ "" - ] + ], + "image/svg+xml": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n" }, - "metadata": {}, - "output_type": "display_data" + "metadata": {} } ], "source": [ "HalfBottomBlock_component = HalfBottomBlock(sky130_mapped_pdk,2,2)\n", "HalfBottomBlock_component.write_gds('HalfBottomBlock.gds')\n", - "display_gds('HalfBottomBlock.gds',scale=3)" + "display_gds('HalfBottomBlock.gds',scale=1.5)" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 14, "metadata": { "id": "dza6ncEyGMqL" }, @@ -2247,45 +2238,45 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 15, "metadata": { "colab": { "base_uri": "https://localhost:8080/", - "height": 752 + "height": 0 }, "id": "MWJyCXnqHVJk", - "outputId": "fbb8f35e-09dc-48db-ceb4-4053636fcecc" + "outputId": "765ada76-2957-4ba5-f7d7-37af3fab3503" }, "outputs": [ { - "name": "stderr", "output_type": "stream", + "name": "stderr", "text": [ - ":2: UserWarning: Unnamed cells, 5 in 'BottomBlock$2'\n", - " BottomBlock.write_gds('BottomBlock.gds')\n", - "\u001b[32m2024-11-29 09:37:25.213\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mgdsfactory.component\u001b[0m:\u001b[36m_write_library\u001b[0m:\u001b[36m1851\u001b[0m - \u001b[1mWrote to 'BottomBlock.gds'\u001b[0m\n" + ":2: UserWarning: Unnamed cells, 5 in 'BottomBlock'\n", + " BottomBlock_component.write_gds('BottomBlock.gds')\n", + "\u001b[32m2025-01-07 08:48:15.966\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mgdsfactory.component\u001b[0m:\u001b[36m_write_library\u001b[0m:\u001b[36m1851\u001b[0m - \u001b[1mWrote to 'BottomBlock.gds'\u001b[0m\n" ] }, { + "output_type": "display_data", "data": { - "image/svg+xml": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n", "text/plain": [ "" - ] + ], + "image/svg+xml": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n" }, - "metadata": {}, - "output_type": "display_data" + "metadata": {} } ], "source": [ "BottomBlock_component = BottomBlock(sky130_mapped_pdk,2,2)\n", "BottomBlock_component.write_gds('BottomBlock.gds')\n", - "display_gds('BottomBlock.gds',scale=3)" + "display_gds('BottomBlock.gds',scale=1.5)" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 16, "metadata": { "id": "bBH-icbFJnVX" }, @@ -2310,50 +2301,39 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 17, "metadata": { "colab": { "base_uri": "https://localhost:8080/", - "height": 1000 + "height": 0 }, "id": "tiX1wgA4K4Xt", - "outputId": "d6ca2595-393a-4106-db5c-4bf5e8056c35" + "outputId": "a82ff330-c329-4070-b3d3-e2bfca2cad82" }, "outputs": [ { - "name": "stderr", "output_type": "stream", + "name": "stderr", "text": [ - ":2: UserWarning: Unnamed cells, 13 in 'MiyaharaBlock$3'\n", + ":2: UserWarning: Unnamed cells, 13 in 'MiyaharaBlock'\n", " MiyaharaBlock_component.write_gds('MiyaharaBlock.gds')\n", - "\u001b[32m2024-11-29 10:09:31.369\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mgdsfactory.component\u001b[0m:\u001b[36m_write_library\u001b[0m:\u001b[36m1851\u001b[0m - \u001b[1mWrote to 'MiyaharaBlock.gds'\u001b[0m\n" + "\u001b[32m2025-01-07 08:50:16.865\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mgdsfactory.component\u001b[0m:\u001b[36m_write_library\u001b[0m:\u001b[36m1851\u001b[0m - \u001b[1mWrote to 'MiyaharaBlock.gds'\u001b[0m\n" ] }, { + "output_type": "display_data", "data": { - "image/svg+xml": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n", "text/plain": [ "" - ] + ], + "image/svg+xml": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n" }, - "metadata": {}, - "output_type": "display_data" + "metadata": {} } ], "source": [ "MiyaharaBlock_component = MiyaharaBlock(sky130_mapped_pdk,2,2)\n", "MiyaharaBlock_component.write_gds('MiyaharaBlock.gds')\n", - "display_gds('MiyaharaBlock.gds',scale=3)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "KJ82ma0XMF9Z" - }, - "outputs": [], - "source": [ "display_gds('MiyaharaBlock.gds',scale=1.5)" ] }, @@ -2363,7 +2343,7 @@ "id": "1tBax627Qx9Q" }, "source": [ - "The routing is missing but it would be done with smart_route" + "The routing of the system level is missing but it would be done with smart_route" ] }, { @@ -2398,7 +2378,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 18, "metadata": { "cellView": "form", "id": "W06tPTEW3-Sq" @@ -2470,7 +2450,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 19, "metadata": { "cellView": "form", "id": "V5-udw5iqlD8" @@ -2521,7 +2501,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 20, "metadata": { "cellView": "form", "id": "MV09MZ_FiHiG" @@ -2581,14 +2561,14 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 21, "metadata": { "cellView": "form", "colab": { "base_uri": "https://localhost:8080/" }, "id": "HSYoAAs5Zx2n", - "outputId": "27fb47f3-1af6-4851-f5e8-3617a63ba3ad" + "outputId": "13f74a21-4ed8-47cf-f4f5-c9e1d8dc4fc5" }, "outputs": [ { @@ -2608,7 +2588,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 22, "metadata": { "cellView": "form", "id": "kR68ECdVbFzH" @@ -2669,7 +2649,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 23, "metadata": { "cellView": "form", "id": "HhYYubgs9B8d" @@ -2704,7 +2684,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 24, "metadata": { "cellView": "form", "id": "nRTYZssU4Alh" @@ -2754,7 +2734,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 25, "metadata": { "cellView": "form", "id": "i3_tE_eXn8m3" @@ -2852,7 +2832,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 26, "metadata": { "cellView": "form", "id": "hW7dkEI6lbIm" @@ -2900,7 +2880,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 27, "metadata": { "cellView": "form", "id": "P2QkMqie-Dnr" @@ -2978,7 +2958,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 28, "metadata": { "cellView": "form", "id": "IQtllCseaFf_" @@ -3071,7 +3051,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 29, "metadata": { "cellView": "form", "id": "dJNc38w-RjGV" @@ -3170,7 +3150,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 30, "metadata": { "cellView": "form", "id": "6wcKEmLXls3N" @@ -3266,7 +3246,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 31, "metadata": { "cellView": "form", "id": "-r9m6Pbaxamp" @@ -3381,7 +3361,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 32, "metadata": { "cellView": "form", "id": "qHoAzRPamu5m" @@ -3548,7 +3528,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 33, "metadata": { "cellView": "form", "id": "4-jmGL9sAKv4" @@ -3753,7 +3733,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 34, "metadata": { "id": "6tmUO5C3LmJ7", "cellView": "form" @@ -3963,14 +3943,14 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 36, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 1000 }, "id": "G0wdRKfSgy5O", - "outputId": "bb84105f-22cd-4cb1-e193-63cb01b3cc28" + "outputId": "08c5cb90-402e-4769-80fb-6ff29ec84d48" }, "outputs": [ { @@ -3979,7 +3959,7 @@ "text/plain": [ "
" ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/sAAAQSCAYAAADwlOr+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdZ3hU1RaA4W9m0gsl9J4ACVV6EYmA9JrQLChiARUVRelNehdEFNErIlVQCIHQewcRpJjQW0IINZBeJzNz7o+YCKQnM5lJWO/zcK9kztl7BUgy66y911YpiqIghBBCCCGEEEKIQkNt7gCEEEIIIYQQQghhXJLsCyGEEEIIIYQQhYwk+0IIIYQQQgghRCEjyb4QQgghhBBCCFHISLIvhBBCCCGEEEIUMpLsCyGEEEIIIYQQhYwk+0IIIYQQQgghRCEjyb4QQgghhBBCCFHISLIvhBBCCCGEEEIUMpLsCyGEEBYiKCgIlUrF8uXLUz82efJkVCqV+YKyACl/LvPmzTN3KEIIIUSBIcm+EEIIkY7ly5ejUqmws7Pjzp07aV5v06YNdevWzdXYa9as4dtvv81jhBm7e/cukydP5ty5czm6LzAwkCFDhuDh4YGDgwMODg7Url2bTz/9FH9/f9MEK4QQQgiTkGRfCCGEyERiYiKzZ8826pg5SfYnTJhAfHx8jsa/e/cuU6ZMyVGyv3XrVurWrcuqVato3749CxYsYOHChXTp0oXt27fToEEDbt26laM4hBBCCGE+VuYOQAghhLBkDRo0YMmSJYwdO5by5cvn+/xWVlZYWZn2x/WNGzd44403qFKlCvv27aNcuXJPvT5nzhwWL16MWp15jSA2NhZHR0dThiqEEEKIbJLKvhBCCJGJcePGodfrs13dX716NY0bN8be3h4XFxfeeOMNbt++nfp6mzZt2LZtG7du3UKlUqFSqXB1dc1wvPT27O/ZswdPT0+KFSuGk5MTNWrUYNy4cQAcPHiQpk2bAvDee++lzvFkH4BnzZ07l9jYWJYtW5Ym0YfkBw6ff/45lSpVSv3Yu+++i5OTEzdu3KBr1644Ozvz1ltvAXDkyBFeffVVKleujK2tLZUqVeLLL79Ms0IhZYybN2/SqVMnHB0dKV++PFOnTkVRlHRj/fnnn6lWrRq2trY0bdqUU6dOZfh5CSGEEM8zqewLIYQQmXBzc2PAgAEsWbKEMWPGZFrdnzFjBl999RWvvfYagwYNIjQ0lO+//55WrVpx9uxZihUrxvjx44mMjCQkJIQFCxYA4OTklO14Lly4QPfu3alXrx5Tp07F1taW69evc+zYMQBq1arF1KlTmThxIh9++CEvv/wyAC+99FKGY27dupXq1avTvHnzbMcBoNPp6NSpE56ensybNw8HBwcA1q9fT1xcHB9//DElSpTg5MmTfP/994SEhLB+/fqnxtDr9XTu3JkXX3yRuXPnsnPnTiZNmoROp2Pq1KlPXbtmzRqio6P56KOPUKlUzJ07l969e3Pz5k2sra1zFLsQQghR2EmyL4QQQmRh/PjxrFy5kjlz5rBw4cJ0r7l16xaTJk1i+vTpqVV2gN69e9OwYUMWL17MuHHj6NChAxUqVCA8PJz+/fvnOJY9e/ag1WrZsWMHJUuWTPN6mTJl6NKlCxMnTqRFixZZzhEVFcXdu3fp2bNnmtciIiLQ6XSpv3d0dMTe3j7194mJibz66qvMmjXrqfvmzJnz1HUffvgh1atXZ9y4cQQHB1O5cuXU1xISEujcuTPfffcdAJ988gk9evRgzpw5fP755099jsHBwVy7do3ixYsDUKNGDby9vdm1axfdu3fP9PMUQgghnjeyjF8IIYTIQtWqVXn77bf5+eefuXfvXrrX+Pr6YjAYeO2113j06FHqr7Jly+Lu7s6BAweMEkuxYsUA8PPzw2Aw5Hm8qKgoIP3VBW3atKFUqVKpv3744Yc013z88cdpPvZkoh8bG8ujR4946aWXUBSFs2fPprl+yJAhqf+tUqkYMmQIWq2WvXv3PnXd66+/nproA6mrFm7evJnVpymEEEI8dyTZF0IIIbJhwoQJ6HS6DPfuX7t2DUVRcHd3fypBLlWqFJcuXeLhw4dGieP111+nZcuWDBo0iDJlyvDGG2+wbt26XCf+zs7OAMTExKR57X//+x979uxh9erV6d5rZWVFxYoV03w8ODiYd999FxcXF5ycnChVqhStW7cGIDIy8qlr1Wo1VatWfepjHh4eAAQFBT318SdXBACpiX94eHhGn54QQgjx3JJl/EIIIUQ2VK1alf79+/Pzzz8zZsyYNK8bDAZUKhU7duxAo9GkeT0n+/IzY29vz+HDhzlw4ADbtm1j586d/PHHH7Rt25bdu3enO3dmihYtSrly5Th//nya11L28D+bdKewtbVN06Ffr9fToUMHwsLCGD16NDVr1sTR0ZE7d+7w7rvv5mk1QkafW0bN/IQQQojnmST7QgghRDZNmDCB1atXM2fOnDSvVatWDUVRcHNzS61MZ+TZ7vo5pVaradeuHe3ateObb75h5syZjB8/ngMHDtC+ffscj9+tWzd++eUXTp48SbNmzfIUW0BAAFevXmXFihUMGDAg9eN79uxJ93qDwcDNmzef+jO7evUqQKanFAghhBAic7KMXwghhMimatWq0b9/f/73v/9x//79p17r3bs3Go2GKVOmpKk0K4rC48ePU3/v6OiYZjl7doWFhaX5WIMGDYDkhnkp40Nyg73sGDVqFA4ODrz//vs8ePAgzes5qZynVN+fvEdRlAwbGwIsWrToqWsXLVqEtbU17dq1y/a8QgghhHiaVPaFEEKIHBg/fjyrVq3iypUr1KlTJ/Xj1apVY/r06YwdO5agoCB69uyJs7MzgYGBbNy4kQ8//JARI0YA0LhxY/744w+GDRtG06ZNcXJyokePHtmaf+rUqRw+fJhu3bpRpUoVHj58yOLFi6lYsSKenp6psRQrVoyffvoJZ2dnHB0dad68OW5ubumO6e7uzpo1a+jXrx81atTgrbfeon79+iiKQmBgIGvWrEGtVqe7P/9ZNWvWpFq1aowYMYI7d+5QpEgRNmzYkOG+ejs7O3bu3Mk777xD8+bN2bFjB9u2bWPcuHGUKlUqW38mQgghhEhLkn0hhBAiB6pXr07//v1ZsWJFmtfGjBmDh4cHCxYsYMqUKQBUqlSJjh074uXllXrdJ598wrlz51i2bBkLFiygSpUq2U72vby8CAoK4tdff+XRo0eULFmS1q1bM2XKFIoWLQqAtbU1K1asYOzYsQwePBidTseyZcsyTPYBvL29CQgIYP78+ezevZtff/0VlUpFlSpV6NatG4MHD6Z+/fpZxmdtbc2WLVv4/PPPmTVrFnZ2dvTq1YshQ4ake79Go2Hnzp18/PHHjBw5EmdnZyZNmsTEiROz9echhBBCiPSpFOlqI4QQQggzePfdd/Hx8Un3JAAhhBBC5I3s2RdCCCGEEEIIIQoZSfaFEEIIIYQQQohCRpJ9IYQQQgghhBCikJE9+0IIIYQQQgghRCEjlX0hhBBCCCGEEKKQkWRfCCGEEEIIIYQoZCTZF0IIIYQQQgghChlJ9oUQQgghhBBCiEJGkn0hhBBCCCGEEKKQkWRfCCGEEEIIIYQoZCTZF0IIIYQQQgghChlJ9oUQQgghhBBCiEJGkn0hhBBCCCGEEKKQkWRfCCGEEEIIIYQoZCTZF0IIIYQQQgghChlJ9oUQQgghhBBCiEJGkn0hhBBCCCGEEKKQkWRfCCGEEEIIIYQoZCTZF0IIIYQQQgghChlJ9oUQQgghhBBCiEJGkn0hhBBCCCGEEKKQkWRfCCGEEEIIIYQoZCTZF0IIIYQQQgghChlJ9oUQQgghhBBCiEJGkn0hhBBCCCGEEKKQkWRfCCGEEEIIIYQoZCTZF0IIIYQQQgghChlJ9oUQQgghhBBCiEJGkn0hhBBCCCGEEKKQkWRfCCGEEEIIIYQoZCTZF0IIIYQQQgghChlJ9oUQQgghhBBCiEJGkn0hhBBCCCGEEKKQkWRfCCGEEEIIIYQoZCTZF0IIIYQQQgghChlJ9oUQQgghhBBCiEJGkn0hhBBCCCGEEKKQkWRfCCGEEEIIIYQoZCTZF0IIIYQQQgghChlJ9oUQQgghhBBCiEJGkn0hhBBCCCGEEKKQkWRfCCGEEEIIIYQoZCTZF0IIIYQQQgghChlJ9oUQQgghhBBCiEJGkn0hhBBCCCGEEKKQkWRfCCGEEEIIIYQoZCTZF0IIIYQQQgghChlJ9oUQQgghhBBCiEJGkn0hhBBCCCGEEKKQkWRfCCGEEEIIIYQoZCTZF0IIIYQQQgghChlJ9oUQQgghhBBCiEJGkn0hhBBCCCGEEKKQkWRfCCGEEEIIIYQoZCTZF0IIIYQQQgghChlJ9oUQQgghhBBCiEJGkn0hhBBCCCGEEKKQkWRfCCGEEEIIIYQoZCTZF0IIIYQQQgghChlJ9oUQQgghhBBCiEJGkn0hhBBCCCGEEKKQkWRfCCGEEEIIIYQoZCTZF0IIIYQQQgghChlJ9oUQQgghhBBCiEJGkn0hhBBCCCGEEKKQkWRfCCGEEEIIIYQoZCTZF0IIIYQQQgghChlJ9oUQQgghhBBCiEJGkn0hhBBCCCGEEKKQkWRfCCGEEEIIIYQoZCTZF0IIIYQQQgghChkrcwcghBBCCNOJTzBwPUTLlWAtV4O13AxJIj7RQJIONBqwtVFRqbQ1NarY4FE5+VcxZ425wxZCCCFEHqkURVHMHYQQQgghjEevVzhxPp6NB6M5eyURBVCpQK0CvSHt9WoVoALDv69VKWdFr9bOtG/miIOdLAIUQgghCiJJ9oUQQohCIibOwKZD0Ww6FE1YlAG1+r8EPidUKlCU5Kp/5xaO9H3FmQqlrY0fsBBCCCFMRpJ9IYQQohA4ERDP3NWPiYoxYDDiT3aNOjn5H+RdjD5tndGoVcYbXAghhBAmI8m+EEIIUYBFxxn4YX0Yu/+KS63Im0otVxvGvFOCSmWkyi+EEEJYOkn2hRBCiAIq8K6Wkd89JCLauNX8jKRU+Se8X5JWDR1MP6EQQgghck2SfSGEEKIAunIrkRELHxKvVXK1Lz+3VP/+z8j+LnRu4ZR/EwshhBAiR6TFrhBCCFHA3LyjZfjCh8Qn5m+iD6CQvFVg7qow9v8dm7+TCyGEECLbJNkXQgghCpCwKD3DFz4kQavky9L9zMxc9ph/riWYNwghhBBCpEuSfSGEEKKAUBSFBWvCiI4z5HtFPyMzlz8mPtFCghFCCCFEKkn2hRBCiALiwOk4jvnHW0yib1DgUYSeJZsizB2KEEIIIZ4hyb4QQghRAIRF6VmwNgxLO+VeUWDToRjOXZXl/EIIIYQlkWRfCCGEKABW74gkPlHBEo/QUatg0bpw5IAfIYQQwnJIsi+EEEJYuPgEAzv+jLWY5fvPMihw824Sl4K05g5FCCGEEP+SZF8IIYSwcHtPxZKoteyquUYNmw5FmzsMIYQQQvxLkn0hhBDCgimKgu/BaFSWtln/GXoDHPg7jsgYvblDEUIIIQSS7AshhBAWLfi+jlv3dBSE7fB6Axz9J97cYQghhBACsDJ3AEIIIYTI2JXgzPfB63UJ3L2wmoc3thEXfh29LgEbh5I4FHXDpcorVK7/Afcur+fygREAOBSrRrPX96BSawA4vaEnUQ/PUqz8izT0/gOAs36vE3H3RPIEKjUaK3tsHMpQtGxjKr7wDs6lXkg3Fo0Grt7S0q2lkT55IYQQQuSaVPaFEEIIC3Y1WItGk/5rSQnhnPHtxfXj04h6cAaDIQmHYm6oVGoi7v3FjePT09wTF3GD+1d8sjW3Sm1DkVL1sbJxJj4ykPtX1nPatyd3L65N93q9Hi4GJWb7cxNCCCGE6UhlXwghhLBglwIT0WewDf7qkYnEPL4IQMUX3qfqi6PRWNkBoEuMIjRwV7r3Bf69kDIePVFrbDOd29axNI37bAIg6qE/F3Z/TEJ0CFePTKBouaY4Fq+e5p6gu0kk6RSsrSy8yYAQQghRyEllXwghhLBggXeT0v14UmIkoTe2AeBUojbVW36VmugDWNkWoVzNV9Pc51SyDokxd7hzflWO4ihSuh7VW04CQDHouHfpj3Sv0xvg9oP0YxZCCCFE/pHKvhBCCGGhFEUhIYMj9+IjAlGU5JJ/0XJNUamSn98H7PiAR0G7U6+r+cq8p+5zazqM87s+4taZHyhX640cxVOsXLPU/44Nv5bhdXEJBaCboBBCCFHISWVfCCGEsFBJuuxdl5LoAzgUq4pTidoZXmtf1JVyNV8jKSGM2//8kqN4FMWQresSkyTZF0IIIcxNkn0hhBDCQqkz+SntUKwqKlVy577I+6dTP16txVhqd/g+03FdGw9FbWXH7X+WkJQYnu14Iu+dTP1vx+LuGV6nkXcXQgghhNnJj2MhhBDCQllpVKgz6HNnZVuEUtW6ARAd6k/gyW9QDBl08nuGrVNZKtR9B31SDPGRQdm6J+qhP9ePTwNApdKk2w8gdXxrac4nhBBCmJvs2RdCCCEsWPEiGh5Hpp/Ee7w8ldjwa8Q+vkTQ6YXcDvgV+yKV0MaGZjlulYafcO/iWnTaqAyvSYx9yOkNPUmMvU9i7H1AQaW2wuPl6Ti6eGR4X8niGZwVKIQQQoh8I5V9IYQQJpOkUwh5mMSNEC2XgxK5EaLl9oPko9lE9tRytcmwum9tV5zGvTdR9cWxOJd6ARQDceE3UFvZ4lKpNR6tZlLSrWMG9xajUoMPMp1bMWiJengOnTYK+6KulK3Rl8a9N1G+dr8M7yniqKZkUUn2hRBCCHNTKYoi77iEEEIYxcMwHacuJXA1WMulwEQC7yahT6enm0YNruWsqeVmi0dlG5rUsqNsCVlslp7fdkaybGskhuz1xjMrlQqa1rJj9pDS5g5FCCGEeO7JOyshhBB5YjAonL6cwKZDMZw4H4+igEYD+ky2j+sNcONOEkH3k9h6NPljzevY0bONM01r2aHOqJT9HPKobFMgEn0AtQpqutqYOwwhhBBCIMm+EEKIXFIUhb0n41i2NYL7j/Vo1JCyViyzRP9JT1536lICf11IoFRxDe92L0rnFx1RqSTpr+Vqi5UGdNn8MzUnvQFeqG5n7jCEEEIIgSzjF0IIkQuPInTM/y2Mvy4kmGyOJrXsGNnfhVLF5bn0zOWPOPB3XLpbIixJGRcNv00tLyszhBBCCAsgDfqEEELkyN6Tsbw79R6nLpku0Qc4eyWBd6bcY8efMTzvz6V7tna2+ERfpYJebZwl0RdCCCEshCT7QgghskVRFH7xi2Dm8sfEJSgm30euN0CCVuHrVWH85BvxXCf8tVxtqFreGkve1aBRQ6cXHc0dhhBCCCH+Jcm+EEKILCmKwqL14azZlfGZ7Ka0fl80C9aEPbcJv0qlol+nIljqp69WQdeXHCnqJEfuCSGEEJZCkn0hhBBZ+nVLJBsPxpg1hq3HYp/rCn/bJg40rWWHxsJ+cqtUUMxZzaCexc0dihBCCCGeYGFvGYQQQliag6dj+W2neSr6z1q/L5o9J+PMHYZZqFQqRvR3wcbastbyKwqMHlACJ3t5SyGEEEJYEvnJLIQQIkPh0Xq+WROGJaWXC38P41GEztxhmEWp4lYMec1yKuhqFXRp4UjT2vbmDkUIIYQQz5BkXwghRIa+XRtGXKKCJS2c1yYpzP/t+d2/3/lFRzq3cDT7Axi1GtwqWPPpq5bz8EEIIYQQ/5FkXwghRLoOnYnjyLl4k3fdzym9Af66kMDe52w5f1BQED/88AP16tVj2qdVaVnfzmwJv1oN5UtaMe/z0jjYyVsJIYQQwhKplOe1NCKEECJDiqLw/vR7BN/XWWwH+PIlrVg1pRwqSz6PLo+OHj2Kn58ffn5+XLt2LfXjRYsWJfRRGHNXhbHvVP4+9FCrwbWcNfM+L00xZ+m+L4QQQlgqK3MHIIQQwvJcuKnl1j3L3hd/95GOs1cTaVTDztyhmMTly5d5+eWXUavVGJ5YXqFSqRgzZgzWVmrGvlOCCqWsWLUjCpUKk67CUAEK4FnfnhH9pSGfEEIIYenkJ7UQQog0/A5HW9wRb8/SqGHToWhzh2EyNWrU4L333ku3N8GAAQMAUKtVvNu9GD+OLkvF0lYmW9avVoOjvYqJg0oy+YNSkugLIYQQBYD8tBZCCPGUiGg9B0/HobewvfrP0hvg2D/xhBbSzvwqlYpFixZRrly51I9pNBo6dOhA+fLln7rWo7INXWr+SWPXO1hpwFg7G9T/vkto1cCBlZPL06aRg3EGFkIIIYTJyTJ+IYQQT/nnWqLFJ/opFAXOXUmkQ/PC9+MsNjaWPn36EBoaSp06dbh06RJ6vZ6BAwc+dV1cXBwjR45k8eLFVKlSBf8LN9h1IpaNB6O5/1iPRk2O/j5Trne0U9HN04keLztRoZS1kT87IUxHm6QQdC+JqFg92iQFlUqFjbWKYk5qqpSzxkpTePt8CCHEkwrfuyMhhBB5cjVYm5rwnfV7nYi7J7BzrkiL/se4tH8496/4pF6rUmmwsi2Gc+l6VG02AudSdVNfO/BjFQDK1uhLrbbzn5oj8NQCgv7+FgCNjTMtB5xCY/30We1xEYEEnvqGyHun0MY/xsrGCVun8hQp3YAarWck36uBq7e1dGjuaIo/CrMJDw+nW7duBAQEsGPHDpo1a0abNm0IDAzEy8sr9bpjx47Rv39/bt26BUCtWrUo4qjh1XZFKKE6zdLfT9DklY+4FJRI0N0kdPr/5lCpSNN8sUIpK2q52RB0fivTx/SkdMli+fDZCpE3MXEGDp+N41JQIpcCtdy6n5ThAy4rDVStYE0tV1tqu9ni2cAee1tZ6CqEKJwk2RdCCPGUy0HZq+wXKd0Qg0FLzONLhAUfIPqhPy3ePo7GKvOGeYqicP/KhtTf67XRhAbuoKxH79SP6bTRnNvyJokxd1Fb2eHoUh1dYjSxYZeJj7iZmuzr9XApMDF3n6iFunfvHp06deLu3bvs37+fpk2bAsmd+cPCwrCzsyM+Pp4JEyawYMECVCoVipJcvUxZ3h8QEECXLp3RarUs+XYoDg4u6PQKQXeTOH46iH8CLtPS8xWsrcDGWsXe7WtIirnJt1Nmc/z4cVq+9x5Ht8/lzJkz2NkVzgaIouC7dluL36Fo9pyMJUlHtlax6PRwNTiJG3eS8Dscg/3vKrq85IRXKycql5EVLEKIwkWSfSGEEKkUReFKsDZb1zbuswmAoNPfEXhyPkkJj4kLv4ZzqRcyvS/i7gkSom8D4FyqHtGh/ty/7PNUsh95/zSJMXcBaPb6HuyLVAaSHwKE3T781HjXQ5LQGxQ06oK/NPfmzZt06NCBxMREDh8+TO3atVNfs7e3p0KFCgC8//77/P777wCpDfysrKxwdnbm/PnztGrVCq02+e/x+vXr1KtXDyuNimoVrenQqhNBQUEMv3OH8uXLoygKfTsMJyYmhjde68nNmzcBuHTpEn369GHjxo3Y2Njk5x+DEJm6dlvLgrVhXA7SPpXg52S7iv7fVS7xiQp+h6LxPRBN45q2DH3DhYqlJekXQhQOsm5JCCFEqqhYA3EJabu/Z8Sg15IQFQKASm2DrWO5LO4gdRuAc+n6uDYZCkD43T9J+De5B0D57137nfOriHxwFr0uASsbZ0pX6/bUeNokhbAoPQVdQEAAnp6eaDQajh079lSi/6xPP/2U6tWrp/l4QkICrVq1IioqKvVj165dS/1vPz8/goKCAPjpp58A8Pf3JyYmBoB+/fpx7tw51P925tuxYwdvvvkmen3B//MVBV+STmHZlggGz77P1X8fShqjv0jKGGevJjJw+j189kdhMGT/+6AQQlgqSfaFEEKk0iZl/w3ugR+rcOhnd+5d/gNQUaPVdGwcSmZ6jy4pltAb2wEo69ELl0qtsbZzAcXwVC+AYhVewqFYNQBu//MzZ3x7cmTpC5zd3I/HwYfSxq0t2G/M//zzT1q1akWZMmU4cuQIVapUyfR6T09PLly4gLu7O2q1Go1GQ1JSEqtWrSIqKgqDITl70Wg0XL16FYDExESGDh2aOsYPP/xAYmIiPj4+qcl9cHAw69evT10toCgKvr6+vP/++6ljCmEON0K0fDjzHqt3RKEoYIp/jgYDJOlgsU8En89/wN1HhfOkDyHE80OSfSFEoaM3KOmeTS6ylpSDAm6R0g1xLlUPjY0zoHDt+DRiHl3M9J7QG9vR6+JQqa0pXd0Ltcaa0tW7Azy1j19jZUfjPptxazoMp5J1Uak0KAYtEXeO47/tHcLvHM913JZm165dtG/fnhdeeIGDBw9SpkyZbN23Y8cOrl27xpo1a/jss8+A5M78T1bhVSpVamX/22+/5fbt26mvhYWFsW7dOtauXZuayBsMBoKDg5/6+lEUhZUrV/Lrr7/m+XMVIjfOXU1gyNcPuP1QR359Z79yS8snc+5z/Xb2tjUJIYQlkj37QogCSW9IbjZ2NVjL1WAtl4ISCb6vQ5ukYFCSO43bWKkoV9KK2m42uFe2oUZlG6pVtMHaquDv7TYV6xz8VEjZs6+Nf8yfq1ui10YTfO5/1G6/MMN7Uqr3iqLnrzVtADAYkt9Mx0cGEXHvFMXKJTeks7JxwrXJUFybDEWnjeFR4C4uHRgBioFHgXsoXuGlXMVtSdatW0f//v3p2LEj69atw8Ehe+fYa7VaRowYQYcOHXjttdd4/fXX+fzzz/Hx8WHp0qVcuXIFlUqFTqfj4sWL3L9/nylTpjyVxKvVambOnMmNGzcynatcuXL07duXrl275ulzFSI3/r4Uz7jFoegNaU+PMCW9AWLiDQz95gELviyDR2XpWyGEKHgK6NsjIcTzKjxaz47jMWw6FMOjiOQKpkbzX7OlFIoCif+etXz7QRLbj8cC4OygxutlJ7p5OlG2hHwLfJadTW4WfKng33qbQZ9xZ/z4qGAi7v6V/BvFgE4bleaa+5fXU6xcU6JDA4i8/zelq3tjY++ClY0TLpXboFZbY9AnYmXjbIS4zevnn39m8ODB9OvXj+XLl2Ntnf2mYD/88AM3b95k48aNqFTJD6/c3NwYOXIkd+/eJTw8nNGjR/P7779TpUoVli1bRnx8fOr9Kcv2L1++DJDa0T+Fra0t3t7erFu3Dl9fX1588UVjfMpC5MiFm4lM+DH/E/0UBgMkahVGLHzAopFlqVxWGvcJIQoWeacrhCgQbt1LYvXOSA6ejsOgPP3GL6veYU82cIqOM7B2TxRrdkfRvI4db3cpSi03W9MEXQA52aso4qgmKjbrDbGnN/REwUB8RCAGXQIAJd06Znh98jJ9BZXampbvnsbatmjqa9eOTSXEfykPb27H3XMK2vjHXDs6mWtHp2BftAoaa8fkefSJqDW2lKraOfVee1sVLkUKTrKvKApz5sxh7NixDBkyhIULF6Ym39nx+PFjpk6dygcffEDdunWfes1gMODj48Nrr73GsGHDGDZsGAARERG4uroSGRnJhAkTqF69Oo0aNSIkJIRSpUpRv359li9fTsmSJdm6dSs2NjbodDr27dvH5s2bJdkX+S4qVs+En0LR6c2T6KcwKBCXqDD+p1CWji+HjbWsDBNCFByS7AshLJper7BuXzTLtkSgKMbpvJzS2OnkxQT+upDAq+2cea97UWwLYHXY2FQqFTWr2HDqUkKWb7CjHp4FQG1lj1PJOpSv1e+p4/OepChK6p78YhVaPJXoA5Ry60yI/1L02mhCA3dQvEJLKjf8lIi7f5IQfZuE6BDUVvYUK/8iVRp9ilPJ/zrVe1S2Sa1uWzpFURg1ahTz5s1j0qRJTJo0KcexT5kyBb1ez5QpU9K8dvLkSUJCQujbt+9THy9WrBj9+vUDYOLEifTo0YPx48c/dc3Vq1c5ePBg6jF7VlZW9OjRAz8/P2bOnJmjGIXIq+/XhRMdZ8ASmuIbDHA3VMfybZF82LOYucMRQohsUynSxUoIYaFu3Uti1vJHXL2dZNJ5VCooV8KKse+WoE5VqfIv3xrBbzujjPJgxdQ0ani1nTMf9ipu7lCypNPp+Oijj/j1119ZuHAhn3/+eY7HuHz5MnXr1mXGjBmMHj06zesjRoxg1apV3L17F41Gk+Z1RVGwtbVlwYIFfPrpp0+99t133zFq1Cji4uJSVxps2rSJXr16ce3atXSP+hPCFI75x/HVT4/MHUYaKhUsGlFGVoMJIQoMKWMJISzSnwHxfDDzHtfvmDbRh+Qlovcf6/h8/gO2Ho0x+XyWzr2yTYFI9CF5pUdBaJyVmJjI66+/zooVK1i5cmWuEn1ITuYrVar01BF6KRRFwcfHh969e6eb6AMkJCSQlJRE0aJF07zm7u5OYmLiUx37O3TogJ2dHX5+frmKV4icio03MG91GJa4WEelgpkrHqPXS51MCFEwSLIvhLA4B/6O5aufQtHrTXOWcnpS+gB8syaMdXvTNo57njRwtysw+1KtNNCwhp25w8hUdHQ03bp1Y9u2bWzcuJG33347V+Ps2bOHbdu2MXfuXOzs0n7Op0+f5tatW2mW8D8pMjISIN1k38PDA0hezp/C0dGRDh06SLIv8s3uv2KJjDGYdZ9+RgwGuPNQx/GA+KwvFkIICyDJvhDCohz3j2P6ssfJybeZYvjJN4LNh6PNNLv5Odqr6dTcEY2F/4TQqKFtEweKOqVfxbYEjx8/pn379pw8eZJdu3bRo0ePXI2j0+kYNmwYnp6eGSbzPj4+lCxZktatW2c4TmbJfpUqVbCysuLatWtPfdzb25tjx47x6JHlLasWhYuiKPgetOzvvWo1bLTwGIUQIoWFv5UTQjxPboRombzkkfmy/Cd8+3s4py4+v9Ubr1ZOFr+UX2+Anq2ds77QTO7cuUOrVq0IDAzk4MGDmSbhWVm6dCnnz5/nm2++Sbehn6IorF+/nl69emFllXHv3YiICCC5Yd+zrKysqFat2lOVfYDu3bujKApbt27NdfxCZMc/1xK581Bn7jAyZTDAuauJBD8w/RYzIYTIK0n2hRAWQadXmLXcvBX9J6lUMGflY2LiLTzjNZFqFW2o7WaD2kJX86tUUL2iNTVdLbNR1rVr12jZsiXR0dEcOXKERo0a5XqsyMhIvvrqK95++22aNm2a7jXnzp3j5s2bmS7hTxkL0q/sQ/JS/mcr+2XKlKFFixaylF+Y3ObD0Ra/ogiSq/tbj0h/FyGE5SsA31KFEM+DtbuiCLyblG979LOiKBARbWCxT7i5QzGb972KWcSxV+lRlOT4LNG5c+fw9PTE3t6eY8eOUaNGjTyNN2vWLGJiYjI9/s7Hx4fixYvzyiuvZDpWVsm+u7t7mso+JC/l3717N/Hxz+9qF2FaiqLw9+UEi19RBMnV/VOX5GtBCGH5JNkXQpjdjRAtK7dHWkRF/0kGBXb+GctfF57PN3WNatjRw9PR4qr7ahV0au7Ai3XtzR1KGkeOHKF169ZUrlyZw4cPU6lSpTyNFxgYyIIFCxg5ciQVK1ZM95qUJfw9e/bE2to60/EiIyNRqVQUKVIk3dc9PDwIDAwkKenpJcre3t7ExcWxd+/e3H0iQmQhNFxPTJzpfgqE3/mTAz9W4cCPVYiPuv3Ua4GnFqS+9uwvgyH9bQW37+tI1BaAJxNCiOeaJPtCCLNbttXyEv0UKhX8vDECxRJbQ+eDj3oXx6WoxmISfpUKijqp+fRVF3OHksa2bdvo2LEjjRs3Zv/+/ZQqVSrPY44ePZqSJUsyatSoDK85f/48165d49VXX81yvIiICJydnVGr0//x7+7ujl6vJzAw8KmP16hRgxo1arBp06YcxS9Edl0J1po7BKztXChSuuFTv1Sk/83PoMDNfDgaVggh8iLjLj5CCJEPHobp+DMg3iKPWYLk5eKBd5O4GKilTlXL3B9uSg52asYMKMGI7x6aOxQg+e9j5NslcHKwrGfVa9as4Z133qFbt278/vvv6R6Nl1NHjx5l/fr1LF++HEdHxwyv8/HxoWjRorRr1y7LMSMjIzNcwg9PH7+X8t8pvL29WbZsGXq9Ho3Gck9AEAXT1WAtGjVplvH/ubolCdEhVG4wGL0ujgfXNqNSaSjj7kW1lyagVlth0Cdy6/QPPLjuR0L0HaxsilDCtS3VXhyHjb0LgacWEPT3t6ljnvjNE4CyNfpSq+381I+XqNL2qd9nRvVvzLXcnr+fC0KIgsOy3i0JIZ47W4/FZFA3sRwaNfgden6PWmpU044v3ihu7jAA+LRvMYtbvv/DDz/Qv39/+vfvj4+Pj1ESfYPBwJdffknjxo15++23M712/fr1eHt7Y2Njk+W4WSX75cuXx97ePk2TPkhO9kNDQzlx4kTWn4AQOXTvkS7Th763/Zfy4NpmNFZ2JCU8JiRgGfcvrwcgYOdHBJ1eSELUbRyKV8dg0HL/8nrO+r2GXpeArWNZHIpXTx3LqWRtipRuiH2Ryk/NEXpzB4d+9uDYiib4b3+P6NDzGcaj0cC9x5Z9coAQQkiyL4QwmySdwubDMRbbBC6F3gAHTscREa03dyhm49XKmY96FTNrDO/3KEqftunvNTcHRVGYNm0aQ4YM4YsvvmDp0qWZHnuXE7/99ht///03CxYsyHDJPcDFixe5dOlSll34U0RERKR77F4KtVqdYZO+5s2bU7p0aenKL0wiMUnJ9GeBrWNZWrx1hOZvHsLGsQwA4XeOEX73BGHBBwBo4LWWZq/tpPkb+1Bb2REXfo0H1zZRvnY/PF6enjpW3U4/07jPJlybDE39mEqlwcahFHbOFdHGhfL41n7ObOydacKfmGThP7yEEM89SfaFEGZzMTCRqNiC0eBIb4CTz2mjvhSvdyjCl/2SK/z5tYc/ZZ5P+xajf5eMK9L5LaXyPnHiRKZPn878+fMzTcpzIjY2lrFjx9KnTx9efvnlTK/18fHB2dmZDh06ZGvsrCr7kLyUP71kX6PR0KNHD0n2hUno9JknziVdO2BlWwSNlR32zsmNL7VxoUQ/OJd6zVm/1zjwYxWOr2yGQZcAQNSDs1nOXcbdm5bvnuHFNw/RvN9+6nVbCYBBn8id8yvTvUcB9M/v818hRAEhe/aFEGZzNViLSoXJ9uuH3/mTc5vfAODFt45iX+S/zugRd//i1tnFRD/0JykhDACPVjOoUKd/umNpNMnxdnzRNLEWFD1edqZyGWtmrXhMaITepL0W1CooXkTDmHdK0Lhm3pfGG4tOp2PgwIGsWrWKxYsX8/HHHxt1/Hnz5hEaGsrcuXOzvNbHx4cePXpke+tAZGQkFSpUyPQad3d3Vq9ene5r3t7eLF26lMuXL1OzZs1szSlEdthaqzL9eWBl+9+qHpU6/bevRUo3TPMxG4esG2U6FKv61O9LVG6NtV1xkhLCSYi5m+49KsBG3kULISycfJsSQpjNNRMn+5mJDj1PeMhR7Jwrpyb7mdHr4VKQ+btFW4L6HnYsm1iOJZsi2HQoBrUKo27FSBmva0tHBvcujoOd5SxCi4+P54033mD79u389ttv9OvXz6jj37lzh7lz5zJ06FCqVq2a6bVXrlwhICCAqVOnZnv8yMhIateunek1Hh4e3L59m7i4OBwcHJ56rX379jg4OODn5yfJvjAqe1s1ahVkUeBPw7l0/dT/rtzoE0q5dQTAYNARHnIUh2LVANBY/dfrw6B7epXWrbM/Uqa6F3bOyQ/Cwm4fISkhHAA75wyOvPw3ZiGEsGSS7AshzOZCoBZDOqv486P7ctkavSlf5y20caGpr2XleogWvUFBYynn0JmRva2az193oXVDB5Zvi+Sfa4mo1aT795ldKZ2461S14Z1uxWhkQdV8gKioKLy8vDh58iR+fn507drV6HOMHz8eBwcHxo8fn+W1GzZswNHRkU6dOmV7/Kz27ENyZR/gxo0bvPDCC0+9Zm9vT6dOnfDz82P06NHZnleIrLiWs87Vg9/iFVrgUqk1YbcPcX7nB8nJvUpNYvQd9Lo4Gnj9jn2RStgXrYJKbY1iSOLcljexc6pIpQYfULpaN+5eWM3NE3OwdSqPxtqeuPAbAGisHKhU7/1059XrwbW8dV4+ZSGEMDlJ9oUQZqHTK9x/lHkn49v+S9FYO6KxsiMx9j4hActwdKlB+dr9CNj5EWHBB1CpNDi4eJAQHcL9y+uJenCOJn23pnZfjgu/DiR3X1arbVO7L1vb5by7fJIO7j/WUaGUvMFLUd/DjgUedty6l8SWI9FsPx5LglZJ3WufWcVfrQJUyQ8IbG1UdG7hiNfLTriVz7qrfH4LDQ2lc+fO3Lhxg927d+Ppmb0HRDlx+vRpVqxYweLFi7PcVw/JXfi7d++OvX32TyfI7p59SD5+79lkH5KX8r/33ns8ePCAMmXKZHtuITJTo4pNrlcI1e38M8FnFvPg+mbio4LRWDviULw6LpVb4+hSA0j+nu/uOZlbZ34gMeYe2rhQtHGhAFRp9CkPb2wjNuwqCVGPsHOuQNGyTXBt/DkOxatlOK9HZcv7XiWEEE+SZF8IYRaJWoWs3tfZOpal6avbUWlsOLGmFdrYB4TfOYZ9Mbenui8XK9+cxNgHnFjT6qnuy/ZFXVP37Nft9PNTe/ZzKyFRui+np0o5a6Jv/I9/Nixh084AroXouBqs5VKgltCItF2sShTVUNvNhhqVbXCvbEPdqrbYW9By/ScFBwfTsWNHIiIiOHToEPXr18/6phxSFIUvv/ySOnXq8MEHH2R5/fXr1zl37ly2VgA8OUd2kv2SJUtSrFixdI/fA+jWrRsqlYotW7YwaNCgbM8vRGaqV0o/cW7R/1iajzX0/uOp32us7HBrNgy3ZsMynaNCnf7p9mUpX/tNytd+MwfRJj+grFBK3kYLISybfJcSQpiFVpd10pzSfRnA3rkS2tgH6XZfflbUg7OUr/WG0WJ9Unbifh6tX7+ecePGAVDS4SFNO7mlvqZNUpJ/6RRsrFSc/OsoXj26MvrgQZo0aWKukLPl8uXLdOjQASsrK44ePUr16tWzvikXfH19OXLkCDt37szW8X0bNmzA3t6eLl26ZHuOmJgYDAZDlsv4VSpVhsfvQfLDAE9PT/z8/CTZF0bjZK+mbAkN9x8XjBb3HpWsUcuWLiGEhbPMMooQotCz0mT9Jim73Zef/ZWd7su5ZZ2NuJ83mzZteqpR3ZUrV5563cZahZODGpciGpwc1KxauYzY2Fjeeecd9BZ8dtXp06d5+eWXKVq0qEkT/cTEREaNGkWXLl2yvf/ex8eHrl274ujomO15IiMjAbK1RSCj4/dSeHt7s3fvXmJjY7M9vxBZadPYMd+O9cwLFdCqoUOW1wkhhLlJsi+EMAtb69y/o3u2+3LjPpto3GcTDXv54Nr0C8rVfB3IvPtybtnkIe7CaOvWrbz66qupSbtKpUqT7D9Jr9ezbds2AC5evMh3332XL3Hm1MGDB3nllVeoVq0ahw8fzvK4urz47rvvuHXrFvPnz8/W9UFBQfz999+8+uqrOZonJ8m+u7t7hsv4ITnZT0hIYPfu3TmKQYjM9PB0MurJHqZiZQWdXnQydxhCCJElSfaFEGZhY62iqFPuvgWldF8GOL/zA/5a25a/fm/P0aUv4L/tHRKiQwBSuy8DnNvyJqc39OThjeREM/TmDk781ip1Tz9A4MlvOPFbKy7u/TzdeVUqKO2iyVXMhdG+ffvo1avXU9V5jUbD5cuXM7zn8OHDhIaGpv5+zJgxmVaQzWHz5s107tyZ5s2bs3fvXlxcXEw218OHD5k+fTqDBw+mVq1a2bpnw4YN2NnZ5fg0gJxW9h8+fJh6z7OqVatGnTp18PPzy1EMQmSmXEkrmta2Q23B7041aujY3BEnBwsOUggh/iXfqYQQZlPT1QZVLgvldTv/jGvjodgXdSM+KhhtXCgOxatTpfFnabov2zqVRxv3iKiHZ1O7L+u0McRH3Up9MACQlPCY+KhbJMY+SHfOiqWtsLORb5sp9u/fj06nQ/3EO3OdTsfFixczvOe33357ak+6Xq9nwIABFrOcf+XKlfTu3Zvu3buzdetWnJxMW72bPHkyKpWKyZMnZ/ue9evX07lzZ5ydnXM0V0REBECWe/bhv+P3sqrub926FZ0u81M1hHjWtGnT6NatG127dqVLly507NiRVq1aUaVKFSIDN+TpCE9T0xvAq1XOvvaEEMJcVIqSm1NNhRAi75ZvjeC3nVHoLfiNXQqNGto3c2T0gBLmDsWiXLp0iQULFrBkyZLUj5UuXZoHD9I+MElMTKRUqVJER0enee2XX35h4MCBJo01KwsXLuSLL75g4MCB/O9//0OjMe0qjgsXLlCvXj3mzp3L8OHDs3VPcHAwVapUYfXq1bz11ls5mm/t2rW8+eabREdHZ/kQIzIykmLFivHbb7/x5pvpdyk/efIkzZs359ChQ7Rq1SpHsYjnW+vWrTl8+HC6r3388SdYV/uKi4Fai/vZoFZDqwb2TBxkur4wQghhTFKiEkKYTY0qthb3Zi4jBkXOVE5PrVq1cHZ2pmzZsly/fp358+czatSodK89d+7cU4m+SqWiTp06eHt7U7t27fwKOQ1FUZg4cSJffPEFo0aNYsmSJSZP9AGGDx+Om5sbQ4YMyfY9vr6+2NjY0L179xzPFxkZiUajyVZTv6JFi1KmTJlMt1g0adKEcuXKsWnTphzHIp5vkyZNSvMxlUpFhw4d+OGHRYx+p6TFLeVXqZJPDBj6hum29QghhLHJ0XtCCLOpU9UGKw3oLGMFd6YUBRrWsDN3GBZHURQ2bNhAr169qFatGsOGZXzOdePGjdm/fz8uLi7s27eP0aNHc+7cuWwdNWcqBoOBzz77jMWLFzN79mxGjx6dL/Pu2LGDXbt24evri62tbbbv8/HxoVOnTtnad/+syMhIihQpgiqbe2eyatKnVqvx8vLCz8+P+fPnZ3tc8Xx79OgRO3fuRK1WY/h3vb5araZ06dKsXbsWlUpF+ZJWDO5dnO/XhZs52v8oCgx704WiTtK3RQhRcFjYc1MhxPOkiKOGVxo7oLHw70RqFdStaoNrOWtzh2Jxzp49y61bt+jTp0+W11pZWfHKK69Qv359ateujU6n4+7du/kQZfqSkpLo378/P/30Ez///HO+JfpJSUkMHz6c1q1b07Nnz2zfd+fOHY4dO0bfvn1zNW9ERES29uunyOr4PUjet3/z5k0uXLiQq5jE8yMsLIzx48fj5ubGjz/+mGZ7yPr16ylR4r9tUt6tnKjvbmsRFX6VCto1cZDj9oQQBY4FfAsVQjzPerZ2tvil/AYFerWRhkzp8fX1xcXFJcd7tt3c3AAIDAw0RVhZiouLo2fPnvj4+PDHH3/wwQcf5NvcP//8M5cvX2bBggU5qob7+vpibW1Njx49cjVvZGRkjlYEpFT2M2vt07ZtW5ycnKQrv8hQeHg4EydOxNXVlW+//ZYhQ4YQGBjIqlWraN06+VSVadOm4enp+dR9arWKqR+VolIZK7M+EFar4IVqtox8W/q1CCEKHkn2hRBmVdPVhmoVrHPdlT8/FHVS49lAKjrp8fX1xcvLC2vrnK16qFy5MpB8Znx+i4iIoFOnThw6dIht27blulKeG+Hh4UyaNIl3332Xhg0b5uheHx8f2rdvT/HixXM1d06TfQ8PDyIjI586KvFZtra2dO7cWZJ9kUZkZCRTpkzBzc2NefPm8dFHHxEYGMisWbMoWbIkAP/73/+YNm0aY8aMSXcMB1uFttVOUbaE2iwVfrUq+WfUzE9KYWNtwT+khBAiA5LsCyHMSqVS0b9LUSz5XJA3OhTB2kre6D3r0qVLXLp0KVtL+J9lb29P2bJl8z3Zf/DgAW3atOHChQvs3buXDh065Ov806dPJyEhgRkzZuTovvv373PkyJE8PZjIzTJ+IFtL+U+dOmXWLRnCckRHRzNjxgxcXV2ZPXs277//Pjdv3uTrr7+mdOnST11bo0YNJkyY8NTxnQD+/v6MHDkSFxcXBrzVk+JRP1C9Yu6Pas2txjXtmDe0NA528nZZCFEwyXcvIYTZtWpoj2d9e4vYm/kktRo8KlnTt60s4U+Pr68vTk5OtG/fPlf3u7q65muyHxQUhKenJw8fPuTw4cO8+OKL+TY3wPXr1/n+++8ZM2YM5cqVy9G9GzduRK1W4+3tnev5c1rZr1atGkCmTfoAunbtikajYfPmzbmOTRR8MTExzJ49G1dXV6ZOncrbb7/NjRs3+OabbyhbtmyW94eGhvL1119Tp04d6tevzzfffENUVBQAQz5+j++Gl+HNjkVQqTDpzwqNGqw0MLh3MWZ+Wgo7Gwv7wSSEEDkg38GEEGanUqn4op8L9rYqLKl+rgLGvFsSjcaSorIcvr6+dOvWDTu73J1SkJ/J/sWLF2nZsiWKonDs2DHq1q2bL/M+adSoUZQpUybTEwsy4uPjQ7t27Z5qYJZTOU327e3tqVy5cpaVfRcXF1q3bi1L+Z9TsbGxfP3117i5uTFx4kTeeOMNbty4wXfffUf58uWzPc7nn3/OqFGjuHjxIkBqp353d3c8PDywsVYx0LsYi0eVoUIpK6NX+VOGc69kwy8TyvFa+yJo1PK9XwhRsEmyL4SwCC5FNHzZzwVLWs3/vlcx6cCfgaCgIM6cOUPv3r1zPYabm1u+JPsnT57k5ZdfpmTJkhw9ejS1OWB+OnjwIBs3bmT27Nk4OOSs/0NoaCgHDx7Mc2+BnCb7kPXxeym8vb3Zv38/0dHRuQ1PFDDx8fEsWLCAqlWrMm7cOHr37s3169f54YcfqFixYo7HmzRpEmXKlEGj+e9oOysrqzTbhGpUsWXJuHJ81KsYpYonX5uXSn9K87+KZaz4sl9xvh9Zhspl5Pu+EKJwkGRfCGExXmnswKvtzL9kXqWC1g3tea29+WOxVCnnw3ft2jXXY7i6unL79m10Op0RI3va3r17adu2LTVr1uTgwYPZWk5sbHq9nmHDhtGsWTP69euX4/s3btwIkKNj+tKT0z37kL3j9yA52ddqtezcuTOX0YmCIiEhge+++46qVasycuRIevTowbVr1/jf//6X2ngzN2rWrMnSpUtTK/oAOp0OLy+vNNfaWKt4rX0R1k4rz6xPS9G01n+ri9RqMq36q1XJv1KufbmBPQu+LM3yieXo8bKzVPOFEIWKlbkDEEKIFCqVisG9ixGXYGDbsVgzxQBNa9kx7r2S8qYvE76+vnTq1AknJ6dcj+Hq6operyckJARXV1fjBfcvX19f+vXrR9u2bfHx8cHR0dHoc2THypUrOXv2LMeOHUvTiCw7fHx8aNOmDaVKlcp1DHq9nujo6BxX9j08PFi+fDkGgyHT2KtUqUL9+vXx8/Pj1VdfzXWcwnIlJibyyy+/MHPmTO7fv8+AAQOYMGFCam+HvLp8+TLvvfcedevWJTY2lps3b+Li4kKzZs0yvEetVtG8jj3N69gTEa3narCWk/6h3A2z4VqIjph4hSSdggqwtlJRxFFNLVcbalSxxaOyDR6VbXBykLqXEKLwkmRfCGFRVCoVX/Zzwd5Wjc/+/F8S/HIDe8a/V1K672fi3r17HD9+nGXLluVpnJQEPygoyOjJ/tKlS/nwww957bXXWLFiBTY2NkYdP7tiYmIYN24cr7/+Oi+99FKO73/8+DH79+/n+++/z1McKcvrc7OMPz4+njt37lCpUqVMr/X29ua7774jKSkpx0cxCsul1WpZtmwZM2bM4M6dO7z55pt89dVXqac1GENgYCDt27endOnSHDhwAIPBQI8ePWjduvVTy/ozU8xZQ7kij/ji7aq0bt2affv2GS0+IYQoqORxphDC4qjVKj7uU4wv+xXHxlqVuqfSdPMl/3q3e1G+GiiJflY2bdqERqOhR48eeRonZcmvsfftf/311wwaNIiPPvqI1atXmy3RB5gzZw7h4eHMmTMnV/f7+flhMBjo1atXnuKIiIgAyNUyfsj6+D1ITvYjIiI4cuRITsMTFigpKYlffvkFDw8PPv74Yzw9Pblw4QKrVq0yaqJ/584d2rVrh729PXv27KFEiRKUKlWKEydO5OjrRqfT0adPH/R6PefOnUOx5PNchRAin0iyL4SwSCqVih4vO7N8YjnqVrM13TyAa1lr/jemLAO6FpWl+9ng6+vLK6+8gouLS57GsbOzo1y5ckZL9hVFYezYsYwaNYoJEybwww8/ZLsqaArBwcHMmzePYcOGUaVKlVyN4ePjQ6tWrfLcayAyMhLIeWXf1dUVjUaTrSZ9DRs2pFKlStKVv4DT6XQsX76cGjVq8MEHH9C8eXMCAgJYs2YNNWvWNOpcoaGhtG/fHp1Ox969e3N8JOWTvvrqK/7++28AwsLCuHLlirHCFEKIAkuSfSGERStbwor5Q0vzxRvFKeqU/C0rr/l4SvMme1sVDSoG8lL53VSraL7qb0ESFhbGgQMH8tSF/0lubm4EBgbmeRy9Xs/gwYOZPXs233zzDdOmTUNl7LO5cmjcuHEUKVKEsWPH5ur+8PBw9u7dm+cu/JD7ZN/a2pqqVatmq7KvUqnw8vLCz89PqqoFkF6vZ9WqVdSqVYv33nuPhg0b8s8///DHH39Qp04do88XERFBx44dCQ8PZ9++fbl+IAawa9cuZs+enfrvTq1Ws3XrVmOFKoQQBZYk+0IIi6dWq/Bq5cz6WRWYOKgkdaomV/qf7KqcFZXqv+OZqpa3ZmR/FzbMqcD6n95m4MB3+fDDD4mNNU9TwIJky5YtGAyGPHeGT+Hq6prnyr5Wq6Vfv3788ssvLFu2jC+//NIoseXFyZMn+e2335g+fTrOzrk71WHz5s0kJSUZ5cFKbpN9yP7xe5C8lP/WrVv8888/OZ5HmIder2fNmjXUqVOHAQMGUKdOHc6ePcuGDRuoV6+eSeaMiYmhS5cuBAcHs2fPHtzd3XM91t27d+nXr99TDSQVRZEVJkIIgTToE0IUIFYaFW0aOdCmkQNB95I4ERDP1eBELgZqeRiuz/C+4s5qarnZUqOKDU1r2VHT9b9tATVq1OD27dv88ssv7NmzhzVr1tCiRYv8+HQKpA0bNtCyZUujHWHn6urK0aNHc31/bGwsvXv35uDBg2zYsMFoDyHyQlEUvvzyS+rVq8f777+f63F8fHxo2bIl5cuXz3NMud2zD8n79rdv356ta1u3bk2RIkXw8/OjQYMGOZ5L5B+DwYCPjw+TJ0/m0qVLdOvWjd9++43GjRubdN6EhAS8vb25cOEC+/bt44UXXsjTeOvWrSM8PByVSoVKpUJRFBRF4fjx44SHh1O8eHEjRS6EEAWPJPtCiALJtZw1ruX+6/gdHWfgZkg806bP4b2BH1K2TElsrVVUKG1FceeM922XKVMm9Q1icHAwLVu2ZPTo0UyePBlbW9P1CiiIoqOj2b17N7NmzTLamK6uroSEhOSqg3tYWBjdu3cnICCAHTt20LZtW6PFlRfr1q3j+PHj7N27N9c9AyIjI9m9e3euG/ulN56NjQ12dnZZX/wMDw8PFi1ahE6nw8oq87cNNjY2dO3aFT8/PyZNmpTbcIUJGQwGNm7cyOTJkzl//jydO3dm+fLlmR5xZyxarZa+ffvy559/smvXLpo2bZrnMYcMGUKDBg3w9/dn5MiRlCxZkrCwMBISEggKCpJkXwjxXJNl/EKIQsHZQc2uTT+wYdU0Vi4eTuOadtStZptpog/g4OCQmpAZDAYURWH27Nl8+umn+RF2gbJjxw4SExPz3Bn+Sa6urhgMBkJCQnJ0371792jdujVXr15l//79FpPoJyQkMHr0aHr06EG7du1yPc7WrVvRarX06dPHKHFFRkbmagk/JC/j1+l02d5u4e3tzdmzZwkODs7VfMI0FEVh06ZNNGrUiL59+1KuXDmOHz/Ojh078iXR1+v1vP322+zZs4eNGzfy8ssvG2VcKysr2rRpQ69evdBqtfz000/Exsby+PFjGjZsaJQ5hBCioJJkXwhRKMTExDB79mwgeV95TExMtu5zdHRM08itZs2aDBo0yOgxFnS+vr40atQIV1dXo43p5uYGkKMmfTdu3KBly5aEh4dz5MgRo1QHjWXBggXcuXOHefPm5WkcHx8fXnzxxSzPts+uvCT7OTl+D6BLly5YW1uzefPmXM0njEtRFLZu3UqTJk3o1asXLi4uHD58mN27d+fbliWDwcAHH3zAhg0b+P333+nUqZPR5wgICACgXr16qNXqPJ8WIoQQhYEk+0KIQmH+/Pmp+5ITEhL49ddfs3Wfo6MjOp0OtVqNWq2mQYMGnD9/nhdffNGE0RY8CQkJbNu2zWiV5hSVKlVCpVJlu2rs7++Pp6cn1tbWHDt2jFq1ahk1nry4f/8+M2fO5NNPP83TOeTR0dHs2LHDKF34U0RERORqvz5AxYoVsbOzy3aTvqJFi9KmTRtpkGZmiqKwY8cOmjdvTo8ePXB0dOTAgQPs37/faFX17MbxxRdfsHz5clasWGHUlUFP8vf3p0iRIlSuXNkk4wshREEkyb4QosC7d+/eU8cuKYrCvHnz0Ol0Wd5btWpV7OzsmDhxIkuWLOHcuXMcO3bM1CEXOHv27CEmJsZoR+6lsLW1pXz58tlK9o8fP07r1q0pV64cR44cydNRXabw1VdfYW1tzcSJE/M0zrZt20hMTDTqg5W8VPbVajXVq1fPdmUfkpfyHzx4MPUBnMg/iqKwZ88eXnrpJbp27Yq1tTV79+7l0KFDtGnTJt/jmTBhAt9//z0//fQTb731lsnmCQgI4IUXXjD7kZtCCGFJJNkXQhR4EydORKvVPvWx27dvs3Hjxizvfe+994iOjmbSpEm8++67NGnShBEjRmAwGEwVboHk6+tLrVq1qFmzptHHzs7xezt37qR9+/bUq1ePAwcOULp0aaPHkRf//PMPS5cuZfLkyXlePuzj40OTJk2Mul0iL8k+JC/lz25lH8DLywudTseOHTtyPafIGUVRUqv2HTt2RFEUdu3axdGjR2nXrp1ZkuBZs2Yxc+ZM5s2bx4cffmjSufz9/fPc2V8IIQobSfaFEAWaoigsX778qeQ85bzlJUuWZHm/SqVKbdCnVquZN28ep06d4o8//jBNwAVQUlISfn5+Rq/qp8gq2f/jjz/w8vKiXbt27Ny5M09JqykoisLw4cNxd3fn448/ztNYsbGxbN++3ahL+CFvy/ghuUlfTir7lSpVonHjxrKUP58cOnSIV155hXbt2pGYmMi2bdv4888/6dixo9kq3d9//z3jxo1j8uTJDB8+3KRzabVaLl++TL169Uw6jxBCFDSS7AshCjSVSsXp06fx8/NL7aA/Z84cZs2axYgRI3I8XuvWrfH29mbs2LEkJCQYO9wC6dChQ4SHhxt9v36KzJL9//3vf/Tr14/XX38dX19f7O3tTRJDXmzdupV9+/Yxb968HB8f+KwdO3YQHx9v9GTfGJX94ODgHH1NeHt7s2PHjjSrboTxHDt2jHbt2tGmTRuioqLYvHkzJ0+epGvXrmZdzr5s2TI+//xzhg8fnudtLdlx+fJldDqdVPaFEOIZkuwLIQq8evXq4eXlRf369QEYPnw4Y8aMoWPHjrkab86cOYSEhPD9998bM8wCy9fXF1dXVxo0aGCS8d3c3AgJCXkqKVQUhVmzZjF48GCGDBnCihUr8pxIm4JWq2XEiBG0a9eO7t2753k8Hx8fGjZsSLVq1YwQ3X/ymuy7u7ujKAo3btzI9j3e3t5ERUVx8ODBXM8r0nfixAk6deqEp6cnjx49YuPGjZw+fZoePXqYfc/6unXrGDRoEB999BFff/11vsST0olfkn0hhHiaJPtCiEIjLi4OBweHPL+5rFGjBoMHD2bGjBk8fvzYSNEVTAaDgY0bN9K7d2+TvWl3dXVFURRu374NJCf6I0eOTF0CvHDhwtStGZbmxx9/5Pr163zzzTd5/vOJj49n69atRq/qg3Eq+5D94/cgOfFydXWVpfxGdOrUKbp27UqLFi24c+cO69ev5+zZs/Ts2dPsST4kr3J566236NevH4sXL863mPz9/alcubLFbfERQghzs8x3T0IIkQuxsbE4OjoaZaxJkyZhMBiYNm2aUcYrqP7880/u379vsv36QGojuqCgIHQ6HYMGDWL+/Pl89913TJo0ySKSmPSEhYUxZcoUBg4caJS9wjt37iQ2NtboyX5SUhJxcXF52rNfunRpnJ2dc9SkT6VS4e3tzebNm1NPyhC5c+bMGXr06EGzZs0IDAzk999/x9/fn759+1rMg7D9+/fTt29fevTowfLly/M1roCAANmvL4QQ6bCMnxBCCGEEKZV9YyhVqhRjx47lhx9+yFGCU9j4+vpStmxZWrRoYbI5KlWqhEql4tq1a7z22musWLGCVatW8dlnn5lsTmOYMmUKOp3OaA+EfHx8eOGFF1Kr6MYSGRkJkKeqp0qlwsPDI0eVfUheyh8SEsKZM2dyPffz7J9//qFXr140btyYq1ev8ttvv3H+/Hlef/11i0nyIfmhoJeXF23atGHt2rVYWVnl6/zSiV8IIdJnOT8phBAij4xZ2Qf44osvKFu2LGPHjjXamAWJoij4+vrSq1cvkyYWNjY2lCtXjjlz5rBjxw42bdpE//79TTafMVy5coXFixczbtw4ypQpk+fxEhIS2LJli8mW8EPekn0gV8n+yy+/TPHixWUpfw6dP3+evn370qBBAwICAlixYgUXLlzgzTffTD09xFKcPXuWLl260KhRI3x9fbG1tc3X+cPCwrhz545U9oUQIh2S7AshCg1jVvYB7O3tmTlzJhs2bODYsWNGG7egOHv2LEFBQSZdwg/w6NEjoqKiuHPnDrt27TJKoztTGzFiBBUqVOCLL74wynh79uwhOjqaV1991SjjPSkl2c/LMn5IbtKX01UuVlZWdOvWjU2bNuVp7ufFpUuXeOONN6hXrx6nT5/m119/5dKlSwwYMCDfq+XZcenSJTp27Ii7uztbt2416vff7JLmfEIIkTFJ9oUQhUZsbKzR32y+9dZbNGzYkOHDhz93+459fX1xcXGhdevWJpsjJCSEVq1akZSURO3atWnVqpXJ5jKWvXv3snXrVubMmYOdnZ1RxvTx8aF27drUqlXLKOM9KSIiAjBOZf/+/ftERUXl6D5vb28CAgIIDAzM0/yF2ZUrV3jrrbeoU6cOf/75Jz///DNXr17lvffes8hTKABu3rxJ+/btKVu2LDt37qRIkSJmiSMgIABra2ujb38RQojCwPIeEwshRC7FxcUZdRk/gFqtZt68ebRr147169fz2muvGXV8S+br64uXl5fJko2rV6/SoUMHAAYOHFgglnrr9XqGDx/OSy+9ZLR/C4mJifj5+TF06FCjjPcsYy3jd3d3B+D69es0atQo2/d16tQJGxsb/Pz8jLYSorC4fv06U6dO5bfffqN8+fIsXryY999/HxsbG3OHlqmQkBDat2+Po6Mje/bsoUSJEmaLJSAggNq1a1vsQxFLF59g4FqIlqvByb+C7yeRkKig0ytYW6mwt1NTtbw17pVt8KhsQ7UKNthYW2bTVCFEWpLsCyEKjbi4OJycnIw+btu2benWrRtjx47F29s73/ekmsOlS5e4dOkSc+bMMcn4Z8+epVOnTpQoUYI9e/awe/dufvzxRxITEy36z/fXX3/F39+fv/76y2inBOzbt4/IyEiT7NcH4yf7V69ezVGy7+zsTLt27STZf8LNmzeZPn06K1eupEyZMixcuJBBgwYZbaWIKT18+JD27duj1+s5ePAgZcuWNWs80pwv57RJCkfOxbHxYDQXA7UAqFTJvwyGtNdfC9ay43gsCqBWQ+MadvRs40yzOnZo1JL4C2HJZBm/EKLQMHaDvifNnTuXoKAgFi9ebJLxLY2vry9OTk6plXdjOnLkCG3atKFKlSocOXKEihUr4urqiqIo3L592+jzGUtUVBQTJkzgrbfeolmzZkYb18fHBw8PD+rWrWu0MZ8UERGBg4NDniufxYsXp1SpUrk6ncLb25sjR44QFhaWpxgKuqCgID744ANq1KjB9u3bmT9/PtevX2fIkCEFItEPDw+nY8eOREZGsnfvXipXrmzWeAwGA+fPn5fmfNn0KELHL34RvDr2DjOWPeZykDb1NUVJP9EH0BsgZRObwQCnryQw/sdQ3pxwl7W7o4iJy+BGIYTZSbIvhCg0jN2g70m1a9fmgw8+YNq0ac9FwuLr60u3bt2MnoBs27aNjh070qRJE/bv30/JkiUBcHNzA7Dofd2zZs0iOjqaWbNmGW3MpKQkNm3axKuvvmq0lQLPioyMzHNVP4W7u3uOO/ID9OjRA71ez7Zt24wSR0Fz+/ZtBg8ejIeHB35+fsyZM4ebN28ydOhQ7O3tzR1etkRHR9O1a1du377Nnj17Uld6mFNQUBAxMTFS2c+Coijs+DOGd6bc4/fdUUT/m5wbctmGJuWhQGiEnl/8Ihgw5S4nzscbKVohhDFJsi+EKDRMWdkHmDx5MklJScyYMcNkc1iCoKAgzpw5Y/Qu/L/99hs9e/akc+fObNu2DWdn59TXKlasiFqtJigoyKhzGktQUBALFixgxIgRVKpUyWjjHjhwgPDwcJMt4QfjJvu5OX4PoHz58jRr1qxA9GUwpjt37jBkyBCqV6+Oj48P06dPJzAwkGHDhpmlc31uxcfH4+3tzYULF9i1a5fJVqHkVEonfqnsZyw0XMeYRaF8vSqM+EQl1wl+RhQFImMMjFscypwVj6TKL4SFkWRfCFFomLKyD1C2bFlGjx7N999/z82bN002j7lt3LgRW1tbunTpYrQxFy1aRP/+/enfvz/r169Ps2LA2tqaihUrWmyyP3r0aFxcXBg1apRRx12/fj3VqlWjfv36Rh33Saao7OfmZApvb2927txJQkKCUWKxZPfu3WPo0KFUq1aNNWvWMHnyZAIDAxk1apRJH0iaglarpW/fvpw4cYJt27bRpEkTc4eUyt/fHxcXF8qVK2fuUCzSmcsJvDv1HmeumPZrLuXbwZ6Tcbw79S6Bd7WZ3yCEyDeS7AshCg1TV/YBhg0bRqlSpRg7dqxJ5zGnDRs20LFjx6cq77mlKApTp07ls88+Y9iwYSxdujTD88JdXV0tMtk/duwY69atY+bMmUZtAKnT6di4cSN9+/Y12RJ+SN6zX6xYMaOM5eHhQUREBI8fP87xvd7e3sTGxrJ//36jxGKJHjx4wLBhw6hatSorV65kwoQJBAUFMXbsWKN8PeU3nU5H//792bt3L5s2beLll182d0hPCQgIoF69eib9+imojvnHMXrRQxK0Cvp8KrYbFIiIMfDZvAdcCkrMn0mFEJmSZF8IUWiYurIP4ODgwPTp01m3bh0nTpww6VzmcO/ePY4fP06fPn3yPJbBYOCLL75g0qRJzJgxg3nz5qFWZ/xjxxKTfYPBwLBhw2jYsCEDBgww6tiHDh3i8ePHJl3CD8av7AO5atJXu3ZtqlevXiiX8oeGhjJq1Cjc3NxYunQpo0ePJjAwkAkTJpjt/Pm8MhgMfPDBB/j6+rJu3To6duxo7pDSkE786Tt1MZ7JPz/CYPiv6p5fDAZISFQYsfAhN0Kkwi+EuUmyL4QoFPR6PQkJCfmyD3bAgAHUq1ePESNG5Go5syXz8/NDrVbTo0ePPI2TlJTEu+++y/fff8+PP/7IuHHjsqy+ubq6WlyDvrVr13Ly5EkWLFiQ6YOK3PDx8cHV1ZXGjRsbddxnGTPZr169OkCu9u2rVCq8vb3ZvHkzhozafhcwjx8/ZuzYsbi5ufHjjz8yfPhwAgMDmTx5stFWU5iDoigMHTqUFStWsHLlSry9vc0dUhrx8fFcu3ZN9us/4/ptLRN+CsWg/NdBP78ZFEhMUhi+8CGPInRmikIIAZLsCyEKifj45E7A+bEfVqPRMG/ePI4dO8bGjRtNPl9+2rBhA6+88gouLi65HiM+Pp4+ffqwdu1a1q5dy+DBg7N1n5ubG/fu3bOYPd1xcXGMGTOGXr160bp1a6OOrdfr8fX1NfkSfjDuMn5HR0cqVqyYq2Qfkpfy379/n1OnThklHnMJDw/nq6++wtXVle+//57PP/+coKAgpk2blqevHUsxbtw4Fi1axE8//cSbb75p7nDSdfHiRQwGg1T2n5CkU5ix/FHyUXlmfg5tMEBsvIF5q8MK3UNxIQoSSfaFEIVCXFwcQL51uO7QoQOdO3dm9OjRaLWFY6liWFgYBw4cyNMS/sjISDp37szevXvZsmULr7/+erbvdXV1BSA4ODjX8xvT/PnzefDgAXPnzjX62EePHuXhw4cmX8IPxq3sQ/JS/tws4wd46aWXKFmyZIFdyh8REcHkyZNxdXVl/vz5fPzxxwQGBjJz5kxKlChh7vCMYubMmcyePZtvvvmGDz/80NzhZCggIACVSkWdOnXMHYrFWL0jkuB7Oixl4YzeACcvJrDnr1hzhyLEc0uSfSFEoRAbm/xmIj87XX/99dfcvHmTn376Kd/mNKUtW7ZgMBhyvWT34cOHvPLKK/j7+7Nnzx46d+6co/tTkn1L2Ld/9+5dZs+ezeeff566dN2Y1q9fT6VKlWjWrJnRx36WsZP93B6/B8mrYrp3717gkv2oqCimT5+Om5sbc+bMYdCgQQQGBjJ37lxKlSpl7vCM5rvvvmP8+PFMmTKFL7/80tzhZMrf35+qVasatWlmQXY1WMvqnVFmW7qfmYV/hMtyfiHMRJJ9IUShkN+VfYC6devy/vvvM2XKFCIiIvJtXlPx9fXlpZdeytUxVsHBwbz88svcvXuXQ4cO0bJlyxyPUbFiRTQajUUk++PHj8fBwYEJEyYYfWyDwcCGDRvo06ePyZfwJyQkoNVqTVLZz+3SXG9vby5evMj169eNFpOpREdHM2vWLNzc3Jg+fToDBgzg5s2bzJ8/nzJlypg7PKP69ddfGTp0KCNGjOCrr74ydzhZSunEL5It9gnHUg8l0CYpLN8aae4whHguSbIvhCgUzFHZB5g6dSoJCQnMmjUrX+c1tujoaHbt2kXv3r1zfO/ly5dp2bIlSUlJHDt2LNdvwK2srKhYsaLZk/0zZ86wYsUKpkyZYpIma8ePH+f+/fv5soQ/5SGUMT8PDw8P4uLiuHv3bq7u79ChA3Z2dhZd3Y+NjWXu3LlUrVqVyZMn069fP27cuMHChQsL5Znuf/zxB4MGDWLw4MHMnTu3QBxlJ534/xN0Lwn/64kWs3z/WXoD7DkZS0ychQYoRCEmyb4QolAwR2UfoFy5cowcOZKFCxeaPUnNix07dpCYmJjjZP/vv//m5ZdfpmjRohw9epRq1arlKQ43NzezduRXFIUvv/ySmjVrmmy/so+PD+XLl6dFixYmGf9JkZHJ1TRjL+OH3HXkh+QHch06dGDTpk1Gi8lY4uLi+Oabb6hatSoTJkygT58+XLt2jUWLFlGhQgVzh2cSW7ZsoX///vTv358ffvihQCT6Dx8+5OHDh5Ls/2vz4Wg0Fv6OXqeDXSdizB2GEM8dC//WIIQQ2WOuyj7AiBEjKF68OOPHj8/3uY3F19eXRo0ape6bz44DBw7wyiuvUL16dQ4fPkz58uXzHIerq6tZH5ps2rSJw4cPM3/+fKysrIw+/pNL+I19lF96TJHsu7m5oVarc92kD5KX8h8/fpzQ0FCjxZUX8fHxLFy4kGrVqjFq1Ci8vLy4evUqP/30E5UrVzZ3eCazb98+Xn31Vby8vPj111/z5d+kMQQEBADIMn4gPsHAjj9j0Vt40VwBfA9GS2d+IfJZwfiuLoQQWTBXZR/AycmJadOmsWbNmgJ5pFhCQgLbtm3LUVXfz8+PLl260KJFC/bs2WO048bMmewnJiYycuRIOnXqRJcuXUwyx8mTJwkJCcmXJfxgmmTfxsYGNze3XFf2Abp3746iKGzdutVoceVGYmIiixYtonr16gwfPpwuXbpw9epVlixZkqMHXwXR8ePH8fLy4pVXXmHNmjUmebhlKv7+/tjb2+d5JVFh8NeFeBK1BSOBvvdIz7XbSeYOQ4jnSsH5zi6EEJkwZ7IP8N5777Fw4UJGjBjBwYMHC8RS2BR79uwhJiYm28n+ihUrGDhwIL1792bVqlXY2toaLRZXV1fu379PfHw89vb2Rhs3OxYtWkRQUJBJ95KvX7+eMmXK5KqBYW6YYs8+5O34PYAyZcrQokUL/Pz8eO+994wYWfZotVp+/fVXZsyYwd27d3nrrbf46quvcHd3z/dYzOHMmTN07dqVJk2asGHDBqN+DeeHgIAA6tSpg0ajMXcoZnfllhaNBvR604wffudPzm1+A4AX3zqKfZFKAMRH3ebEb54Z3ufa5AvcmqY90eFqsBaPyjamCVYIkYZU9oUQhUJsbCzW1tZYW1ubZX6NRsPXX3/N4cOH2bx5s1liyC1fX19q1apFrVq1srx2wYIFvPvuu7z//vusXbvW6ElCSjU1ODjYqONmJTQ0lGnTpvHhhx+a7NxuRVHw8fGhd+/e+ZakpFT2nZ2djTpuXo7fS+Ht7c3u3btTH9Tlh6SkJJYsWYK7uzuffPIJrVq14uLFi6xcufK5SfQvXrxIp06d8PDwYMuWLWZ7QJoX0pzvP5eCtCZL9DOj1thQpHTDp345FPtvpYWNQ+k092jUcOVWYn6GKcRzTyr7QohCIS4uzuxvWjt16kSHDh0YPXo0Xbt2NduDh5xISkpi8+bNfPzxx5lepygKX331FTNmzGDMmDHMnDnTJKsXUpL9wMBAatSoYfTxMzJ58mQApkyZYrI5/v77b4KDg/NtCT8kJ/vOzs5Gf7jg7u7Ojz/+iF6vz/XY3t7ejB49mr179+Ll5WXU+J6l0+lYtWoV06ZNIzAwkNdff50dO3ZQu3Ztk85raW7cuEH79u0pV64cO3fupEiRIuYOKcf0ej0XLlygf//+5g7F7BRF4dptbbqv/bm6JQnRIVRuMBi9Lo4H1zajUmko4+5FtZcmoFZbYdAncuv0Dzy47kdC9B2sbIpQwrUt1V4ch429C4GnFhD097epY6ZU8svW6EuttvNp3GfTU3NePfIVcRE3sLItShmPnmli0huSH04IIfKPVPaFEIVCbGysWZrzPUmlUvH111+n7vktCA4dOkRYWFimS/gNBgOffvopM2bMYO7cucyaNctk2xQqVKiAlZVVvu7bv3jxIv/73/+YMGECpUqVMtk8Pj4+lCxZklatWplsjmdFRESY5PhADw8PkpKSuHXrVq7HqFGjBjVq1DDptgmdTsfKlSupWbMm77//Po0aNcLf35/ff//9uUv0Q0JCaNeuHU5OTkbts5Hfrl+/TkJCglT2gQdheuITM9+vf9t/KQ+ubUZjZUdSwmNCApZx//J6AAJ2fkTQ6YUkRN3GoXh1DAYt9y+v56zfa+h1Cdg6lsWhePXUsZxK1qZI6YbYF0nbtDIpIZx7/45boU5/rKzT/3l8614SekPB6DEgRGEglX0hRKFgCZV9gPr16/POO+8wadIk3nrrLaM2RjMFX19fXF1dadiwYbqva7Va3nnnHdatW8eSJUsYNGiQSeOxsrKiUqVK+ZrsDx8+HFdXVz777DOTzfHkEv78bIQWGRlpkn+DTx6/V7Vq1VyP4+3tzbJly/K0QiA9er2e33//nalTp3L16lV69uzJhg0bqF+/vtHmKEgePnxI+/btgeQO/GXKlDFzRLknnfj/ExufdQt+W8eyNH11OyqNDSfWtEIb+4DwO8ewL+ZGWPABABp4raVY+eYkxj7gxJpWxIVf48G1TZSv3Q/7oq6pe/brdvo5dc/+s+6cX4lBF49aY0uFF97NMB69AbRJCva2BaevjRAFmVT2hbAQBoNCyMMkzt9I5MyVBM5cTuD8jURuP0jCIE/Bs2QJlf0U06ZNIzY2ljlz5pg7lEwZDAY2btxI7969063Ux8XF0bNnT3x9fVm3bp3JE/0U+dmRf+fOnezcuZO5c+eatEnZ2bNnuXnzZr4u4QfTJfuVKlXCxsYmT036IDnZDw0N5cSJE0aJy2Aw8Mcff1C3bl369++Ph4cHf//9Nxs3bnxuE/3w8HA6duxIZGQke/fupVKl9JO1gsLf358yZcqYdBVOQaFNyvq9QUnXDljZFkFjZYe9c/LfvTYulOgH51KvOev3Ggd+rMLxlc0w6BIAiHpwNttxGPSJ3Dm/CoAy7j2xTWe/fk7jFkIYh1T2hTATbZLC8YB4LgUmcjkokau3kzI8PsfWWkX1StbUcrWllqsNLerZY2cjz+qeZCmVfYCKFSsyfPhw5s2bx+DBgy32nO4TJ05w//79dJfwR0RE0L17d86dO8e2bdtSq4L5wdXVlYsXL5p8Hp1Ox/Dhw2nVqhW9evUy6Vw+Pj64uLjQpk0bk87zLFMl+xqNhurVq+e5SV/z5s0pU6YMfn5+eTqhwGAw4Ovry+TJk7lw4QJdunRhxYoVNGvWLE/xFXTR0dF06dKFkJAQDh06RPXq1bO+ycIFBARIVf9f6my8DbCy/a8vg0qd/tv+IqXTruyyccj+w5T7V3zRxocCKio1+CDL6zVqqeoLkV8k2Rcin90JTWLrkRi2Ho0hNkHJ1pE5iUkKF25quXxLi89+cLBT0a2lEz1edqJiactvApcfLKmyDzBq1Ch+/vlnJkyYwMqVK80dTro2bNhA2bJladGixVMfv3//Pp07dyY4OJh9+/bRvHnzfI3L1dWVbdu2mXyeJUuWcOnSJU6dOmXSoxIVRWH9+vX07Nkz35s2RkREUKFCBZOMndfj9yD5oUGPHj3w8/Nj7ty5Ob5fURQ2bdrE5MmT8ff3p2PHjvzyyy+8+OKLeYqrMIiPj8fLy4tLly6xf/9+k50ykd/8/f3p2bOnucOwCDbWuf++5Vz6v5UulRt9Qim3jgAYDDrCQ46mdtbXWP13BKpBF59mHEVRuP1Pco+aElXa4lg861Mt8hK3ECJnpDQoRD65+0jH2MUPeXvSPdbvjyY2IbmKn5Mjc1KujUtQ2HAgmgGT7zHq+4eEPEwyQcQFiyVV9iH5qLOpU6eyevVqzpw5Y+5w0lAUBV9fX3r16oX6ifJQYGAgnp6ehIaGcuTIkXxP9AHc3Nx4+PChSY9ki4iIYOLEiQwYMIDGjRubbB5IrkRev34935fwg+kq+2Cc4/cgeSn/1atXuXz5crbvURSFLVu20LhxY3r37k3JkiU5cuQIu3btkkSf5F4bffr04eTJk2zbts3k/8bzS0xMDDdv3pTK/r9KFst9za54hRa4VGoNwPmdH/DX2rb89Xt7ji59Af9t75AQHQKAfdEqqNTJDynPbXmT0xt68vDGfw9jHwftJS7iBgCVG3yU5byOdiqspdQoRL6RZF8IEzMYFDYdiub9aff4+2LCvx8zxrjJ/3/2SgIDp9/DZ3/Uc72339KSfYCBAwdSs2ZNRowYgaJY1t/NuXPnCAoKemoJ/4ULF/D09ESlUnHs2DGzVQJTjt/LS6f3rMyYMYO4uDhmzpxpsjlS+Pj4UKxYMdq1a2fyuZ5l6mT/1q1bJCbm7dzsdu3a4eDgkK2u/IqisH37dpo1a4aXlxfOzs4cPHiQffv24enpmac4CgudTsdbb73Fvn378PPzK1R/LufPnweQTvz/cnZQU6p47htb1u38M66Nh2Jf1I34qGC0caE4FK9Olcaf4eiSfPSptV1x3D0nY+tUHm3cI6IenkUbF5o6RvA/PyfHUroBxcpn/XC4RhUbk66kEkI8TZ6tCWFC9x/rmLX8MQE38vZmODN6Q/KvxT4RHDwdx9h3S1Ch1PO3tN/SlvFDcmf5uXPn0qNHD7Zv3063bt3MHVIqX19fihcvTuvWyZWdv/76i65du1KpUiV27dpl1m7dKcl+UFAQtWrVMvr4N27cYOHChUyYMIHy5csbffxn+fj44O3tjY2Njcnnepapjt6D5GX8BoOBmzdv5unvyd7enk6dOuHn58fo0aPTvUZRFHbv3s2kSZP466+/aNmyJfv27eOVV16RxOEJBoOBQYMGsXHjRjZs2JCvvTbyQ0BAAGq1+rk7NjEztVxteBwRz7PP+lv0P5bm2obefzz1e42VHW7NhuHWbFimc1So058Kdfqn+1qjnuuzHatGDTVdTdcIVQiRllT2hTCRGyFaBs++z8VA0yX6z7p8S8vHs+9zNVibb3NaCkus7AN069aNV155hZEjR6LT6cwdTqoNGzbg5eWFtbU1e/bsoV27dtSqVYuDBw+a/Viu8uXLY2VlZbKO/KNGjaJMmTKMGDHCJOM/6cKFC1y6dMksS/gVRSEqKsqklX3AaEv5UxpGPklRlNSqfefOnVGpVOzevZsjR47Qtm1bSfSfoCgKn332GStXrmTVqlV4e3ubOySj8/f3x8PDAzs7O3OHYjFqVCk4ybPeAB6V8/+hpxDPM0n2hTCBq8FaPp//gJh4A3ojLNnPLoMheT//0G8ecCkfHzJYAkus7AOoVCrmzZvHpUuXWLp0qbnDAeDSpUtcunSJPn364OPjQ7du3WjVqhW7d+82WRU4JzQaDZUrVzZJsn/o0CF8fX2ZNWtWvjwc8vHxwdnZmQ4dOph8rmfFxsai1+tNluyXLVsWJyenPDfpg+SHYiqVii1btqR+7NChQ7Rp04b27duTlJTE9u3bOX78OB06dJAk/xmKojB27FgWL17Mzz//TL9+/cwdkkkEBATIEv5nvFDNNk1V31KpVFDbTZJ9IfKTJPtCGFnw/SRGLHxAolYxyt78nDIokJSkMPL7h9y88/xU+C21sg/QqFEj3n77bSZOnEh0dLS5w2Hjxo04OjoSEhLC66+/Tt++fdm0aZNF/fm5uroSGBho1DENBgPDhg2jadOmvPnmm0YdOyM+Pj54eXlha5v/1bfIyEgAkyX7KpUKd3d3o1T2S5YsiaenJ35+fqlV+zZt2hAdHc2WLVv466+/6NKliyT5GZg5cyZz5sxhwYIFDBo0yNzhmISiKHLsXjrqVLWhYmnL35WrVkPzOnZ5aioohMg5SfaFMKJErYFxi0OJS1TM+qTdoECCVmHc4lDiE83wxMEMLLWyn2L69OlERUXx9ddfmzsUNmzYQLVq1fjkk08YPHgwq1evNst+8sy4ubkZvbK/atUqzpw5w4IFC546gcBULl++zPnz582yhB+S9+sDJl2tYYzj91LUr1+f7du306pVK8LCwti0aROnT5+me/fukuRnIqX/xNSpU/niiy/MHY7J3L17l7CwMKnsP0OlUtH7FWdzh5ElgwF6tbH8OIUobCTZF8KIlm2N5N5jnVkq+s8yGCA0Qs8vfhHmDsXkFEWx6Mo+QOXKlfniiy+YN28ed+7cMVscgYGBnDlzBn9/fyZMmMCiRYvyJfHNKVdXV6Mm+7GxsYwbN45XX32Vli1bGm3czGzYsAEnJyc6deqUL/M9y9SVfTDO8XsnT56kS5cufP/99yiKwogRIzhz5gze3t6S5Gdh6dKlfPHFF4waNYoJEyaYOxyTCggIAJDKfjo6NHO0+LPry7hoaFxTei0Ikd8s7x2eEAXUhZuJrNsbjSWdsKYosPFgDP9cTTB3KCal1WrR6/UWXdkHGDNmDI6Ojnz11VdmmV+v16cuX581axbTpk2z2GTK1dWV0NBQYmNjjTLe3LlzefToEXPmzDHKeNnh4+ND9+7dsbe3z7c5n5Rfyf7du3eJiYnJ8b0pVfvmzZtz69Yt/vjjD2rXrs3Dhw8t8gGUpfn999/54IMP+OSTT5g9e7bFfi0bi7+/P05OTlSpUsXcoVgcR3s1PV52Qm3B/wRe71AEtSUHKEQhJT9NhTCCJJ3CrOWPLfIHrVoFs1Y8RptkQU8hjCwuLg7Aoiv7kJx0TZ48meXLl/PPP//k69yJiYn069ePEydO0KBBA8aMGZOv8+dUyvF7t27dyvNYISEhfP3113z55Ze4ubnlebzsuH79OufOnTPbEn7In2Tf3d0dSP58s+vcuXP07NmTJk2acO3aNdasWUNAQACvvfYaPXv2ZOvWrRZ1coUl2rx5M2+//TZvv/0233//faFP9OG/5nzyICh973UviktRjcW9D9GooWYVG3q87GTuUIR4Lsl3TCGM4Oi5OO4+0llkR1yDAg/D9Rw8E2fuUEymoCT7AB9++CHu7u6MGDECJZ+WgcTExNCjRw82b94MwNChQ/Nl3rxISfaN0aRv7NixODs7M27cuDyPlV0+Pj44ODjQpUuXfJvzWREREajVapycTPcmOyfH7wUEBNCnTx8aNmzI+fPnWblyJRcuXKBfv35oNBog+Qi+sLAwjh1Le0a4SLZ3715effVVvL29Wbp06XOT/Pr7+8t+/Uw42KkZM6CExb0PUalgzLsl0FjaUwghnhPPx08IIUxs48Foi3ua/iSVKjnGwiplqbelL+MHsLa2Zu7cuezdu5ddu3aZfL6wsDA6dOjAiRMn+OSTT9BoNHh5eZl83rwqX7481tbWed63f/LkSVavXs20adMoUqSIcYLLBh8fH7p27WrWB1CRkZEULVrUpFVfFxcXXFxcMm3Sd/HiRV5//XXq1avH2bNnWbZsGZcvX+btt9/GyurpztxNmjShXLly+Pn5mSzmguzYsWN4e3vTrl071qxZk+bPr7BKSkri0qVLsl8/C41q2tHD09Gi3o8M8i5G5TLW5g5DiOeWJPtC5FHgXS3nb2ot7mn6kxQFrtzScjW4cB7FV5Aq+wBeXl60atWKkSNHotfrTTbP3bt3ad26NdevX+fAgQOcP3+eV155BRcXF5PNaSxqtZoqVarkKdlXFIVhw4bxwgsvMHDgQOMFl4XAwEBOnz5t1iX88F+yb2oZNem7fPkyb775JnXr1uWvv/7il19+4cqVK7z77rsZJqlqtRovLy/8/PzybeVLQXHmzBm6du1K06ZN2bBhg8WdoGFKV65cISkpSSr72TC4d3GqV7TG3As+VCp4qZ49fdpKB34hzEmSfSHyaPORGDQF4CtJo4bNhwtndb8gVfYh+aikefPmcf78eZYvX26SOa5fv46npycREREcOXIENzc3Dhw4QO/evU0ynynktSP/+vXrOXbsGN98803qMvH8sGHDBuzs7OjWrVu+zZmeiIgIkx67l+LZZP/atWu8/fbb1KlThyNHjvDjjz9y9epVBg4ciLV11hU+b29vbt68yYULF0wZdoFy4cIFOnbsSM2aNdmyZYvZmj6aS0onfkn2MxYfH8/27dvp1bMrf67vS4VSVmZL+FUqqO9uy8SBJWX5vhBmVgBSFCEs28kLCegt4Ki9rOgNcOpi4ezKX9Aq+wBNmzalX79+fPXVV7nqZJ4Zf39/PD09sba25tixY6kJgl6vp2fPnkady5TykuwnJCQwevRounfvTvv27Y0bWBbWr19Ply5dTLpXPjvyq7Lv7u7OtWvXuHnzJu+99x61atVi//79fP/991y/fp2PPvooR1Xotm3b4uTkJEv5/3Xjxg06dOhAhQoV2LFjB87Oz1+l1N/fn4oVK1K8eHFzh2JR7t69y5IlS+jevTvFixenW7du7Nq1i5Bbl1k4rAxu5fO/wq9SQdNadsz6pJTFHwcoxPPg+djsJYSJxMYbuPfIdF2jw+/8ybnNbwDw4ltHsS9S6anXtfGPCfp7IY+C9qKNe4iVjROOJWpRs80c7ItUTjNeaISeqFg9RRzzr8qZHwpaZT/FzJkzqVGjBvPnz2fSpElGG/e3335LTQxKly4NgK+vLy+99BLlypUz2jym5urqysaNG3N178KFCwkJCWHHjh1Gjipzt27d4uTJk/z222/5Om96IiMjU//+TalYsWI8fvwYd3d3SpcuzTfffMOHH36InV3uztS2tbWlS5cu+Pn5MX78eCNHW7Dcvn2bdu3a4ezszO7duwvEFhxTCAgIkP36zzhz5gxNmzbFYDCg0Wie2hI2fvx4ijlr+PbLMsxd9Zgj5+JRAabcGKNWJTcE7tnaiY/7FMdKI4m+EJZAKvtC5MH12+bbA6+ND+P0Bm/unF+BNi4Uh6JuWNuXJOrBGRJjH2R4X2Hct18QK/uQnMwOHTqUuXPncu/ePaONO2fOHI4ePZqa6MXExLBr164CtYQfwM3NjcePHxMdnbPtJw8ePGDGjBl8/PHH1KxZ00TRpc/X1xcbGxu6d++er/Omp3Pnzvz6668mGz84OJiPPvqIL774AoDPPvuMmzdv8vnnn+c60U/h7e3NqVOnuHv3rhEiLZgePHiQuipl7969lClTxswRmY904k/Lw8ODF154IU2ir1ar6d+/PwCO9mqmfFiKiYNK4mivMlmVX6WCEsU0fPNFaT57zUUSfSEsiFT2hciDq7e1qFTJDfCe9OfqliREh1C5wWD0ujgeXNuMSqWhjLsX1V6agFpthUGfyK3TP/Dguh8J0XewsilCCde2VHtxHDb2LgSeWkDQ39+mjnniN08AytboS6228wk8OY+E6Ns4Fvegfo/V2DomvxE06LVk9PxerUpO9pvUKlz7PVMq+3lNMMxh3LhxrFmzhkePHhmt6q4oylN7erdv305iYiK9evUyyvj5JeX4vVu3blG3bt1s3zdx4kSsrKyMuloiu3x8fOjUqVO+dv7PyCeffGKSTvwhISHMmjWLJUuWULRoUSZPnsxXX31F48aNjbaXvGvXrmg0GjZv3szgwYONMmZBEhYWRseOHYmOjubIkSNUqlQp65sKqYiICG7fvi2V/Wc4OTmxe/duatSoQUREBAAajYZOnTqlWdHTppED9d1t+e73MA6djUetBoMRth+qVcnvNrxbOfGBdzHs7aSGKISlkWRfiDy4+0iHRg26DBqq3/ZfisbaEY2VHYmx9wkJWIajSw3K1+5HwM6PCAs+gEqlwcHFg4ToEO5fXk/Ug3M06bsVW8eyOBSvTlz4dQCcStZGrbbFvkhlFEXh4Y2tANg6leOfLf2Jj76NfVFXqjT8mDLu3unGo1Ilx1zYxMXF4eDgUCDPmy5WrBinTp0y6nLrZxM8X19fGjZsiJubm9HmyA8pyX5QUFC2k/2AgAB++eUX5s+fT4kSJUwYXVp37tzh+PHjrFy5Ml/nzYixvx7u3r3L7Nmz+fnnn3F0dGTq1KkMGTIEJycnfvzxx0yP38up4sWL07p1a/z8/J67ZD86OpouXbpw584dDh8+TLVq1cwdkllJc7706fV6xowZk9qIMzo6Gr1ez7vvvpvu9cWdNUz6oBTBD5LYciSG7cdiiE9UUpffZ5dGndwDqKiTGu9WTnTzdKJUMUknhLBU8tUpRB5otUqaqv6TbB3L0vTV7ag0NpxY0wpt7APC7xzDvpgbYcEHAGjgtZZi5ZuTGPuAE2taERd+jQfXNlG+dj/si7qm7tmv2+nn1D372rhH6BIjAQi7fQhbx7JY2xYl9vElLu79HJXaitLV0nYCVxTQJhW+46xSkv2CqmzZstmuwK5bt47o6GhiY2Pp1q0brq6umXaaVxSFkJAQ+vTpY6xw803ZsmWxsbHJdpO+lKP2qlWrxieffGLa4NLh6+uLtbU1PXr0yPe5Ten+/fvMmTOHn376CTs7O7766is+++yzp1YvuLu7p3v8Xl54e3szYsQIoqKiLGKlRH6Ii4ujR48eXL58mQMHDlC7dm1zh2R2AQEBWFtbU6NGDXOHYjESExPp378/GzduZNWqVbRo0YIXX3yRxMTELL//VC5jzad9izPQqygH/o7j1KV4LgVqeRD2xFYAFfDvqsWU9zgqFVQoZUVtN1tefMEez/r2slxfiAJAkn0h8kCnVzJteFPStQNWtslvUu2dK6GNfYA2LpToB+dSrznr91qa+6IenKV8rTcyHFdR/vuh7FC8Ok1fTW5Cdmp9F+LCr3Pn/Mr0k31AV/gK+8TGxha45nxPym6iP2DAAFavXp36+zVr1vDGG2+k7plOj6IobN68mfDw8LyGme/UajVVqlQhMDAwW9dv27aNvXv34ufnZ5YzyNevX0+HDh3y5bi7/BAaGsrcuXP54YcfsLGxYcyYMXzxxRfpdvj38PDg77//Nur83t7eDB06lJ07d/Laa2m/TxY2Wq2Wvn37curUKfbs2UOjRo3MHZJF8Pf3p2bNmmb5mrZEsbGx9OnTh4MHD+Lr64uXlxcAf//9N6GhodnezmZno6bLS05E3NrCvO8+4qz/FaISixPyMInEJAWdDqytwM5WTZWy1lSraI29bcFbPSfE806SfSHywNpaRWZpWkqiD6BSp//lVqR0wzQfs3Eolfm8di6o1DYoBi1OJWqj1iS/CXIqUZu48OskRIeke59KRaE8CqegV/azoigK7733HqtXr6Z+/fr069ePMWPGcPLkSWxtbfH09KRJkybp3qtWqylSpEiB7eKd3eP3kpKSGDFiBG3btjVLZf3evXscPXqUpUuX5vvcxvbo0SPmzZvHokWLUKvVjBgxgi+//DLTY8/c3d1Zu3YtiqIYrU9AlSpVqF+/Pn5+foU+2dfpdLz55pvs27ePbdu28dJLL5k7JIsREBAgS/j/FRERQffu3Tl37hzbt2+nbdu2qa9VqVKFKlWq5Gi84OBgBg4cSHx8PKdOHOKNN96gYY2C1/tGCJExSfaFyAM7GzW5eV/rXLp+6n9XbvQJpdw6AmAw6AgPOYpDseQ9mhqr/5pdGXTxqf+t1lhTrHwzwkOOEvP4EgZ9EgAxjy8BYF/UNd15VYCtTeFL9gt6ZT8rR48excfHh5o1a/Lnn3+ybt06ACpXrky/fv2Ij4/n0aNHlCxZMt37rawK7rd6Nze3bFWMf/rpJ65evcoff/xhkqZ0Wdm4cSMajQZv7/T7ZRQEiqJw6NAhevTogaIoDB06lGHDhmWr94GHhwcxMTHcv3/fqMc7ent7891335GUlIS1tbXRxrUkBoOB999/Hz8/P3x9fVM78Ivkf5MBAQGp1evn2cOHD+nUqRO3bt1i3759NG/ePE/jxcXF0b17dxISEgA4fPgwb7yR8YpCIUTBJOtxhMgD13LWGTbny0zxCi1wqdQagPM7P+CvtW356/f2HF36Av7b3kmtzNsXrYJKnfwG99yWNzm9oScPb2wDwK3ZCFRqG+LCr3HiN09O/OZJXPg1VCoNVRp9mu68BiU55sKmsFf2b926RVxcHC+++CIzZszg3XffpXLlymzcuJEmTZrQtm1bdu3aZe4wTSI7lf3w8HAmT57M+++/T/369TO91lR8fHxo27atRa+gePJ4LiWdZiMqlYrmzZszYsQIAgMDmTFjRrabHLq7uwMYtUkfJCf7ERERHD582KjjWgpFURgyZAirV69m1apVha7fQ17dunWL6Ojo576yf/v2bVq1asX9+/c5fPhwnhN9RVEYNGgQFy5cSP1esHv3bmOEKoSwMJLsC5EHHpVzv4ewbuefcW08FPuibsRHBaONC8WheHWqNP4MR5fkRkTWdsVx95yMrVN5tHGPiHp4Fm1cKABFyzSkgdcaipV/kaTESAz6RIpX9KRhrw0Ur5D+ElBFyVvMlqowVvYjIyNJSkpesZFynNny5cuZMWMGDRs2ZNeuXZQoUYJ+/fqhUqnyvfN8fnF1dSUsLIyoqKgMr5k6dSparZbp06fnY2T/efjwIYcOHeLVV181y/xZuX//PpMnT+aTTz5h3rx53L17N8PVD3Z2dkyaNIlSpTLfSvSsatWqoVKpjN6kr2HDhlSqVAk/Pz+jjmsJFEVhzJgx/PjjjyxZskSqqulI6cT/PB+7d+3aNTw9PUlISODIkSM5OoY0IwsWLGDt2rUYnjh/78aNG9y7dy/PYwshLEvBXdsphAVwLWedegzNk1r0P5bm2obefzz1e42VHW7NhuHWbFimc1So058Kdfqn+1qxck3TjJsZtQqqVSyclX0nJydzh2E0/v7+fPrpp9jY2LB3715at25Nt27d2LYteVXHyy+/zMWLFxk1ahQ3btxgwoQJdO7c2cxRm0bK8Xu3bt1Kt7p39epVFi1axJQpUyhbtmw+R5ds06ZNqFQqevbsaZb5M5KQkMD333/PuHHjnqrqb9++neHDh9OtW9omnrndAmFra4urq6vRk32VSoWXlxd+fn4sXLjQLFs0TGXGjBnMnTuXb7/9loEDB5o7HIvk7+9PsWLFqFChgrlDMQt/f386duxI8eLF2bNnDxUrVszzmDExMYwcORKVSpVmhc+BAwd488038zyHEMJySGVfiDywsVYVqGXxFctYYWdT+L7sC9My/uPHj9OyZUuOHTtGUlIS169fp2TJkvTv3x9PT08AvvvuO/r06cONGzcYPnw4U6dONXPUppOS7GfUkX/kyJGUL1+eL7/8Mh+jetr69etp06ZNhj0TzGX//v1MnDgRa2trfvrpJ/bv349arebgwYP8+OOPBAcHG3U+d3d3oy/jh+Sl/MHBwfzzzz9GH9tcvv32W7766iumT5/O0KFDzR2OxQoICKBevXqF6iFPdv3555+0bt2aChUqcPjwYaMk+gBOTk5s27aN4cOHU758+TRzCiEKF6nsC5FHrRo5EHg3EoOFH1+vVkGrhoUjIX5WYVnGf/XqVQYOHEhsbCzTpk1j/Pjxqa/17duX6tWrs3z5cs6dO0f16tVp3749b731VqZjGrM7ujmULVsWOzu7dPft79+/n82bN7N27drUrQ757dGjRxw4cIBFixaZZf4nxcTEcO/ePdzd3YmLi2PhwoUkJiaybt06ateuzfjx4zEYDDg6OmJra0tYWBiVK1c22vweHh7s37/faOOlaN26NUWKFMHPz48GDRoYffz89ssvv/Dll18yevRoxo0bZ+5wLJq/v/9THeefF3v37qVnz540atSILVu2pHvcZV507tyZzp07c/r0aZo0acKkSZM4efKknAIhRCEkyb4QedTtJSdWbI00dxhZUoAenoVnqfuTCktlPzg4mHv37lG3bl2++OILIHkptp2dHdHR0TRu3JjGjRuj0+nQaDRZJvEGgwG1umCv5FCpVFSpUiVNsq/X6/nyyy9p0aIFr7/+unmCA/z8/DAYDPTq1ctsMURHRzNr1ixWr16d2r28WLFiqV22R40alfrn17FjR4YPH45arSYhIQG9Xo9GozFKHO7u7ixZssSoYwLY2NjQtWtX/Pz8mDRpktHGNYe1a9fy4Ycf8umnnzJr1qwC/SDO1BISErh69Wrq98LnxaZNm3j99ddp164dPj4+JvvZptfrOXXqFOPHj6dRo0Y0atTIJPMIIcyrYL8LFMICuBTV0KqhPRoL/mrSqOGlF+wpVbxwPt8r6JX9c+fOkZCQwLVr14iKiuL27dvcvn0bSG6YBjBw4EBGjx4NZO8oPZ1Ol27H9YIovY78y5Ytw9/fnwULFpg1YfLx8aFVq1aUKVPGLPPv3r2bJk2aMHv2bBISEqhWrRo3btwgISEhtQp+69YtPD092bVrFzt37sTe3p5evXoxderU1AcCxuDh4UFiYmLqv11j8vb25uzZs0bfepCf/Pz8ePvttxkwYADfffedJPpZuHTpEnq9/rnqxL9q1Sr69u1Lz5492bRpk0kfYl+8eJGYmBhefPFFk80hhDA/C05PhCg4vFs7p2nSZ0n0BujZxtncYZhMQa7sz5w5k65du7Jy5Upq165NpUqViIyMZMiQIdy4cYP4+Hhmz57Nxo0bOX78OOHh4UDmjdT0ej0xMTGFNtmPjo5mwoQJvPnmm3k+giovwsPD2bt3b7534Y+NjSU2NhaAX3/9lWvXrtG5c2fOnDnDwYMHady4MXZ2djRv3pyqVauiKAolS5YkNDSU1157jVatWqWuRrCxMd7pHB4eHgBGb9IH0KVLF6ytrdm8ebPRx84Pe/bs4bXXXqNXr1788ssvBX7FTX5I6cRvjO7zBcGiRYsYMGAA7733HmvWrDHq12Z6Tpw4gVqtpkmTJiadRwhhXvLTRggjqFfdlsY1bbHE928adXJ8jWrYmjsUkymolf3Lly+zaNEiEhMTqVWrFvXr16dJkybY2dmxf/9+PD09adKkCePGjcPZ2Zn58+dTvHjxLMcNDw9n7ty52VoBUBC4uro+1aBv9uzZREZGMmvWLDNGBZs3b0av1+fbEn6DwcC8efPw9PRk27ZtBAcHs27dOgA+/fRTKlasiFarTe2837VrVz7//HMgeWlw//798fHx+T975xkW1bm14XuG3ouAiqigggWNvcZesPceo7FEY080tlhi7L0mmqImamJHDBYUsUVQQTQiiF0RREHpfYCZ2d8PPubExII6Ddz3dXmdE2bP+z4zzGz22mutZ1GvXj0OHTrE6NGjMTJSn8FohQoVMDIy0ohJn42NDW3atCmWI/iCgoLo1asX7du3Z9euXSXme6lpwsPDcXNzw8qq5N6ohgJflSVLljBp0iS+/vprfvnlF7W2wbyKkJAQatWqVaIm2YiIiPwX8S+OiIgakEgkTP+0FMMXxiHL069sqoGBhJnDSpXYklGlUolMJit2mf2BAweSlpZGRkYGe/fupUWLFkDBzHipVMrFixeJi4sjOzubjz76iB07dlC7du03rpuXl0f9+vX5/vvvNf0StIarqyupqamkpqaSlpbGmjVrmDZtmlrN5d6FAwcO8PHHH//H0Vrd5OXlsWfPHkxNTZk1axaWlpakp6dz7949KlSoQExMDDdv3qRr164YGhoilUp5+PAhZcqUYfLkyZQpU4bY2FgeP35MmzZt6NGjh0Z0GhoaUrlyZY1k9qGglP/LL78kNTUVW1tbjeyhbq5evUrXrl1p1KgR3t7eGs/WliQKnfhLMoIgMHPmTFatWqUyZdXW3+rg4GA+/vhjrewlIiKiO8RgX0RETTjZGzKxvx2rdyXrWsoLjOtjS1mHkvtVz87OBihWmf0dO3Zw4MABAMzMzFQBgEKhwNPTk40bNxIfH09ISAhVqlShdu3aODo6FmntH3/8kaSkJDp06KAx/drGzc0NKOg9X758OXZ2dsyaNUunmtLS0jh58iSrVq3S6D5JSUnUqFGDhIQE7O3t+eijj9i7dy8eHh5ERUVha2tLTEwMP/30E126dMHT05OQkBAGDRpEjx492LBhAwMGDNCoxn+iqfF7AD169GDChAkcP36cwYMHa2QPdRIZGUnHjh2pXr06hw8f1tnEiOJKeHg4n3/+ua5laAyFQsG4cePYsmULGzduZNKkSVrbOz09nZs3b/L1119rbU8RERHdoIdFxyIixZfOzSxoWMMUqR4k0aVSqO1uQvcWJbtErzDYLw6Z/cIe+s8++0x1EZuTk8OlS5dIS0tTlW6WLVuWunXrMnbsWNq3b1/kQB8KDJ66du1aogILV1dXAE6cOMHevXtZsmSJzktPjxw5Qn5+Pn379lX72oIgsH//fh49ekSpUqVUbQKZmZm0b98eDw8PBEHAzc2N7t274+joSFRUFL1796Zu3bp8/PHHREdHY2RkpCrp1xYeHh4ay+y7uLhQv359/vzzT42sr07u379P+/btcXFx4fjx4yW+FF3dJCQkEB8fX2Iz+3l5eQwZMoRt27axY8cOrQb6AKGhoQiCIJrziYh8AIjBvoiIGpFIJHw7ygG3ckY67d83kEL50oYs/MIRqT7cedAgxSXYT0tLY/DgwWzduhUoMGMqHBm3fPly9u3bpzJde1cePXrE1atX6dOnz3vr1SecnJwwMTHhxx9/pE6dOnz22We6loS3tzdNmzbFxcVFretev34dFxcXBg0apKr+mDp1KhYWFuTl5WFqakp2draq1HfcuHGq7FxCQgLXr1/Hzc2NHTt2sHr1aq30/v4Td3d3Hj16RF5enkbW79mzJ8ePHyc3N1cj66uDx48f065dO2xsbDh58mSRfDZEXqTQnK8kOvHn5OTQu3dvDh06hLe3N8OGDdO6huDgYGxsbKhatarW9xYREdEuYrAvIqJmLMykrJ7sRIXSugn4pVIobS9lQJNHWJqV7EAfUAXI+lzGn5OTQ8+ePdm/fz/btm3jzz//xNjYmJ9//pmuXbsik8mYM2cOvr6+5OTkvPM+hw4dwsTEhC5duqhRve6RSCTY29sTHR3NunXrtB7A/puMjAxOnDjBuHHj1LZmQkICUJC9LleuHAYGBgQEBHD//n08PDwYM2YMUGAKGB0drXqes7MzM2bMIDIykoMHD3L8+HHu3bvH0KFD1abtbfDw8EChULxgqKhOevbsSUZGBufOndPI+u9LfHw87dq1QyqVcurUKZycnHQtqVgSERGBiYkJVapU0bUUtZKenk6nTp04d+4cR48e1Zq5578JDg6mUaNG4lQIEZEPAPFbLiKiAWwsDdj4dWmqVjBGm754EglULmeE4ZPldPH6mAoVKrBs2bJiPZv6TRSHzL6ZmRl9+/bFxcWF0NBQVq9ejb+/P9bW1mzbto22bduSlJTE0KFDVRmtd8HHxwcvL68SVzKcnZ1NSkoKZcqUoXXr1rqWQ2BgILt371ZLQL127VrKli3LL7/8QmZmJqVKleLzzz/H2NiYq1evqtznx40bh7W1NeHh4fj5+aky24WtIdWrV6dt27Z07NjxvTW9D5ocvwcFmV5XV1e9dOVPTk7Gy8uLrKwsTp06pfaqjw+JiIgIPD09S9TkgsTERNq2bUt4eDgBAQE681URBIHg4GCxhF9E5ANBDPZFRDSEpbmUdVNK80lHayQSNJrll0oLAv2B7a34floZvvh8CACxsbHMnTuXihUr0qJFC7Zt20ZGRobmhOgAfc7sR0dHc+vWLQAmTZrE1KlTsbOzIzg4mNWrV/PXX3/h5OTE1q1bqVChgsq1u6hr/5P4+HguXLhQ4kr4AdatW0deXp7eOLB36dJFbY72fn5+PHv2jPPnz6sC5IEDB9KgQQNSUlLw8/Pj7t27VKlShbFjxwLw008/cefOHQC9m7Lh7OyMubm5xkz6JBIJPXv25PDhw6obHfpAYcY2Li6OU6dOUblyZV1LKtaEh4eXqBL+J0+e0LJlSx4/fsy5c+do1qyZzrRERUWRmJhI48aNdaZBREREe4jBvoiIBjE2kjCqhy2bZ5TGxdFQI1l+iQTKljLkh2mlGdPbDmMjCU2aNFGZuimVSgAuXLjA559/XuLcd/U1s3/kyBGqVKnCDz/8oAp8vvrqK7788kug4Pexbt06QkJCcHV15fLlyxw+fLhIa69evZr+/furfrdQMEddKpXSvXt39b8YHRIXF8eyZcto1qwZcXFxupajCjDfNeMYGRnJ8+fPkclkAGzYsAGAgIAAzp07R0ZGBjY2Nirjv8jISNXnYvTo0QA8ePBAYz3x74tEIsHd3V1jmX0oKOV/8uQJV69e1dgeb0N2djbdu3fn7t27nDx5kurVq+taUrFGoVAQGRlZYsz5Hj58SIsWLcjMzCQwMLBII1Q1SXBwMIAY7IuIfCCIwb6IiBaoWtGEX2aXZXRPW0rZFPQbv0+mv9Bzz95aysjuNmybW5bqbiaqxyUSCX369HkhIJFKpTg5OTFlypR331gP0dfM/vHjx1EoFPz+++/8/vvvqh7muXPn0r59e2QyGYcPH+bbb78lISHhrXp7GzZsSGhoKPv27VP9zMfHh9atW1OqVCm1vxZdMnfuXExNTRkxYgRpaWmkpqbqVM+7ZtL/+OMPatWqRfv27WnRogXjx48nLi4OT09PBg0aBMDRo0e5efMmAF27dgUKevl9fHy4ceMGlStX5q+//kKhUNCgQQP1vCANoMnxewAtWrTAzs5OL0r5c3Nz6du3L1evXsXPz4+6devqWlKx5+HDh2RnZ5eIzP6NGzdo3rw5RkZGBAUFqdpcdElwcDBVqlTBwcFB11JERES0gBjsi4hoCWMjCYO8rNm7xJnFYx2oV9VU9ZjB/5fhvwrJ/x9TSG0PExaOcWDfknIM6WSDsdF/n9yzZ0/kcrnqvwvHeZW0rJO+ZvY3b97MkCFDyMzMZMOGDezbt48nT54ABe7yhaPxevfu/Vaj9QBatWpFz549+eabb5DJZCQnJ3P27FmNjIHTJdeuXeO3337ju+++o2bNmkDBxIHiREJCAgMHDmTYsGFERkZiZGTEvXv32L59O+PHjwdg4cKFAJw7d479+/cTHBzMvHnzMDMzQxAEoqOjyczMBAoCXX0r3f83mhy/BwVVFV27dtV5sC+Xyxk8eDBnz57F19dXp6XZJYlC35Lintm/fPkyrVq1wsnJifPnz1OhQgVdSwIgJCREzOqLiHxAlBznExGRYoKBVELWswus/7orP/z0B1cjU2jYsj/3Hsu5/SiPzBwlha2oEglYmEmoWsGEahWNca9gTHVXYxzt3vzVbdOmDaampshkMtWc8hEjRhAYGEi5cuU0+Aq1S1ZWFkZGRhgZGelaCrGxsUCBpqpVq/L777+TlpbG0aNHWbt2LXFxcdja2vLXX38xa9YsOnXqRMOGDd9prxUrVuDp6ckPP/yAk5MTCoWCXr16qfHV6BZBEJg6dSpVq1bliy++ICUlBSjoN61Tp45uxRWBvLw8jI2N8ff3x8fHh8qVK7N//37s7e1Zu3Yt33//Pb6+vnh7e9OvXz8+//xztm7dyvr169m0aROWlpasWbMGe3t7evfu/daf7/z8fAwNDXVyY8DDw4PY2Fiys7M1dhOuZ8+e/PHHH0RFReHm5qaRPV6HUqlk5MiRHDlyhEOHDtGuXTutayiphIeH4+joSOnSpXUt5Z05e/YsPXr04KOPPuLYsWN64zcik8m4du2azqZ1iIiI6ABBREREq4SEhAgmJiYCILi5uQmA8Mcff6geVyqVQr5cKeTlKwWlUvleew0fPlyoU6eO8OzZM+HRo0dC+fLlhWrVqgnPnz9/35ehN6xatUqwsbHRtQxh9erVQr169QRHR0fB2dlZmDdvnur317p1a0Eikaj+mZmZCdevX3/vPSdMmCDY2NgInTp1Epo1a/be6+kThw4dEgDh2LFjgiAUfC/Mzc2FtWvX6ljZ6/Hz8xOGDRsmLF68WFAoFMLQoUMFiUQidOzYUXXMnTt3hFatWgkSiUQYOHCgIAiC8PjxY2HkyJGCq6urULZsWWHJkiWCQqF4Jw1KpVLYs2ePkJeXp5bX9LZcuHBBANTyGX8V6enpgrGxsbBu3TqN7fEqlEqlMHbsWEEqlQp79+7V+v4lnT59+gjt2rXTtYx35vDhw4KJiYng5eUlZGZm6lrOC1y8eFEAhNDQUF1LERER0RJisC8iokUuX74sWFpaCsAL/+bOnauR/RQKxQs3DO7evSuULl1aqFOnjpCSkqKRPbXNggULhLJly+pUw9dffy1IJBLBxMREMDExUQX1U6dOFQRBELKzs4URI0YI7du3F5o0aSIEBwerZd/nz58LVlZWgoGBgbB69Wq1rKkP5ObmClWqVBG8vLxe+PzWqFFDmDx5sg6VvRp/f3+hQYMGqt99uXLlhISEBNWNnq5duwqRkZGCIAiCTCYT+vTpI0gkEqFbt25Cdna2ap3bt28LOTk576Vl586dgpmZ2Xut8T4kJCQIgHDgwAGN7tO5c2ehdevWGt3j3yiVSmHatGkCIGzbtk2re38oVKlSRfjqq690LeOd2LVrl2BgYCD06dNHkMlkupbzH9atWyeYmpoKubm5upYiIiKiJcSefRERLREaGkrbtm1VPeb/JDAwUCN7SqXSF8p43d3dCQgIICYmhi5duqj6gIszWVlZOjXn27JlC2vXrsXZ2ZmTJ0+yY8cOhgwpGH24bt069u/fj5mZGT///DMnTpzA399fbf2Sjo6OdOvWDYVCUaKMwX744QcePnzImjVrXvj8urq66mXPfnBwMMOHD+fq1av079+fwMBAAgMDcXBwYNSoUQBcvHiRPXv2AJCRkcGDBw8A6NatG2ZmZqrJClWrVsXU1PTlGxWRqKgobGxs3muN96FUqVLY2tpq1KQPCkr5AwMDSU5O1ug+/2TRokWsXr2aDRs2MHLkSK3t+6GQlZXFgwcPimW//k8//cSnn37K0KFD2bdvHyYmJm9+kpYJDg6mXr16GBsb61qKiIiIlhCDfRERLXD37l3atm1LVlbWC+PSCgkJCXnBTE+T1KpVixMnTnDjxg169uypGgFWXNFkX3BRKBxjNGbMGFq2bEn//v2ZMWMGLVu2BODEiRPk5uYilUoxMDDA2tparfvn5eVhZGTE5s2b1bqurkhMTGThwoWMGTNGZcpXiL4G+4cOHSI+Pp4RI0awb98+srKy2LRpExMnTsTOzo5KlSqRmprKkiVLaNasGa6uroSHh9OqVSs6dOgAFNyYUxepqak67RGWSCQaN+kD6NGjBwqFgmPHjml0n0LWrVvH/PnzWbJkCZMnT9bKnh8akZGRCIJQ7Jz4V6xYwbhx45g0aRLbtm1759GcmiY4OJgmTZroWoaIiIgWEYN9EREtkJqairGxsWpG97+RyWRcv35da3oaNmzI0aNHuXTpEgMGDCA/P19re6sbXWT2lUolGRkZADx79gyA69evEx0djVQqpVatWirnZTs7O0xMTDAwMFC7DplMhr+/Pz169ODgwYNcuHBB7XtomwULFiAIAgsWLPjPY66urkRFRb3ye6Qpnj9/rvo9v4z69esD8Ntvv1G6dGk6derEpk2b2Lx5M4sWLaJz58706dMHgLCwMKRSKdOnT8fX15dKlSqpXW9aWppOM/ug+fF7AGXLlqVx48ZaceXfsmULU6dOZdasWcyePVvj+32oREREIJVKqVGjhq6lFAlBEPjmm2+YNWsW8+fPZ/369Wq9cadO4uPjiY6OFoN9EZEPDP08I4mIlDAaNWrE8+fP2b9//38eK7ww0Hag1rJlSw4dOsSJEycYOnQoCoVCq/urC21n9tPS0hgzZgy9evUiNjYWFxcXoCBjsm/fPh4/fkxGRoZqfJQmL1pPnTpFZmYm3333HXXr1mXatGlaD4TVya1bt/jxxx+ZM2cOTk5O/3nc1dWVjIwMlTO/JpHL5Vy4cIHWrVvz6aefMmLECNatW4dSqfzPe9ynTx9GjBhBixYtaN68ORs3buT8+fPUq1ePy5cvU6NGDX799VfCwsL4888/iYmJYcWKFWqv8ihEH4J9bWT2oaCU/8SJExqtUNq9ezdffPEFEydOZOnSpRrbR6TAib9KlSp6N0r1ZSiVSiZMmMDy5ctZu3Yt3333nV6PxQwJCQEQx+6JiHxo6NAvQETkg+P3338XAOHBgweCp6en4OTkJPTp00dwcnISNm3apBNNBw8eFAwMDIRRo0a9s/u3LunWrZvQo0cPrez1+PFjoVatWoJEIhHs7OyEsLAwISkpSahZs6bqZ25ubkK5cuUEiUQi9OvXT6N6RowYIVSrVk0QBEE4ffq0AAj79+/X6J6apEuXLoKbm9srja1CQ0MFQLh69arGtWzbtk1wcXFRGe4ZGBgIEydOFMLDw186JeOfP0tLSxN+/vlnwdTUVLC1tRXOnTuncb3/pF27dsKAAQO0uue/2bNnjwBo3Ag0MjLyhakN6ubQoUOCgYGBMHz48GJ5fixutGnTRuPnTXWQl5cnDBkyRJBKpcLWrVt1LadIzJo1Syhbtux7T/kREREpXoiZfRERLXLgwAGaNm1KhQoViI6OZsqUKRw8eJBnz54xfvx4nWjq06cPv/32G9u2bWPq1KnFLjOsrcx+dHQ0HTt25MaNG0ycOJGEhAQEQeDq1avMmTMHFxcXlEoljx49Ijs7mzFjxnDgwAGN6cnPz8fX11dVHt62bVu6du3KrFmzyM3N1di+muLChQv4+fmxcuXKVxpbubq6Amilb3/dunU8efKELVu2ULlyZUxMTBg8eDAbN24kPj7+P98TpVLJiRMn6Ny5M9WqVWPs2LEAfPPNN1ovm9WHzL67uzuAxkv5q1evTpUqVfjzzz/VvnZAQAADBw6kT58+bN26VW/Ls0sKgiAQHh6u9/36MpmMfv36sX//fvbu3asy4dR3QkJCaNKkiV5XH4iIiKgf8S+XiIiWSE9Px9/fn/79+xMWFkZmZqbKxE3XDB06lM2bN7Nhwwa+/fZbXct5K7KysrQS7J84cYI7d+4wdOhQNm7cyIYNG+jfvz8dO3Zk7dq1fPrpp+zduxdfX1+OHz/OTz/9pFE958+fJzk5WRXsA6xcuZJHjx5p9CaDJhAEgSZNmuDj40Pfvn1feVypUqWwsLDQeLB/7949IiMj6dSpE6NGjeLhw4dUqVKFZs2a8eDBA1asWPGf5xR6Mpw+fRozMzMmTZrEgwcPmDFjhtZdufUp2Nd0Kb9EIqFnz54cOXLkpean70pgYCA9e/akQ4cO/PHHHxrx3BB5kfj4eJKSkvQ62M/IyKBLly4EBARw+PBh+vfvr2tJRUKhUHD58mWxhF9E5ANEP+1CRURKIEePHiU3N5e+ffvi7e2NqakpDRo00LUsFePGjSMzM5MZM2ZgZWXFjBkzdC2pSGRnZ2vFoC8uLg6lUsn58+dp164dZ8+epW7dujRt2pRLly7h6uqq1X5eHx8fKlasSL169VQ/q1GjBkFBQTRu3BhBEIpNBkcikWBgYECvXr1eq1kikahM+jRJZGQkAJUqVcLX1xdBEOjZsyeZmZmEhYWRkJDwUp2dOnUiKCiIypUrU6pUKY1qfB36EOxbW1tTunRpjWf2oaBvf82aNVy+fFktVRRXrlyha9euNGnShAMHDohjyrREoc+Jvo7dS05OpnPnzty+fRt/f39atGiha0lFJjIykqysLNGcT0TkA0TM7IuIaIkDBw7QuHFjKlSowPnz52natKneXUROnz6defPmMXPmzGIzyk1bZfxjxoyhRYsWREdHExcXx7x581Rz1aHAaDE7O1srbRBKpZJDhw7Rp0+f/wSdTZo0QSqVFptA/58URbM2xu95enpSsWJFduzYwZQpUzA0NMTDw4MNGzaQmppKu3btXvncRo0a6TTQB92P3itEWyZ9zZo1w8HBQS2u/Ddu3KBjx454enpy+PBhzMzM1KBQpCiEh4djYWGBm5ubrqX8h7i4OFq1asXDhw85e/ZssQr0ocBAViqV6lWCQURERDuImX0RES2QkZHB8ePHWbJkCUqlksDAQCZOnKhrWS9lwYIFZGRkMGHCBCwsLPjss890Lem1aGv0nrOzM0ePHuXs2bM0aNAAZ2dnfv/9d2bMmIFEIuHTTz/VmoN0cHAwcXFxL5TwF1Icg/y3wc3NjXPnzml8j8aNG7N//36ysrIA+PLLL0lNTcXBwUGve3RlMhl5eXk6z+xDQbAfFham8X0MDAzo1q0bvr6+LFu27J3XuXfvHh06dKBChQr4+flhaWmpRpUibyIiIoKaNWvqnTfCo0ePaN++PTKZjMDAQKpVq6ZrSW9NSEgItWrV0vqYWhEREd2jX2dUEZESSmEJf79+/bh16xbJycl606//byQSCWvXruXzzz9n5MiReHt761rSa9Hm6D0rKyt69OhBeno63bp147PPPkMqlXLgwAG6deumFQ1QUMLfv39/Pv74Y63tqS7et/KhMLOvyQoKQ0ND/vjjDxYuXEj9+vWxsbEhJSUFT09PfvzxR73uKU5LSwPQi2Df3d2de/fuaaXapWfPnty6deud2wZiYmJo3749tra2+Pv7Y2dnp2aFIm9CH835bt26RfPmzZFIJAQFBRXLQB8KbhCLJfwiIh8mYmZfREQLeHt706hRIypWrMiPP/6IoaGhXv/hlUgk/PTTT2RlZfHJJ59gbm5Oly5ddC3rPwiCoPHM/st63/Py8ggPD6dp06asWrWKZs2aaWz/l+mxsbFh//797/T8vLw8nbaPxMbGAgWGlVWrVsXQ8O3+DLm6upKZmUlycrJGyuULb2716dOHyZMn07p1a9LT07GwsMDJyYnq1aurfU91ok/BvoeHB+np6Tx//pzSpUtrdK8OHTpgamqKr68v06ZNe6vnxsfH065dOwwMDDh16hROTk4aUinyKuRyOTdv3mTkyJG6lqLi6tWrdOzYkbJlyxIQEECZMmV0LemdSEtL49atW0yfPl3XUkRERHSAGOyLiGiYzMxM/Pz8WLhwIVDgot6gQQO9L6czMDBgx44dZGVl0bdvX44fP07r1q11LesF8vPzUSgUGsvsHzp0iJ49ewIvlsd/9NFHBAUFYWxsrPULwIcPHzJv3ry3ft7jx49Zvnw5oaGhjBgxgnHjxmlA3avJzs5mwYIF7N27l5SUFKpXr07jxo358ssvqVy5cpHX+ef4PXUH+zExMYwaNYrc3FyuXr2Kp6cnzZs3V+semiY1NRVAL3r2/zl+T9PBvoWFBV999RUuLi5v9bz09HQ6dOhAdnY2QUFBlCtXTkMKRV7H3bt3ycvL05vMfmBgIN26daN69er4+flhb2+va0nvTGhoKIIgiE78IiIfKGIZv4iIhjl27JhqLq8gCJw/f77YmPsYGRmxb98+Pv74Y7p3705ISIiuJb1AYT+1um+cCILAzJkz6dOnD0eOHHlpH3yFChV0kunJyspCLpcX+fj8/Hzy8/MZOHAgP/74I1euXGHChAkaHw34b7799ltWrVpFXl4emZmZhIaGcvnyZZ49e0ZMTEyRS70Lg31NOPLv3r2bjIwMvv32Wzw9PVXv86FDh+jWrZtW+s/fFzMzM7p06aIX2enKlSsjkUi0YtIHsGzZsteObvw3giBw//594uPjOXXqlF4aw30oFDrx60Owf/z4cby8vGjQoAGnTp0q1oE+FJTw29jYULVqVV1LERER0QFisC8iomEOHDhAgwYNcHNzIyoqiqdPn+ptv/7LKCyN/eijj+jcuTPh4eG6lqQiOzsbQK2ZfYVCwZgxY1i5ciXr169XZfb1BWNj4yKVviuVSn7//XcOHjyIkZERZmZmODg4sGvXLqRSKXPmzCEzM1MLiguydmvXrqVChQrcvn2bJk2aYGBgwOeff05oaCh9+vQpssO+vb09lpaWb+3In56e/sZjTp48CaC6GVf4+Xry5Al+fn6cOXPmrfbUBbVq1eLYsWOULVtW11IwMzOjfPnyWhm/V4iRkVGRj5VIJNSpU4czZ87ofXtGSSc8PBxnZ2edT7LYv38/PXr0oGPHjhw7dqxEmDQGBwfTuHFjvTM+FBER0Q7iN19ERINkZWXh5+enGs92/vx5JBJJsTNWs7Cw4NixY7i6utKhQwfu3Lmja0mA+oP93NxcBg0axG+//caOHTv48ssv1bKuurh9+zaXLl1CqVS+8di///6bkSNHqkYoli9fnoyMDAYNGsTcuXNJSUnRWna/sA9+1qxZ3L9/n+DgYFq3bs3nn3+Or68vd+/eLVIwDgUBmpubW5GD/eTkZObMmcOpU6fIz89/5XEZGRmqTH7hDS1ra2sAlft/o0aNirSnyP/Q1vi9d0UikehFNvlDJyIigo8++kinGrZu3cqgQYMYNGgQBw4cwNTUVKd61IEgCISEhOi1R5CIiIhmEYN9EREN4ufnR05ODv369QMKgv1atWoVS6fnQpfqUqVK0b59e43POi8K6izjz8zMpHv37hw5cgQfHx+GDRv23muqGx8fHwICAoqUofH09KRWrVpcvXqVqKgoBg4cSF5eHps3b2bs2LEA+Pv7q95DTVJoFvfo0SPV+7po0SKuXLnCuXPnaNiwIbVr1y7yeoWO/K8jJSWFb7/9FldXV37++We6d+/+yqyvIAhYWVmpelonTZrEoEGD+OGHH5g1axY+Pj44OzsXu/59faA4BPsiukfXTvxr165l9OjRjBs3jh07drxVhYg+8/DhQxITE8V+fRGRDxgx2BcR0SAHDhygXr16VKpUCSgw/SlOJfz/xtHRkVOnTmFsbEz79u2Ji4vTqR51ZfaTk5Np3749wcHBnDhxgh49eqhDntrx8fFBoVAU6VgzMzOGDx9OTk4OK1aswM7ODnNzc4KCgpDL5Xz99ddMnz5dK0aRhTe3Vq5cya1bt2jTpg0mJiYqk8DJkye/1XqvC/bT0tJYuHAhbm5urF69mi+++IIHDx689uK9MOAbPXo0DRs2xMDAgP379zN58mRWrlyJra3tW2sUKcDd3Z379+8XqRpF5MMkLS2N6OhonWT2BUHg22+/5euvv2b27Nn88MMPJarcPTg4GEAM9kVEPmBKzhlNRETPyM7O5tixY6oS/qdPn3L//v1iHewDODs7c/r0aWQyGe3btycxMVFnWtSR2S/0UHjw4AFnz57Vu4kDhURHR3P16lV69+5d5OdMnjyZ6tWr88svv9CnTx+ysrIwNDTExcWFiRMn4urqSkZGhsY0FwZ4n3zyCV9//bXq93T27Fk6duzI1atX6dWr11v7Iri6uhIVFfWCqV9GRgZLlizBzc2NZcuWMWLECB4+fMiqVaveOIbu2bNnLFq0iOfPnzNv3jw6d+5MpUqVqFy5Mg4ODqxbt07r0wtKCh4eHshkMtXIRW1z/fp1Tpw4QXx8vE72F3kzN27cALRvzqdUKvnyyy9ZtGgRK1asYMmSJSWu0iMkJAR3d3edeyGIiIjoDjHYFxHREMePHyc7O1tVwh8YGAhQbJz4X4erqyunTp0iISGBjh07qmZ7a5v3zezfv3+fjz/+mPT0dAIDA6lfv7465akVHx8fjI2N6dq161s97/vvv6devXokJSXRsWNH2rZty4QJE6hcuTJNmzalY8eO7NixQ+168/Ly+Oqrr1i1ahUAEyZMYMaMGbRp0wYjIyMMDAyYMmUK69evf+u1XV1dyc7OJjExkczMTJYvX46rqysLFy7k008/5cGDB6xbt67I0xL27NnD/PnzuXz5Mt26dcPb25t9+/axfft2oqOj+eyzz7CysnprnSIvjt/TBvn5+arxg3PmzKFZs2Z06dKFkSNH6nU7wYdMREQEhoaGVKtWTWt7yuVyRowYwQ8//MDPP//MjBkztLa3Nik05xMREfmAEURERDTCwIEDhTp16qj+e/z48YK7u7sOFamfsLAwwdbWVvj444+FzMxMre+/a9cuARCysrLe+rlhYWFC6dKlhapVqwrR0dEaUKdemjdvLnTr1u2dnvvo0SPhr7/+EhYsWCDY2NgIEolEkEgkgomJiSCRSARDQ0Ph8OHDatU7Z84cQSKRCHXr1hWePn0qCIIg5OTkCDExMcLdu3eFiIiId17777//FgBh8uTJgoODg2BkZCSMHz9eePz48Tutt3DhQkEikQghISHvrEkfSE9PF54+fSqkpKQISqVS13IEQRCEvLw8wdDQUNi8ebPG97py5YpQv359YfHixYJSqRRatWolSCQSoVq1aoJEIhFmz56tcQ0ib8+4ceMET09Pre0nk8mE3r17C4aGhsLu3bu1tq+2ycnJEYyMjIQffvhB11JERER0iJjZFxHRADk5ORw9elRVwg/Fv1//ZdSuXZvjx48TFhZG7969kclkWt2/MLP/tq7JFy5coFWrVpQrV47AwEAqVKigCXlqIz4+ngsXLtCnT593en7FihVp2bIlz58/Jz09nQoVKjBjxgzWrVvH8uXLUSgUTJs2TW16Y2JiWLp0KeXKlePIkSOqMXCmpqaYmpri7u5OzZo132ntnJwc/Pz8ANi0aRN9+vTh/v37bNq0CRcXl7deLzMzEyMjI0xNTbl3716RPRH0jePHjzN79myGDh3K7NmzuXfvHidOnCApKUmnuoyMjKhUqZJWsuqxsbH8/fffpKSkoFAoyMzMpHXr1ly/fh1TU1P27duncQ0ib482nfizsrLo3r07x48f59ChQwwePFgr++qCa9eukZ+fLzrxi4h84IjBvoiIBjh+/DhZWVmqYD85OZmIiIgSF+wDNGnShCNHjhAYGMigQYNeO95M3WRlZWFubv5WhkrHjx+nQ4cO1KlTh7Nnz+Lo6KhBherB19cXqVT6XsaBKSkpXLx4EYABAwYwefJkxo0bx4wZM/Dy8uLevXscOnRILXq3b98OQMeOHSlXrhw5OTkAyGQyWrduzfTp01Vj7oqKTCZj48aNVK5cmfnz52NkZMT06dP5+eef3+tmzapVq5g9ezYKhYIVK1awZ88e7t27R1ZW1gueAPrMn3/+SdeuXdm0aRNnzpzh5s2bREVF0aVLF7Zs2aJrebi7u2uljL9wokN4eDiGhobY29sTGxuLkZERLVu2JCoqiocPH2pch0jREQSBiIgIrfTrp6Sk0KFDBy5dusTx48fp1q2bxvfUJcHBwZiamup8pKGIiIhuEYN9EREN4O3tTe3atVX9qkFBQQAlMtgHaNOmDd7e3hw7dozhw4drLTuanZ39Vv36e/bsoUePHnTo0IETJ06o5qjrOwcPHqR169bvbbKUl5eHqakpEyZMwNnZGZlMxp07d1Qmi+oaw2dgYABAUlISSqUSMzMzAK5cucKtW7cICwvD0NCwSGvl5uayefNmqlSpwpQpU/Dy8uLOnTtUr15dLV4Rz549Awp6vW/cuMGwYcPo3bs3s2fPZteuXXpv7Jaamsr06dMxNzenXbt2ADg5OamMJgvPPbpEW+P3XF1d8fDw4Pz589y+fRtjY2NkMhkJCQmULl0aQRC4ffu2xnWIFJ3Hjx+Tlpam8WD/2bNntG7dmjt37nDmzBm9NWJVJ8HBwdSvX7/EjBEUERF5N8RgX0REzeTk5HDkyBGVMR/A+fPncXFxoWLFijpUplm6du3K7t272bt3L+PGjdNKVvRtgv0ff/yRIUOGMGTIEA4ePPjWpf+6Ijk5mbNnz75zCX8hdnZ2dOrUCZlMxrp167hx4wYXL15kw4YN3LlzB2NjY6pUqaIWzaVLlwYKKhL69OnD6dOnuXjxIlOmTAHg888/f+Macrmcn3/+GXd3dyZNmkSbNm24desW27dvp3Llyq8dv/c2/PTTT9y6dYt169bRtm1bDAwMuHnzJt9//z3Dhg3jzp07772HJklMTOTBgwd07NgRHx8fAGxsbFAoFFhaWvL8+XMdKyzI7EdFRWml6mfgwIHk5eXRvn17/Pz8kEgkZGVl0a9fP5YvX06jRo00rkGk6ERERABoNPscExNDixYtSEhI4Pz58zRs2FBje+kTwcHBYgm/iIgIRUutiIiIFBl/f38yMzNf2q9f0sb6/Jv+/fuTlZXFiBEjsLKyYvXq1Rp9zVlZWW8cuycIAkuXLmXu3Ll89dVXrFmzpljNUT569ChyuZxevXq991rz5s1j586dbNy4kT179mBiYqIaida5c2fc3Nzea/2goCASEhLo0aMHfn5++Pn5cfjwYQ4fPoylpSWZmZl06NCBgQMHvnINQRBIS0ujfv36REVFMWjQIL799tv/OHW7uroSEBDwXnqjo6MxMjKiatWqVK1alS+//JJ79+4REBDAoUOHCA4O1vtqnMzMTAAcHByIi4sDwN7envT0dDIzM1VVFrrEw8MDuVzOo0ePVNVOmmL48OFcuXIFf39/atSowdixY7Gzs6NMmTLUqlULBwcHje4v8naEh4djY2ND+fLlNbL+nTt36NChA4aGhgQFBVGpUiWN7KNvxMXFERMTIzrxi4iIiMG+iIi6OXDgALVq1aJq1apAwcX41atXGTlypI6VaYfhw4eTlZXFxIkTsbKy4rvvvtPYXm/K7CuVSqZNm8a6detYtGgRc+bMKXY3XHx8fGjWrBnOzs7vvZaNjQ0//fQTa9euVfXvOzo6MmrUKJYuXQoUzKv39fXl008/fau1BUFg8ODBWFpacvDgQaZPn45SqeT69evExcWRmZnJkCFDmD179mvXkUgkDBgwgPr163P48GE8PT1fepybmxuPHj1CEIR3/p1OmTKF58+f06ZNGxo3bkz9+vVxd3fH3d2d8ePH8+zZM73/vBgZGWFnZ8fZs2extbUFCkqWf/rpJ0CzGdOi4uHhAcDdu3c1Huy7ubnxxx9/cO7cOU6fPs2RI0eYO3cu6enpVKxYkREjRjBu3Lhi4dXxIVDYr6+J71lYWBheXl44OjoSEBCglnNocSEkJARAzOyLiIiIo/dERNRJTk6OYGVlJSxcuFD1s5MnTwqAEBkZqUNl2mfZsmUCIKxevVpje3z66adCy5YtX/pYfn6+MHz4cEEikQibNm3SmAZNkpGRIZiamqr9PUxISBB8fX2FX3/99YVxdatWrRIsLCwEiUQiXLp06a3WDAkJEaRSqTB48GDVz3JycgQ/Pz/hzJkzwl9//fXGNfLy8oSrV68K169ff+Oxhw4dEgDh2bNnb6WzkKSkJNUIQlNTU6FixYpChw4dhJkzZwp//vmn8OjRo3daV9vk5OQIs2fPVr2Wf/5zd3cXjh07pmuJgkKhEExNTYV169ZpfK/CkYO3bt0SGjVqpHov7O3tBYlEIhgZGQmTJ0/WuA6RouHp6SmMGzdO7esGBQUJNjY2QoMGDYTExES1r6/vzJw5U3B2dtabEZwiIiK6Q8zsi4iokZMnT5KRkfFCv35gYCAODg5Ur15dh8q0z6xZs8jIyGDatGlYWlryxRdfqH2PV2X2ZTIZgwcP5ujRo+zatavYjlc6fvw4MpmM3r17q21NQRBwcHB4wdnf29ubGTNmqHrgy5Urx82bN4ucFUpMTMTf3x8bGxu8vLyAAsM7U1NTOnfuXGRthoaG1KtXr0jHurq6AhAVFYWTk1OR9yhEEATmz59PWFgYf//9N0+ePCEmJoaQkBB2795NtWrV8Pf31/vMvqmpKZ9//jlPnz4lKCiI9PR08vPzsbGxYcaMGXTp0uW9qh/UgVQqxd3dXSsmfRKJBEEQ8Pb2JjQ0lNKlSzNixAhcXV1JSEhgzZo1/PLLLyxduvSNLUAimiU3N5c7d+4wceJEta578uRJevfuTcOGDTl8+HCxMWJVJyEhITRu3Fjvz18iIiKaRwz2RUTUyIEDB/D09HwhsD9//jwtWrT4IP/oLl68mMzMTMaNG4eFhcVbl4a/iaysLCwtLV/4WXp6Or169eLSpUv4+vrSpUsXte6pTXx8fKhTp45a+0wLP4eCIJCYmMiUKVPYvXs3AOXLl6d3795069btrdyx+/fvz19//YWhoSH79u2jefPmVK5cWfV4UYPNt/mOFAb7jx49eqe+1FKlSjF//nwArl+/zunTp9m2bRu3bt0iIyODBg0aFJvvrJubG7/99htXrlzh3r172Nvb07x5c1Uwqw+vQ1vj96Dg8xYUFIShoSEzZ87k888/V50nYmNj+fnnnzl16hQ9e/bUih6Rl3P79m3kcrlanfh9fHwYPHgwHTp04MCBA6pJIB8Scrmc0NBQvv32W11LERER0QPEYF9ERE3k5uZy+PBhpk6d+sLPgoODWb58uQ6V6Q6JRMK6devIyMhg+PDhWFhYqDVLnZ2d/UJWNyEhgc6dO3P//n0CAgJo3ry52vbSNjKZjKNHjzJz5kyNrC+RSLh16xZ+fn6YmprSu3dv+vXrR8OGDXFxcQGKFqTn5eVRqVIl/vrrL+RyOf7+/nz77beMHDmSRo0aYW1trZFg09bWFhsbm3dy5M/Pz+fOnTu4uLhga2tL7dq1qV27NuPHj8fDw4NKlSrxzTffqF2zJoiJiSEoKIgaNWrQoEEDGjRoABR4heTl5WFsbKxjhQV4eHiobippGqlUipWVFXK5nKZNm2JpaYlMJkMmk6nGNWqjykDk9RQ68desWVMt623fvp1Ro0YxYMAAdu7c+cGOnIuMjCQrK0vs1xcREQHE0XsiImrj5MmTpKenv+DCHxoaSm5uLi1atNChMt0ilUrZsmULffv2ZdCgQZw8eVJta//Tjf/x48e0bNmSx48fc+7cuWId6AOcOnWKzMzM9x659zqCgoJITU2lZs2afPfdd3Tv3l0V6J88eZKoqCiUSuVr1zA2Nmbbtm1cunSJ7t27A7B371769+/PokWLCA4OfuMa70qhSd/bsnfvXj777DPWrVuHj48PERERpKeno1AocHBwoH79+sVmPNfu3bv59NNPVWP3oOBmxpAhQyhfvjyXL1/Wobr/4e7uzuPHj8nJydHKfoVtKgsWLOCPP/7g9OnTzJ8/n2PHjiGRSKhbt65WdIi8mvDwcCpWrIiNjc17r7VhwwZGjBjB6NGj+eOPPz7YQB8KSvgNDAyoX7++rqWIiIjoAWJmX0RETbi5ubF+/Xpq1Kih+llgYCBWVlbUrl1bh8p0j4GBAb///jt9+vShV69e+Pv7q+UGiJGREdbW1qrxSlKplKCgII07fmsDHx8fqlatqlGvh/79+zN37lwkEgmlS5fG0NCQq1ev8ssvv2BlZaXqv38VZ8+eJSQkhM8++4zGjRvj6+uLj48Py5cv58qVK6xZs4bIyEj8/Pw0ot/V1fWdgv3ly5dz69Ytrl27hr29PXXr1sXT05PHjx8TFhb23iMItUl4eDjwv+C20MeiatWqHDlyhKSkJF3KU+Hh4YEgCDx48KDImVylUvnOYzK7d+9OzZo1OXHiBMHBwWRnZ5OXlwdA165dadq06TutK6I+IiIi3ntahCAILFq0iPnz5zNjxgyWL1+uF20ruiQ4OJhatWqJnhQiIiKAGOyLiKiN6tWrvxDoQ8ENgEmTJmFoKH7VjI2NOXDgAF27dqVr166cOXNGVXL8rgQHBwMFQcGdO3cwMTF55+BAn5DL5fj6+jJ27FiNXri6u7uzdu1aduzYQYsWLXB2dub69etkZmby4MGDNwZbQ4cOJSkpiStXrtC3b1969OhBnz596Ny5M1u3bmXWrFmMGTNGY/pdXV05ceLEWz9vx44d7Nq1C29vb548ecLp06c5ffq06vHhw4erUaVmSU9Pf+F/Cw0rU1NTAfSmZ/mf4/eKEuwrFAoMDAxUz7G1tcXS0vK1ozb/ia2tLZs3b2bZsmUcP34cgMqVK+Pl5cW0adNUgZCuzQs/ZMLDw9/ruyYIAtOmTWPt2rUsXbq02LTeaJrg4GBatWqlaxkiIiL6gm6GAIhom7x8pfA8JV+IfZYnRMfnCXGJ+UJ6lkLXsko0SqVSyMvL07UMvSMjI0No0qSJYG9vL0REROhajl5y6tQpARCuXLmi8b3y8/OFL7/8UjAwMFCNJtu0aZOgULz+/BAWFiZUqVJFMDc3F6RSqeDq6iqMHDlSOHnypOoYTY+8Wr9+vWBqavpe46WuX78uzJo1S2jUqJHQqVMnYceOHYJcLlejSs0yYsQIQSKRCP369ROCgoKE2NhY4fDhw4KLi4sgkUiEmzdv6lqiIAgF50Nra2th165dRTq2kIULFwqVKlUSypcvL0ybNk0ICQl5q32TkpKEkydPCleuXHlhzKRMJnvhsyqiXRITEwVA2Lt37zs9Xy6XC6NGjRKAYjtaVROkpKQIgLB9+3ZdSxEREdETJIIgCLq93SCiCWLi8wm/n8u9mDxuRuXyKC4fxUvaZu2spNRwM8GjojFVKxhTx8MUYyMxyyGiWVJSUmjbti3x8fGcP3++RJTdq5MJEyZw9OhRHj16pJWs45o1a5g+fTqVKlWiU6dObNiwQZVVfR3x8fFs27aNXbt2cfv2bUxMTPD09KRNmzYMGjRI4z2jvr6+9OrVi7i4OMqUKVPk5927d4/Hjx/j4uKCi4uLKluclpamlv5hbRIQEEC/fv3IyMhAIpFgaWlJRkYGAL169WLbtm3Y2dnpWGUBn332Gb/88gsmJiavPEb4R6Z9z549DBkyBENDQ+RyOVZWVnz88cfMmDGD1q1bv/X+iYmJHDt2jF27dnHu3DnkcjkhISHFxp+hJHHu3DnatGlDZGTkfyri3kReXp7Kp2L79u1qn/JSnAkICMDLy4tbt25RrVo1XcsRERHRA8Ta4hJEvlwgKCybQ+cyuPGwoDfRQMpLg/xCUjKUXIzI4dKNHJRKsDKX0r2FJd2aW1KmlPjxENEMdnZ2+Pv706pVK9q3b09gYCAVKlTQtSy9QKlUcujQIQYOHKi18uKvv/6aK1eu0LJlS0aOHPnGQP/Ro0c4ODhQpkwZ5syZQ8+ePVm9ejU7d+7k77//5u+//6ZMmTIaD/b/OX6vKMG+QqFg3759rFixgoiICKRSKU2bNmXYsGGMHDkSGxubYlfW3aFDB2bOnMnOnTuJjY0lNzcXKysrHBwcWLFihd4E+gA//vjja1ua/tk2cu/ePU6cOIGVlRUbNmxg//79nDhxgjNnzpCfn09+fj4dOnQo0r7BwcEsW7aMI0eOqH4mkUiwsrLiwYMHYrCvAyIiIjA2Nla1dxSV7Oxs+vbty5kzZzh48KA4PvFfBAcHY2tr+9bvq4iISMlFzOyXAPLlAvtPpXPgdAbpWUqkElC+x29VKgWlEhrXNOWL3na4lv1wXW1FNEtsbCwtWrTAyMiI8+fPv1V2tqRy8eJFPv74YwIDA7U6UeCfkw1eR3h4OOPGjePTTz+ldevWeHh4qG4O9O/fn6NHj+Ls7ExYWBhWVlYa1ZyWloatrS179uxh0KBBbzz+2LFjDB06lNTUVBwdHUlISFA9tnr16hfGZhYHBEHg1q1bWFtbc+PGDYKDg0lPT8fd3Z3PPvusyP3t2uJVHhAZGRlYWVmpbrSsXLmSVatWkZ+fz7Bhw9i4cSMAI0eOZPv27RgbG9OsWTN27NhB+fLlX7unTCZj4sSJ/PrrrxgZGVGjRg3q1KlDgwYN8PDwoFq1am9cQ0T9jB49mitXrnDt2rUiPyctLY1u3bpx7do1fH19adeunQYVFk+6du2KQqF4Jy8TfUMQBJ4lK0hKU5CXLyAIYGwkwdJcSnknQwwMis9NWRERXSKmbos59x/nsXR7EtFx+RTG9+8T6ENBoA8QelPGlZtxjOxhy4B2VuKJVUTtuLi4cPr0aVq0aEGHDh0ICgoqdmXU6sbHx4fSpUtr3S3cwsKCnJwcjI2NX5vZHzt2LMHBwURGRtKxY0f69OlD48aNcXV1RS6X4+XlxYIFCzQe6APY2NhgZ2dXZEf+n376idTUVL766iuaNGmCXC7n999/x9/fn927dzNkyBBKly6tWdFqRC6X8/nnn1OxYkX27NlDp06ddC3ptbws0F+6dCkBAQHs2rULZ2dnsrOzWbNmDUlJSRgbG3P//n0ePnxIpUqV+PXXXzE3N2fz5s2cO3eO4ODgNwbqsbGx7N69G6lUyjfffEP79u1xdXXFyckJY2NjTb1UkTcQERFBrVq1inx8QkICHTt2JCoqilOnTokz5F+CIAiEhIQwYcIEXUt5JxQKgcs3Zdx4kMud6FzuROeRJXv5Ba2hAVQqZ0x1N2OqVTTm44/MsTQv/ua8IiKaQMzsF1PkCoE/jqfxx/F0kPwvQNcUHuWN+Ga4AxXFLP9bUfj1Kk5lwbrg1q1btGzZkmHDhrFmzRpdy9EZgiCoHMN/+uknXct5KdevX2fmzJmcPHkSgLJly9K+fXsA9u/fT4cOHTh8+LDW9NSrV4+GDRvy888/v/Y4mUyGo6Mj5ubmPHv2DICcnBxu3LjBoEGDSEpK4tSpU+89IUKbZGVlYWVlRc2aNQkPDy92LQinTp3Cy8sLV1dXLl68iLW1Nebm5sTHx+Pl5cWNGzdwdHRk5syZ9OvXT9XqM2bMGB4/fqxy2X8TZcuWxcjIiEuXLlGuXDnVz9PT0zl37hyOjo7iKD4t8+TJE3JycqhSpcobj42NjaVDhw6kpKRw8uTJ9x7XV1K5f/8+7u7u+Pn50blzZ13LKTJJaQqOXcjE968MUjKUb2w//SeFxxoZgldjC3q2tKJKefEmnojIPxFvgxVDZHlKZm96zu9+6SgFzQf6APef5DN2eTzX7sg0v1kxJjU1lYiICKKjo1EqlUgkkmJ18a0rqlevzsmTJ0lJSSnS8VlZWSQkJJCSkkJmZia5ubnI5XINq9Q8169fJyoqij59+uhayiupXbs2J06c4MiRI1SrVo24uDh+//13fv/9d3JzczU6au9luLq6Fimzf/fuXczNzTEzM+PSpUvIZDLMzMxo2LAhcrkcmUxG9erVNS9YjRgYGDBmzBiSk5O5c+cOMpkMpTb+IKgJd3d3Zs2axfHjx3n69CmdO3cmNDSUMmXKEBQURP369UlISGDZsmXs3r2bqKgoAH755ZciB/oAM2bMwNDQkM2bN/PgwQP27dvHxIkT8fLyonfv3kybNk1TL1HkFZQrV47KlSu/8bh79+7RvHlzcnJyCAoKEgP911A4irZRo0Y6VlI0ktMVLPktkYGzn7DzWBopGQXnrqIG+v88Nl8OJy5lMWZZPBNWxnM3Jk8DikVEiidiZr+YkSNTMuOH59yKynvvcv23RSIpuIu6aKwjjT31Y3azPrFhwwZ27NiBsbExZmZmVKhQgerVq1OzZk0qV65c7AIJXXD//v3XZnrkcjmBgYEcOnSIhw8fIpfLVe93ZmYmgwcPLtbOzPPmzeOHH37g+fPnGBnpVxWNQqEgLi6OGzdu0LhxY5Xx288//8wff/xB+fLlqVu3LtOnT9eqrqlTpxITE4O3t/drj0tNTcXLy4srV67QtGlTBg8ejJmZGTdv3mTdunV07tyZY8eOaUm1enj+/DkjRozgxIkT1KpVi0GDBuHk5ISlpSUmJiaULl1ab8udC6sQ5HI5SUlJfPTRRyQkJNC6dWuWLFlC06ZNyc3NpWPHjpw/fx57e3uGDx/Ol19++dY99s+fP2fo0KGcOXMGhUKhcvcvNOkrXbo0YWFhmJmJf9f0ifz8fEaNGkVoaCgBAQG4uLjoWpJeM2nSJPz9/bl7966upbwWQRA4dzWbtXuSyckV1J6wkkpBEOCTjtYM7WwjTpgS+eARg/1iRF6+wKxNzwm/l6v1QL+QwoB/1WQnarub6kaEHlFoOHXjxg0aNmxIbm6u6rHCC0k7OzucnZ0JCgoSs/xF4GWlyIXv86lTpxg2bBjx8fEvPC6RSBAEgVmzZrF06VJtylUrnp6eNGjQgB07duhaygvk5uayYMEC9u7dy6NHj7CwsGDUqFHMnDmTsmXLkp+fj4GBwUt7sjXN999/T15eHlOnTn3j92v79u2MGjUKQRCQSqVYWlqSnp6Og4MDW7dupUePHlpSrR7OnDmjaqF4GfXr1yc0NFSLit6N5ORkvv32W44cOcLjx49p1KgRy5Yto02bNgB0796dY8eO0aBBAy5evPhaR/+XoVQqKV26NElJSZiammJjY0O5cuWoWbMmjRo1ombNmnz88cdFGjcpoj2USiV5eXlkZWVRqlQpXcvRexo2bEj16tXZuXOnrqW8ktQMBWt3JxN0PQcJoMlLWYkEyjsZMnuEAx4VxNJ+kQ8X0aCvGLHpQDLX7+Wiy9szwv+3DczenMD2+WVxtP2wP0KF98ouXLhAbm4u3bt3p1q1aoSFhXHjxg3i4+NJT0/H0tJSDPSLyMvep8Jg/8KFC8THx1OpUiXKly+PVColJycHuVzOw4cPi3Xm5/bt29y8eVMvb1bMnz+flStXAqhc7Ddu3Ii/vz/e3t54enrqrHzc1dWVOnXqvPb7FR8fT3R0NF27duWnn37i119/JSQkBKVSSe3atZk7dy5du3bVomr1UKZMGbp06YKhoSGpqalkZmaSkZFBTk4OsbGxODk56VriS/m3K7+9vT2LFy+mbNmynD9/npSUFObNm8fcuXPp1KkTR44cYdKkScyfP/+tA30oMAbs2LEjERERtGzZknr16tGgQQOqV6+uWq84tT98KEilUkxMTDA1FRMLbyInJ4ewsDBGjBihaymvJD5Jztfrn/EsRQFoNtCHguvV2AQ5k1bHs3isIw1riJU7Ih8mYma/mHD1tozpG5/rWoYKAynUr2bKsgmOH3QQW5iF/vXXXxk3bhznzp1TGT1lZ2cTFhaGv78/VapUYejQoTpWWzx4WWZfoVBgYGDAsmXLmDNnDnv37mXAgAE6UqgZli1bxpIlS0hISNCrcuKHDx9SpUoVSpUqxaZNm5BKpfz9999s3bqVxMREFi5cyNy5c3Wm7969e7i7u7/2mG+//ZbFixezaNEi5syZQ3h4OH5+fqSkpDB+/HgqVqyoJbWaRxAEcnNzycrKQiqVqtot9IXC73J6ejqxsbEYGhpSrly5l459PHv2LGlpafTq1eu99338+DEymeyFz0p6ejrBwcEcOXKEwMBArl279kH/PdM0xc1AsjhROLL1ypUr1K9fX9dy/kNcopzJa+JJzVC+VU++OpBIQCqBBWMcaPaRfo0jFRHRBh92WraYkC1TsmJnElLJ+4/VUxcKJVy+KeNkSBYdm1jqWo7OKLxwyc7OxtTUFB8fH5ydnSldujTm5uY0a9aMZs2a6Vhl8SEpKQkrK6v/jMQqzAI2adKE8uXLc+fOHXJzc8nPz8fIyEhVQq6LMnJ1cfDgQbp06aJXgT7Ar7/+CsAXX3zBgAEDUCgUNGvWjPj4eLZv386tW7fIy8vDyMhIJxfyFSpUUH0OXoZcLmfbtm2Ym5vz2WefsXv3bsaOHYtSqaRGjRr07t272Ab7sbGxPHjwADs7O0xNTTEzM8PU1BRTU1NV374+IQiCqlTe2toaDw8PBEF45e+uRYsWPHz4kKysrJfeDHgbCvv84+LiCAoKws/Pj1OnTvHkyRPVMWfOnBFnt2uQf58fxGk16iM4OBhTU1O9NDBMSlMwdf0znQT68P8VqQJ8tyWRFROdqFtVrBQR+bAQg/1iwC+HUkhOU+hNoP9PNu5LoX41Uxw+wHL+wlLUiIgIJk+ejLGxMdu2bSMhIYE6depQuXJlXFxccHR0LNbl5doiNDSUGzduvNRgrzAjVDgybenSpdy6dYtatWqpyjzz8vKKbeAWHR3N1atXNe4K/vDhQxYvXsyIESNo1qxZkXqUC2+8XL16lUePHlGxYkWcnZ3x8vJi+/btyGQync4rf1NAe+LECeLi4pg8eTJ2dnasWLECABcXF65cucLvv/9OgwYN3qk8XNccPHiQ7777DldXVwwMDDA1NcXc3BwLCwsyMzP54osv6Nevn65lAi/P6r7pPTc0NMTDw0NtGqZPn/6f0Z5mZmbk5eVRvXp1Spcurba9RF7kwYMHxMfHY2dnR9myZbGzsxODfDUSHBxMgwYN9M7YVakUWLAlgcRUhU4C/UIECpJU835OYOd8Z+xtRH8OkQ+H4nd184GRmCrnSFCWTvv0X0duvsChc5mM7mWraylapzDYv3//PgB5eXnk5eWxc+dOdu7cSenSpSlTpgzdunVj0aJFOlar35w5c4aePXuyb9++lwYACoUCqVTKypUrefz4MQB79+5l7969Lxzn4eFRLIP9Q4cOYWxsTJcuXTSyfnR0NEuWLOG3336jVKlSdOzYschmZIXjsa5cucKGDRto1qwZlSpVYv369QB88sknGtGsLgpHtHXr1o0jR44QERHBtm3bKF26NN26dSMlJaVYBvpQUJqelpbGzZs3yc/P/8/jmvo8vQv6ENgVVs24ubnRqFEjWrRogbm5ORcvXmTPnj2sXr2a7du361ZkCaHw5s7Tp09Zvnw5J06cwNzcHCMjI5ycnHBxcaFMmTLUr1+/2Blj6iMhISF62dr251+Z3HioH2PwBAFkeQJrdiezeKyDXpyTRES0QfG8wvmAOHYhS+OOpe+DUglHAjP4rOuHN96kMEDo3bs3SqWSy5cvc/r0ac6cOUNwcDDPnj3j2bNneHp66lipfvPnn38ycOBA2rRpg5eX1ytLPQE6d+6MoaEhBgYGZGdnk52dTU5ODvn5+SQkJGBpWTxbSg4ePIiXlxfW1tZqXffx48csXbqUbdu2YWtry/Llyxk3bhzm5m/uW4yKikKpVNK6dWtq167N9evX2bBhA3v27CE5ORm5XE779u3p27evWjWrmzJlygAwfPhwMjMzadasGQMGDGDTpk0AtG3bVpfy3os+ffpQrlw5lEolaWlppKSk8PfffxMaGoqTkxO1a9fWtUS94quvvsLNzY2GDRvi4uKClZUVBgYGDB8+nNu3b7Nz506mTJkivm9qQKlUYmBgwKFDh/jhhx/+87ixsTF5eXmMGTNGDPbfk6dPnxITE0Pjxo11LeUFniTk8/OhFF3LeAGlEi5F5HDmSjbtGr5fa5CISHFBDPb1GLlCwPd8hl6W7/+TzByB89eyad/owzlxDhgwgA4dOjB69GhiY2NxcXGhUaNGNGrUiG+++QaAyMhIDh8+TIcOHXSsVn/57bff+Pzzz+nfvz87d+58aYZVIpGoShOXLFnCkiVLtC1To8THx3PhwgW2bdumtjWfPHnCsmXL2LJlC1ZWVixevJgJEyYUue9ZLpczbtw4Tp48yaVLlwgMDGT+/PmsW7eOzMxMFAoFn332meqzrs906dKFrVu38vjxYxwcHFi4cCFmZmZs3boVMzMzevfurWuJ74QgCK/0BOnVqxf5+fnUqFFDB8r0F3t7e4YPH/7CDUW5XI6hoSFjx46lVKlS5OTk6FBhySMkJAQomAFftmxZ7ty5w+3bt3ny5AmxsbG4urrqVmAJoPA9btKkiY6V/A9BEFi5Mxl9HHIhAdbtSaZ+NVNsrcRyfpGSjxjs6zEXw3NIzdDDM+W/kErA52zGBxPsX7lyBW9vbxwdHUlNTaVBgwY0btyYmjVrUrduXWrXro27uzuenp5iVv81rF27lq+//povvviCTZs2vbKs/Ny5c0gkElq1akVERARyuRxzc3NMTExe+GdsbKx3/YpFwdfXF6lUSvfu3d97rfj4eJYvX85PP/2Eubk53333HRMnTsTKyuqt1lm8eDEnT56kffv2lC1blvDwcNzc3Jg6dSply5alQ4cOVKlSpUgVArqmfv36XLt2jcjISCwsLKhXrx6zZ8/m/v37jBkzptjO75ZIJMTFxSGXyzE2NsbQ0BCJRIK9vT3u7u6sWbOG6OhoVWWDSAEv8w1ISEigZs2a9O7dW+8MMosrhefzcuXKYWpqyuLFi184D2VnZ3P79m2VcaLIuxMSEkK5cuX0yhvoZlQeEQ9ydS3jpQhATq7AkaBMhna20bUcERGNIwb7eszlyBwMpOjU1KQoKAW4HZ1HZrYSS/Pi64ZeVFJSUmjYsCE9e/YkNDSU58+fc/z4cY4cOYKFhQWlS5fG3d2dKlWq0L59e3r27KlryXqFIAjMnTuXpUuXMnv2bBYvXvza3rlC5/Q7d+4wevRo7t69i7W1NYaGhhgZGWFsbIypqSnZ2dmcOnWq2Jls+fj40KpVKxwcHN55jefPn7NixQp+/PFHjI2NmTNnDl9++eU7tQU8ffqUFStWULZsWXbv3s25c+eYMmUKT548oUyZMkyaNEnvHJ/fNNLL3t6eFi1aAAWZ3F69emFvb0/nzp21JVEjLF++nCdPnmBvb4+5uTlmZmakp6ervCze9iaPNvnn7+z27dsYGBjg4uKi1WD79OnT/PHHH0RERGBqaoqFhQXLly+nTp06Yj+vmnByckIqlbJu3ToGDRqEo6MjVlZWmJubU69ePV3LKxEEBwfrXQm/718Zen39KggFGj/xssbAQPyui5RsxGBfj4mMylXbiTLlySXCDg8CoMmQIMys/3c3PfVpCNHXNpPxPJx8WTIAHi2XUM7zRVf0W2enkRYXSl7WcwQEjM0dKVWxLW4NpmBkasvdx3nU+wBGmnTo0IF69ephbW3N1atXGT16NAkJCSq34djYWGJiYvD390ehUIjB/j9QKBRMmDCBn3/+mdWrV/P111+/8TlGRkaYmJggkUhITU0lOzub/Px85HI5SqVSFTTk5+cXu9F7KSkpnDlzhg0bNrzT8xMTE1m1ahU//PADhoaGzJgxg6+++gpbW9t31rR9+3Zyc3OZMGECxsbGfPXVVxgYGNC3b18OHjyIn58fo0aNwsnJ6Z33UDeJiYnY29sjlUrfGKQZGhqqWm6KO99///0rH2vZsqXWb3wpFIo3Gj8+ePAAX19fPv74Yxo3bsyIESPYv38/OTk5zJ49m9mzZ2ulYuT69essWLCA0NBQcnP/l4GMi4tj2bJldO3aVeMaSiqF5+TIyEi+/vprjI2N2bBhA+Hh4bi7u1O+fHnKli2Ls7Oz3gWpxQ25XE5oaCjfffedrqWoSM1QcPZqtt4G+oUkpyu5FJFD8zr6X6EmIvI+iMG+npKXL/D4mVwre2Uk3CAlNghTqwqqYP9lJEYFYGhshbldZfJykpGlx/AkYjs5qVHU7b6TuzEfRrAPqEp/mzRpQpMmTUhJSSEqKorbt28TGRnJ/fv3uXjxYrHPHKqTvLw8hg0bxoEDB9i2bRsjR44s0vNWrFihCiBmz55NSkqKavKBTCYjNzeXvLw80tPT1W5wp2mOHDmiyjS/DUlJSaxZs4aNGzcikUiYOnUqU6ZMwd7e/r01Fb6HP//8Mzt27CAnJwc/Pz9MTEw4ePAgUqkUR0fHVz7/TVl2TWBmZoarqyuHDx+mbt26Wt1blyxevJiYmBjS0tJIT08nJaXADMvT05MFCxZotUVh27ZtDB8+/I3H7dy5k0WLFrF7927KlSvH+fPnycnJwcrKipUrV9KxY0dVFYYmKPx8btiwgaCgIACaN2+Op6cnDx8+JCAggM2bN4vB/nsgl8sxMjLi7t27wP8m1fj4+KiOkUql9O/fnz179uhKZongxo0bZGdn61W//olLWXrvNQUFLah//pUhBvsiJR4x2NdTHjzJK3AN/eNjZBmxVKgzFoU8m2f3DiORGFDavQeVm81FKjVEqcgl+uomnt33RZbxBENja0q5tqVyk9kYm9kTFbqOR1fWq9YO3tUcgDJV+1G97RrKVO2Ds+cQ8rITVI+9jGbDQjAw/F8w//ehfqTFh5IWfwWAuzH62Z+lSQRBID8/Hzs7O+zs7FRlidnZ2dy/f5+qVavqWKF+kJWVRb9+/Thz5gze3t5vZYr2z/Fhw4YN04Q8neHj40PTpk1xdnYu0vEpKSmsW7eO9evXo1QqmTRpEl9//fV7tQD8m/bt21OrVi0iIiKoUKECq1atonHjxvTv3x+A0aNH612Js6WlJTKZDD8/v5cG+8r/d4kqbpUfb2L27Nm6lgAU+JicOnWKUaNGvfHYwhGBZcuWVZm0bd26FUNDQ4YPH05YWJhGg32JREJsbCxhYWEYGxuzfv16xo4dC0BCQgLNmzfn+PHjpKamvleFzIdMoXdK7969SUpK4tatW/z9999cu3aNa9eu8eDBAzIyMlTfS5F3JyQkBAMDA+rXr69rKSqu3MrR23HR/0QpQPj9XOQKAUOxlF+kBCMG+3pK7L+y+o/Dt2FgZIGBoSm5WfHERvyGhX1VnGsMJuLEFyTHnEUiMcDc3gNZRizxtw+Q/iyMBv2OYmJRBnO7KmSnFMyDt3SogVRqgpl1BQCMTO2KpMnA0JSHl1eT/DiQ/JxEZBmxANiUaYBSgEdP/zvnuSRSmBnKzMzk8OHDLF26FIVCQYMGDWjevDmNGzemWrVqetfXrCtSUlLo1q0b4eHh+Pn50a5du7d6vlKpRCKRvNDfm5iYSHZ2NiYmJpiZmWFqaoqpqSkeHh6aeAkaITMzE39/fxYtWvTGY9PS0li/fj3r1q0jLy+PiRMnMn369Ndm2N+VatWq4e/vT3BwMFWqVKFmzZqsWLGCgwcP0qJFCz799NNXPlepVCKVSnWS3Xd1dSUqKuo/P09OTmbx4sXMnDmz2Pk5FIUbN25w7do1EhMTsba2pnHjxlSpUgVTU+1VWTVo0IDx48cX6djCz2xycjI1atRAoVCgUChU58s7d+5oTGchLi4uJCUloVQqVdVXWVlZODo60q5dO+7du0dwcDCdOnXSuJaSxt69e3FwcKB9+/bk5uZiZ2f30qkRUVFRxdJQVd8IDg7mo48+0huzVEEQuBOd95+fX/MdSOrTYEytK9B0SOALj+WkRRO8uyUAbo2+JuryGtVjEqkhBkYWmFq5YF++JS61RmBi8b/z+IvJLAlSQxOMTEthWaoaZasNwLHS67/DcgVEx+VT2cX43V6wiEgxQAz29ZTc/Bdvi5pYlKFhfz8kBsYE725JXtYzUp5cwMzWjeSYswDU6bEHW+fG5GY9I3h3S7JT7vHs3p841xiMmY2rqme/ZsdfXujZfxty0h6R8TxM9d92Ls3x9NpcoDmvGNzKVQOF84O3b9/OnDlzyMjIAAouUnft2gWAubk5S5cuZfLkybqUqnPi4uLo2LEjT58+5cyZMzRs2PCt1/hnNvby5cuqmdj/xsDAQJU1LA4cP34cmUxGnz59XnlMeno6GzduZM2aNchkMsaNG6eVoLVMmTKq1oJr166xePFiypcvz/r161/7vMLflS4y/66urjx69Og/P/fx8WHDhg3MnDlT65o0zfXr1xk7dqxq9FYh8+fPZ/78+VrRUDi6rkWLFqqbPa+jcELJrl27+Oijj1Q3hwqDFW2NvmvYsCE+Pj7cuXOHihUrqgJPW1tbKleujJ1d0W6Ci7zImDFjqFq1Ku3bt6dXr16YmppSrVo1qlSpQpUqVahUqRLly5fHzc1N11JLBMHBwbRp00bXMlTEJynIkv33WrBM1X6kPg1Glh5DalwotmX/dy0Qf/dQwf+RSCnj0VcV7BuZ2mNqVY6c9MdkJkaSmRhJ3K19fNR1B9ZO/02mWDpUR5GfgyzjMUmZT0iKPk2Zqv2p1mbVa/8m3YnOE4N9kRJNyappLEHkywX+eW5ycO2AoYk1BoammFkVBOp52QlkPAtTHXPNdwBnf6zIxZ2NUMplAKQ/u6ZWXZ4dfqDVmPs06O+HhX1VUmKDuBs47/81q3UrvaXwYnb79u1kZGSo5gebmZnh6OiIiYkJ2dnZelfqrG0ePnxI8+bNSU5O5vz58+8U6P+T7Oxspk2bxu3btylTpgyGhoaYmpqq3LvV0a+uTXx8fKhTpw6VKlX6z2OZmZksX74cNzc3Fi9ezLBhw3j48CFr167Vena6bt26XL58mf3797+2H17Qcd3mq4J9b29vnZjVaZq0tDTmzJlDSEgIzs7O1KpVC1dXV6RSKcuWLXuhP1qTGBoW5Az27NlDUlLSG4+vWbMmVapUwcfHh++++w65XE7lypWJjY3F2dlZa+XIhS1B33zzDSkpKRgbF1zsz5kzh3v37onGce9AYmIiFhYW1KpVi7y8PPz9/fH19WXFihWMHz+evn370qFDB9q1a8ewYcNQKBS6llysSU1N5fbt23r1Wb0b89+sPoBj5S4YGBbc0HtWGNz/P8/uFfy3nXNTTK3KqX5eqmJbGvQ7SouR16nRbgMSqRH5smQiT45HqfjvPjU7/kKTT87R9NOL2LkUtKTG3zlA3K29r9RrYPBqzSIiJQUx2NdTjAwlL/Q8GZr8z3hMIn15QYa1U93//DM2V3+Zr9TACCsHT5yrDwbg2V0fslMfYvSB1IlIJBLS0tL4+++/qVu3LmvXriUhIQE3Nzfmzp2LtbU148aNe225c0nnxo0bNG/eHAMDAy5cuECNGjXee83MzEyCgoJwc3Nj0aJFyOVy6taty/jx4yldujSbNm1Sg3LtIJPJOHr06H+y+llZWaxatQo3Nzfmz5/P4MGDefDgARs2bKBs2bI6UgvVq1d/4wWlrm9uubm5ERMT80IAkZyczOnTp1V+AyWJuLg4/Pz8qF69OmvXrmXfvn389ttv9O/fn7y8PNX4PW1w+PBhhgwZwt9///3Gmz7Ozs4sW7aMVq1a4eXlxYYNG2jSpAnNmjUjIiKiyO0A70unTp1YuHAho0ePxsrKCplMxu3bt4mNjSUtLe0Fh36RomFpacnu3bv5+uuvyczMpF+/fnTr1o26detStmxZFAoF0dHRnD17ljNnzrxxcoPI67l8+TKAXpnzxSXKeVlxj6GRBY6VC/x3nj84ilJR8P1Ki79KTtojAMpU6/fKdUt79KJczYIbdLKMxyTHBr7yWBOL0tRotx6pgQkAT2/ufuWxCgXEPi8+FYEiIu/CBxKeFT9MjIp24WzlVFv1/yvUG4+jmxcASqWclNggzG0rA2Bg+L/ZxUr525dJpj+/jiI/G7tyTQvWUOSRHBukelyRn42JccnPZBeWqV67VlAx0b59e54+fYpcLqdZs2ZMmjSJhQsX4u7u/sGWgQYHB9OlSxcqVqzIiRMn1JZRzczMBKBp06Z88sknjB49mho1arBs2TK2bt1KeHg4/fq9+mJBnzh16hSZmZn07dsXKKha+Omnn1ixYgUpKSmMHDmS2bNnU6FCBa3q0mXP/fvi6upKfn4+cXFxuLi4AAVBqEKheCtDyOJCofN+8+bNGTBgAFDgt+Dq6sq+fftITEzUuIbCz8mRI0eAAvO9onxu+vbti5ubG6tWreL3339n5cqVZGVlMXToUKZMmYKrq6uGlYOxsTFz584FCr5/P/zwAwEBAURHR5OSksKoUaOYNGkS5cqVe8NKIoWYmpq+UFK+f/9+kpOTefr0KU+fPuXRo0fExMRw48YNqlWrpkOlJYPg4GDs7Oxwd3fXtRQVufkvVqX+kzJV+xF/xxt5bhqJj07jVLmLKstvYGyFo9vrpxfZlm1IbPg2ALKT70HFV/v/GJs7YmbjRlbybbJS7r12XVn+h9GCKvLhIgb7ekr50kX71diVa4p9+VYkP/6LGydGFwT3Eim5GU9QyLOp02MvZtblMbOpiERqhKDMJ+zIJ5haulC+zmicKncl4eFxHlxahiD8LyMWdXktj8N+wbp0HWq030hW8l1un52GoYkNppblkGU+RZ6bChQY/lk71sDV+UWznaioKPz8/PD29sbJyYl9+/ap7f3RNYUjhSpVqsSNGzcAyMjIYO/evSQlJXHv3uv/uJRUTp48Se/evalfvz5HjhzBxsbmvdcsDCjy8gpK7czNzVU+CTExMdy9e5e0tDROnTrFwoUL33s/beDj40PVqlVxc3Nj48aNLFu2jISEBEaMGMGcOXO0Euy8jK1bt+Lj48Px48ff+rn5+fk6NdwqfM+ioqJUwf6BAwdo3ry5TqsiNIVMVtCqde/ePe7cuYOdnR3m5uZcuHABQCPmjf+mMLAv/L3fu3evSDeKBEEgICAAPz8/1XfZ0NCQ77//npiYGNavX0/FihU1K/7/iY+PZ+TIkZw4ceKFn69cuZJHjx5ptUKiJPBvQ1V7e3vs7e2pWbOm6hi5XK76/Iq8OyEhITRu3FivpozIFQKv+vbbOjfB1Ko8sozHPLt7CAfXDjx/cBQAp0pdMDAye8UzCxCEt5zeUMTj88VgX6SEoz9nCJEXqFTO+KWlUC+jZqdfcK3/JWY2buSkx5CXnYC5XRUq1p+EhX3B6DcjUzvcm3+HiaUzedmJpD+/Rl52AgDyvExy0qNV7voA+bIkctKjyc16BoCFfVXsy7dCamBCVso9lPIczO2qUL72GOr02ItEIsWtDMybN4+2bdtiZWVFpUqVmDhxIufOnePw4cPqfYN0ROEf1fbt2/PZZ59RqlQpZDIZRkZG7Nu3j08++QSAOnXq6FClbjhw4ADdunWjTZs2nDhxQi2B/j8pLA++c+cOgiDg6OhIQECA6iLydTPFdd1P/k/kcjl//vknFStWpEqVKkydOpVOnTpx584dtmzZorNAPz09nXnz5uHo6PhOWf379+/TrVs3rRms/ZvC4LCwbz81NZWAgIBiU+3xtjg7O/PRRx9x7tw5Bg8ezMKFC/n0008ZNWoURkZGWi3tbdWqFQDHjh0r0mfn+vXrbNq0iYyMDFq1asV3333H0KFDcXV1xdfXFz8/P01LVhEZGcnJkycxNDRU3SA5ePAg9evXZ//+/Vy5ckVrWkoCUqkUiURCdnY28+bNo3HjxnTv3p0ZM2bwxx9/cPXqVVJSUrC0tNS11GKNIAgEBwfrVb8+gPG/WlD/iUQioUzVgmq2pJizxN89SL6soEKpTLU3t1qlxYWq/r+5/eurGXKzn5OTHg2Ahd3rj/0QqlJFPmzEzL6eYmwkoUJpI5SfXvjPY3V7vpghNzA0xa3RVNwaTX3tmuU8P6Wc53/7yMtW60/ZN5xorZ0+ona3na98XCnAhhVTuRr4x0sf11aWRhvIZDIeP37Mxo0bsbKyIjc3lxEjRnD8+HESEhJo164d3bt317VMrbJlyxa++OILBg8ezPbt29Wa4S0MHsqUKcM333xDbm4ucrmc0aNHs3LlSqRSKWXLlmXIkCGvXEOhUCCVSnWeAcnLy2PmzJmkpKRw6tQphgwZwrx58/SiDHPp0qVkZGSwbNmyd3q+oaEh/v7+bNiwgVmzZqlZ3ZuxsLDA0dFRFewfOXKE/Pz81047KM5UrVqVyZMnM2XKFMLCwggLC1M91q9fv9d+H9RN3759mTZtWpGz4IW98V27duXHH3/E2toaa2trAgIC6NixI5cuXWLcuHEaVl3AqVOnUCqVrFq1ShWgCoLAd999R/fu3Tl8+DANGjTQipaSxOTJk9m5cydyeYFz77Fjx154/MmTJyWy4kZb3L9/n+TkZL3q1wcwNXl1sA9QpmpfHl3ZgKDM5/6Fgko8MxvXF9z5X8aze748iSy4vjS1csHepcUrj83NesatM1NVvgDONQa/dm1zEzHvKVKyEYN9PaaGmzGPn+WjeMvKJV2xZN5ounbe81KH3fv379OwYUPatWtH69atadSoUbFzTy/sZw4JCaFt27ZMnjyZdevWYWJiwty5c2ndujXW1ta0bdtWqzOudc2KFSuYNWsWEydOZMOGDRoLqE1MTJg0aRKlSpXCyMiIuXPnUrVqVWJiYujQoQONGjV65XMFQcDb25t+/frpJODPz89nx44dLF68mOjoaMzNzbl69are9K1GRUWxbt06Zs2apSqBf1vc3d0ZP348S5cuZdSoUVopI/83/3Tk9/b2pmnTpu/8eooDI0eOxNLSEm9vb+Lj43n27BleXl7MnTsXJycnrekwNDRk6tSpWFhYkJubi4mJyWuPL1OmDADly5d/4fdTWA0UExOjObH/orAiyMLCgi5dujBv3jx+//13vvrqKwAeP36sNS3FjVe1bDx9+pQdO3ZgYWFB165d2bt3r+rvfXJyMoIgiIH+e1I4bvN1f/d0QcUyRihfE+ybWVfA1rkxqU+DUeRnAaiy/f8mKfoMV7y7I8t4rKoAMDK1x9PrR6QG/x2Vd8N/DIp8GbKMGASl/P/X7k/Z6q8O9g0MwM1Zd+1nIiLaQLydpcc08jQrFoG+VALVXY3p2KEl8fHxVK1a9T/HGBgYcOXKFVasWEHnzp0pVaqUapb3999/T2hoqKonW9958OABgiCosrH5+fm4uLgwaNAgunTp8sEE+oIgMGPGDGbNmsX8+fPZuHGjRgJppbLgS3D69Glq1arF999/DxT0CQ8dOpQ5c+a88YLH0NCQwMBAvvzyS62W9MvlcrZv307VqlUZPXo0jRo1wsHBgTFjxuhNoA8wc+ZMHBwcmDFjxnutM2/ePKRSKQsWLFCTsrfDzc2NR48ekZ6ejr+/f4l04S8kIiKC+fPnU758efbv38+SJUvo3LkzcrmcJ0+eaF1PmTJlmD9/vur7+joKz50BAQFs27aNy5cv4+3tzZQpUwCoUqWKRrX+k06dOgEFlSBVq1alTp06HDlyRGU016NHD61pKU687Dxa+Lu/fv06CoWC0aNHM2HCBARBoHPnznzxxReqz6vI+xEcHIyHh4feJU08Krx5Xn2Zqv9orZJIKePx8mA/X5ZMZmIkglKBZakaVKgzloYDTmDt9NFLj89MvEVu5hOMzRwpVbEtNTv+TPW2q1/bWqRQFE2ziEhxRszs6zEff2SGrZWU1Az9jviVAvRpYwWAg4MDERERDB48mIMHD6qOycrK4tGjRwQFBXH8+HEuXLjAkydP8PX1xdfXFygIyKpWrUqbNm1o1qwZjRs3xs3NTW9cwQt1lC5dGjs7O1V5oi5NyXSFQqHgiy++YNu2bWzYsIHJkydrbK/Ci8qMjAySkpJUN4Xe5saCRCKhb9++tGnTBisrK5YuXaoRrYXI5XL27NnDwoULuX//Pn379sXX15fMzEwOHDigV6XlFy5c4MCBA2zfvh0LC4v3WsvBwYE5c+Ywe/ZsJk2a9NIbf5rE1dWV0NBQjh07Rm5urmraQUnkyJEjLFq0CFNTU0xMTPj0009VWeibN2+yfft23NzcNLb/7du3X3rDyszs9SZbAOXKlaNv374cPHiQ6dOnY2lpSUJCArm5udjY2DBs2DBNSH4pNWvWpFmzZhw7dow7d+7w8ccfq1oivLy8aNq0qda0FBfy8/PJy8v7z/mi8FxdaFrbunVrYmMLvIAGDBhA2bJl+eGHHzA2FoOr9yU4OFjvSvgBbK0MsLeWkpz+6uvWN7WOthkXXeT93BpOwa3hlLfS+G88KoqfR5GSjZjZ12MMDCT0amWFVD9i3VdiZS6lRR1z1X8bGRnh7e3NihUrgIILO0NDQ6pUqcLw4cPZt28fsbGxJCcnc+zYMWbOnEm9evWQSCRERkbyww8/8Mknn1C5cmXs7Ozw8vJi0aJFnDx5ktTUVJ28xkKHYaVSyYIFC5DJZHz33XesXLmS4OBgYmJiyMrK0ok2bZObm8vAgQPZvn07O3fu1GigD/8L6j09PfHw8ODKlSukpqaSk5NDfn4+CoWiSNn61q1bs2bNGpYtW/bOfelvQqFQsHv3bjw9PRk2bBienp5cu3YNb29vatWqhY+PD05OTjRr1kwj+78tSqWSKVOmUK9ePYYOHaqWNQvHlemib9/V1ZXHjx+zf/9+2rRpo/XRhdokMjISKOjPDw0NJS4ujk8//ZSaNWsSGBjI06dPNbb3X3/9Rd26dfnxxx/feY2lS5fSq1cvUlNTiY2NJTc3F2tra+bMmaP178ekSZOQSqWsWrWKunXr0rJlSyZPnszPP/+sajkQKUAmkzFmzJjX3hiMj48HCv7237lzB4DQ0FC8vb1JT08nKSlJK1pLKjk5OVy/fl0vg32A6m4men/dWoiZiQRnBzHvKVKyET/hek6XZhbsPJamaxmvRCqB7i0sMTb675l9xowZdOnSBVtb25c+187Oji5dutClSxeWL19Ofn4+169f58KFC5w5c4YLFy6QlJREQEAAp0+fVpUIurm50aJFC5o0aULjxo2pVauWxrPrhQFnYGCgyp05JyeH7777jsqVK1OtWjU8PDyoUaOGVo2xtE1mZia9e/cmMDCQQ4cOacWIsLAvNDExEWNjY3x8fHj+/Dlt2rTBwsICU1NT8vPzadOmDfXq1XvtWlOnTiUjI4PZs2djaWnJpEmT1KJRqVTi7e3Nd999x61bt+jWrRu7d++mfv36L7yOgwcP0rt3bwwMDNSy7/uye/duQkND+euvv9TWgmFqasqyZcv45JNPOH/+PC1btlTLukWhd+/etGjRgooVK2JlZaW1fXVBXFwcUHCD4+rVq1hbW7NlyxbmzJnDjRs3MDTUzJ/3y5cv061bN5o3b86IESPeaY3CNqjvv/+eUaNGkZWVhbW1Na1bt9ZJG1S3bt04ffo0VlZWlC9fnmbNmlGlShWNvYfFlczMTHr27PnK6o3C81rt2rUpVaoU8fHxKh+GRYsWqY6rXr265sWWYP7++2/kcrneOfEX0qK2GReu62Yqy9tgIIXmtc30pnpURERTSAR9mkkl8lLW703maGDma01PdIWZiYSd3zlTykb9wYsgCMTExHDx4kWCgoI4c+aMauyagYEBSqUSQRAwNjamfv36NG3alMaNG9O4cWMqVKigthN4cHAwRkZGeHp6YmJiwsGDB/nrr7/w8/MjKirqhWNbtWrF2bNn1bKvvpGUlETXrl25efMmR44cUY3b0iSCIJCbm4upqSnDhg3jjz9ePu0BCowCp0+fXqQ1p0+fzpo1a9i2bRsjR458Z31KpZKHDx9Svnx5DA0Nyc7OJi8v76VjAMPCwqhbty7+/v54eXm9857qIjs7m6pVq9KoUaMXWm7UgVKppHHjxkgkEoKDg7VmiliUGe8lhXbt2nH27Fm2bdvG0qVLcXZ25uzZswwfPpw//viDmzdvqt0XIjw8nNatW1OjRg38/f3fq+2j0PD0n2RnZxMVFUVERARly5bVyjlGpGgkJyfTpUsXbt68SVhYGJUqVXrpcUqlkpycHCwsLJDL5SQnJzNhwgRCQkLIyMhg4MCBrF+//oPxttEEa9asYd68eaSlpellG2FevkDfmbFkyfTwovVfbJpemupurzcUFREp7oi3rYsBX/Sy5VJ4DolpiteONNEFXw6y10igDwV91hUrVqRixYoMHlzgppqRkUFISAgXL17k/PnzXLp0iezsbIKDg7l69Spr164FwNHR8YXgv2HDhlhbW7+TjvHjxxMdHU316tWpW7cubdu2ZcaMGXz//fdkZWVx5coVTp48ya+//srHH3+sttevTzx58gQvLy8SEhI4d+7cGzPo6kIikaguCrt3786zZ88wNjYmPT2dzMxMsrKyyM3NJTo6+pUVJC9bc9WqVWRmZjJ69GgsLS0ZMGDAW+kSBIHDhw9TpUoVqlatqsoAvi6b7OPjg62tLa1bt36rvTTF6tWref78OStXrlT72lKplNWrV9O6dWv27dun+v5qmg8l0Afo0qULZ8+eZdSoUQB89dVXSKVSLl26hL29PQ4ODmrd786dO3To0AE3NzeOHTv23v4OUqmU58+f88svv3D69Glu3LjxQnl3/fr1CQ0Nfc0KItoiPj4eLy8v4uLiOHv27EsD/cIbbXfu3KFv37707duXRYsW4eTkpGp3K1OmjMr4UOTdCQ4OpkGDBnoZ6EPB6OhuzS05cCaDIvh16gSJpMCFv5qr2K8vUvIRM/vFhL/vyJi24bmuZaiQSqFhdVOWjnfU6QW2QqEgMjKSCxcucOHCBQIDA1Vjm0xNTVEoFOTn5yORSKhevboq+G/cuDE1a9Z8Y5lmdnY2tra2KJVKVRuBoaEhpUqVwtnZmfr169OyZUuaNm1KpUqVSmSwce/ePby8vFAoFAQEBGjVdO3KlSs8ffoUKysrypUrR6lSpTAwMMDExAQjIyMMDAze+T1XKpUMGzaMffv2cejQIbp16/bG5wiCwLFjx5g/fz7t27dn2bJlRc5aX7x4kdu3b79XJYG6ePLkCR4eHowfP55Vq1ZpbJ9evXoRFhbG7du3xUyemklOTmbx4sXcuXMHBwcHNm/eTExMDJ07d6ZVq1Zs2bJFbUZojx49okWLFlhbW/PXX3+p5UZCbm4uK1asYPHixSqzU2NjYxwdHbG0tKRFixb88ssv772PyPvx6NEj2rdvj0wmIyAg4JUl+IWVGj4+PvTr14958+axYMEC8vPz9TYoLa5UqFCBgQMHavTc/b48Schn6Pw4Xct4LdOG2NPlY0tdyxAR0ThisF+MWL83mSOBmTrP7kslYGoiYfu3ZXGw1b/ikKdPn3Lx4kVV+f/ff/+NQqHAyMgIU1NTMjMzEQQBc3Nz6tevrwr+27Rp85/y68zMTHbu3Mndu3eJiIjg8ePH3L9//4VjzMzMMDExwdnZmfDwcJ3McdcUYWFhdOzYEXt7e06ePEn58uW1uv+gQYPYv38/Tk5O5OXlqQJ9AwMDDA0NMTExwdzcnMTERH7//XdatGjxVuvL5XL69+/P8ePH8fPzo23bti89ThAETpw4wfz58wkNDaVly5b4+/u/VQArl8vf6+aEOhk+fDjHjh3j/v37qp5aTXDnzh08PT1Zvnw506ZN09g+HzJ5eXmqoF4ul5OTk6M616mDp0+fqnwXAgMD1TYfPSUlhUqVKpGWlsaAAQNo1KgRZcqUwcHBATs7O2xtbVUj+nRBXFwcjo6OH3Tf/u3bt2nfvj2mpqacOnUKV1fXVx5bmNk/f/48ffr0YcqUKcyZM0d7Yj8Qnjx5gouLC97e3no/bWTNriSOX8zSuxZUqRScHQzZOqfsS/2mRERKGmKwX4zIyxeYvfk5YXdzdXbylEjA0ABWT3aiVpXikanLyckhNDSUCxcucPHiRS5cuEBKSgoSiQRra2sUCgWZmZn88ssvDB8+/JVZiJiYGMaMGcPt27epWbMm2dnZXL58mezsbKDklZ0GBQXRrVs3qlSpwvHjx3F0dNS6hm7duuHn54epqSkSiQS5XE5+fv4LxxgYGKiqDtq1a/fWe+Tm5tKjRw8uXLhAQEDAC6O2BEEgICCA+fPnExwczMcff8zChQtp06aNXgTt78LVq1dp0KABmzdvZty4cRrfb+LEifzxxx88ePDgpV4GIvpLYmIirVq1Ij09naCgICpWrKjW9QsN8U6cOEHZsmX1JgP88OFDKleuzNGjR+natauu5eiEa9eu4eXlRZkyZTh58uQbb/IUZvZ/+OEHVq5cSVZWFt9++y2tW7emVKlS2NjYYGZm9kHfPFEHPj4+9O3bl9jYWMqVK6drOa8lK0fJ8IVPSUlX6lXAL5HAD9NLU91V7NUX+TAQg/1iRk6ukpnfP+dmVJ7WT55SScEd0cVjHWnk+eZZyvqKUqnkzp07qsD/woUL3L17lwcPHvynF/GfBnHjxo1jx44deHt706VLF6DAsGrIkCEqZ/5PP/1UFy9J7fj5+dGvXz8aN26Mr6/vO/sdvC/Hjx/n/v37CIJAYmIiv/32GyYmJtSvXx9TU1OuXr3KvXv3qFSpEr6+vnh4eLzTPtnZ2XTs2JGIiAjOnTtH7dq1OXv2LN9++y0XLlygcePGLFy4kA4dOhTbIB8KPs+tW7cmKSmJsLAwrVx4JyQkULlyZUaOHMn69es1vt/L9rewsMDMTHRdfhvS0tJo27YtsbGxBAYGvvN363VMmzaNAwcOcOLECVV5eEJCAnFxcdy9e5cWLVpQunRpte/7JgRBwMPDgzZt2nyQrQSCIPDnn3+ycuVKjh07hr29/RuPVygUGBoaqirbpFIp9vb2VKpUiQoVKuDm5oa9vT3jx48v8ZMyNMnMmTPZtWsXsbGxupZSJC5HZjNrU6KuZaiQSGBgB2vG9LLVtRQREa0hBvvFEFmekvk/J3Lllgxt/fKkUjAylLB8vCO1PYpHRv9tSEpKemPW0cnJieTkZAICAmjTpg0KhQIDAwN69OiBQqFg586dJSJzuWfPHoYNG0aXLl3Yt2+f3vRa79q1iwkTJnD27Fnq1q2r+nnt2rWpX78+GzduxNLy3fvv0tLSaNeuHffv38fDw4PQ0FAaNGjAwoUL6dSpU4kIFAuzQidOnKBjx45a23f58uXMmzePmzdvarQ0OyoqioCAABo1akSdOnX4+uuv+fPPP3ny5AkbNmxg1KhRJTKz+DJn+/chKyuLjh07cvPmTc6dO8dHH32ktrX/ybFjxxgxYgQWFhaqqoHExEQyMjJ4/Pgxv/76K8OHD9fI3m9i2rRp7Nq1iydPnpSo1qyiolQqkcvlb+370LNnT27cuPGfSTWF5OXllcjvoLZo1aoVjo6OeHt761rKCwiCwKNHj7h27RphYWFcuXKFv/76i5ycHJb++pSA0Dzdt6BKoZyjIVtmi+X7Ih8W4hm3GGJqLGXJeEf2+Kezwy8NQOOOp+7ljfnms1JUKKMfZZbq5k1BenJyMs7OziQmJrJ8+XLS0tKoXLkykZGRXLt2jadPn2Jubq4ltZpj8+bNTJw4kWHDhrF169a3uihTCkpisxK5mxbL7bTHxGenkKvIQy4oMTEwwtzABDfrMlS1KU9VGxdsjN/s5q1UKsnPz8fExIQlS5Ygk8kovD9ZaPxUvnx5tm/fzvz5898r2I+IiMDc3Jy0tDTCwsLYsmULo0aNeucgX9/GwOXm5jJ9+nQ6deqk1UAf4Msvv2Tz5s188803Gr1I3bJlC8uXL2f//v04ODjg7e3N48ePAZg3bx5NmzbVWOCqSw4fPkyDBg1wcXF577VkMhm9evXi+vXrnD59WqPv1/Xr10lMTCQxMZHo6GigCSukHQABAABJREFUwAC18HscF6c7g6+ePXuyZs0aLl++TJMmTXSmQ1dIpdIiBfrBwcGsXr2axo0b4+npyY4dO7C1tUWhUBAbG0tERAQhISGcO3eOjIwMMdB/D+RyOVeuXGHBggW6lvICkZGRNG/enNTUVKDgO1xouuns7MzUIU4kZyTy922Zzsr5pVKws5KycpKTGOiLfHCIZ91iiqGBhKFdbGj2kRnLticR9TRf7Vl+A2lBydOoHrb0a2eFgfTDPEEKgoC9vT0zZszg008/JSAggICAAKytrTEyMiIpKYmmTZtiZvbq1obc3FwMDQ0xMNDMmML3RRAElixZwrx585gyZQqrV68uUjZLISi5/Pw2h6IvcC3pATJFHgAGEilKQfnCZ1KKBJ5C4U8dTW1o51yXXhWbUc7i5e7e/7zgNDc3Jy8vj5kzZzJo0CAcHBwIDAzk7NmzAJiYvFv/3aVLl5g/fz4BAQF89NFHqrnlS5cupXPnzu/cF1k4hsre3l4nfgf/5vvvvyc6OpojR45ofW8zMzOWLFnCsGHDuHDhgsZGVGZkZABQqVIl7t27x9OnT/nll1+IjY1l4cKF3Lp1q8QF+zKZjN69e7Njxw6GDRv2Xmvl5+czYMAAgoKCOHHiBI0aNVKTypdTuXJlzMzMqFOnDtbW1jg6OlKmTBlcXFwoVaoUderU0ej+r6NZs2Y4ODjg6+v7QQb7RcXf3x8fHx/8/f0RBAELCwvKli2Lm5sbtWrVonbt2gwZMoRvvvmmRNwQ1yU3btwgOztb7z6Pjo6OSKVSJBIJgiCoAn2An376CWMjKQu/cOCbTQmE38/VeoZfKgUbCylrvypNaXsx7BH58BA/9cWcyi7G/PRNGbxPZ7D/dDqpGUqkEt7r7qlUAgLQuKYZY3rZlthsflEpzM727duXrKwsfv/9d27fvk1iYkEfWpcuXZg0adIrn5+Xl8dvv/3GjBkzaNiw4Qvj/8qUKaOV1/A6lEolX3/9NevXr2fx4sXMnj37jRnptLwsjsaE4PMoiOeyVKT/H9wXohD+W2qi/NftqARZGvujzrP34TkaOnjQ160FTZ2qI5W8eJOhUMu4ceP45ptvOH36NKdPn37hmB49ery1q3xoaCjz58/n+PHjeHp64u3tTe/evZFKpbRr144WLVrQvn17zp8//1bBekpKCps3b8bb2xtTU1NKlSrFqFGj6NKlC8bGxjrJ9ickJLBo0SK++OILatSoofX9AYYMGcK6deuYNm0aFy9e1Mj7UNgLnJ2djbGxMQqFgtKlS6sy3vfu3VP7nromLa2gusvW1va91lEoFAwbNowTJ05w+PBhWrVqpQZ1r6dDhw4cOnSIChUq4OjoiL29vd5UwxgYGNCtWzd8fX1ZtmyZruWolaioKLZt28bTp09xcXGhY8eONGvW7J3e+6ysLEqVKoVEIiE3N5fU1FQSEhKIiIjA19cXU1NTrK2tSUtL48cff9RZW0ZJIDg4GAMDA+rVq6drKS/g5OTE3r178fLyUv1MKpVSo0YN1UhbU2MpKyY6sWBrIpcicrSmTSoBJzsD1n5VmjKlxJBH5MNE/OSXAAwNJAzysqZfOysuhudw6FwG1+/lAmBgAArF658vkRT8UyrB2kJKz5aWdP3YEqcP7A7om8quTUxMGD16NL179+bWrVtkZWUhCAKNGjV6bRuAsbExERERuLu7k5yczNatW1UXjxUqVHgh+K9Xr55Wsx9yuZzPP/+cnTt3FsmdXRAETj39mzURB8mW5yL8fwCvfElwXxQKn3c16T6hiXepZefGnDqDX5rpHzVqFFlZWezatYukpCRyc3ORy+W0a9eO77///rWVFf/k77//Zv78+Rw9epTq1auzb98++vXr90IlQ8WKFTl16hQtW7bEy8uLs2fPFjmYmjRpEj4+PshkMgDs7e0ZNGgQ69evx9PTk65du2o9oJk/fz4SiUSn5Z9SqZTVq1fTrl07vL296d+/v9r3KDSRO3jwILa2thgZGaFQKFQ3ggonZ5QkCoP99xmhqFQq+eKLLzhw4AD79++nU6dO6pL3Wuzt7VUBgiAIPH/+nCdPnhAVFcW9e/d49OgRP/30k1a0vIyePXuyfft27t27p9MxgOrkypUrdOvWjefPn6t+duTIEUaMGMHkyZPfer2lS5cyduxYYmJiuHTpEhs3biQtLQ17e3vkcjnPnz9XnQv14eZ2cSY4OJjatWvrXYVEcnIyGzdufOFnSqWSBQsWvPC3zthIwsIvHDh0LoMtf6aiVIJCQy2oEgkIAng1sWB8PzsszT483w0RkUI+rGiuhGNoIKFlXXNa1jUn9nk+EQ9yuRudx61HuTx8ko/8JUG/g60B1V2NqVrRmKoVTfioiglGhvqRWdE2/xxl87oSdgcHh7ee517oZhweHo5SqcTa2ppKlSphaWnJnTt3OHr0KDk5ORgYGPDRRx+9cAOgatWqGjGIkslkDBo0iGPHjrFr1y4GDx782uOTZOmsijjAhWeRSECtbSOFQf/N1GiG/bWScdW708f14/9k+SdPnsyECROIiooiLy8PFxeXIk8KCAsL47vvvlO59u/atYuBAwe+srXCw8ODgIAAWrVqRZcuXTh58uQbPQFu3brF7t27qVq1KrNnz2bEiBG4urrSpUsXnJ2dadeuHa1atdKqG3VkZCQ///wzK1euxMHh5e0S2qJt27Z069aNWbNm0aNHj3duvXgVtWvXxt7eng0bNgAFN9qcnJyIjIwECvpHSxrvG+wLgsDUqVPZtm0bO3fupE+fPuqU90a+/vprIiIiiImJITY29j83ZGbPnk2FChW0qqmQDh06YGpqiq+vL9OmTdOJBnVy+/Zt+vTpw/Pnz1m8eDEWFhZMmTKFmzdv8vfff/PkyZO3blsyNDSkUqVKVKpUCX9/f3Jzc7l+/TqOjo48evQIHx8fVq9eTbNmzTTeFlLSCQkJoW3btrqW8QKhoaH079+fjIwMjhw5woYNGzh16hTVqlWjV69e/zneQCqhX1trmtQ0Y/mOJG5G5aldk1QCtlZSZgwtVawnR4mIqAvRjf8DQa4QSM9UkicXUCgEjI0lmJtIsRDvdqqYM2cOV65c4fjx4xpzX87MzOTy5cuqkX+XLl0iPT0dqVRKtWrVKF26NIIg8PTpU+7du4cgCNjY2Pyn/N/Jyem9dKSnp9OrVy+Cg4NfGCX4Kq4m3mPOld/IUeS9cxb/baljX5mlDUdiZfR+f6wFQeDYsWN0796dypUrM3/+fAYPHlxko6jLly/Trl07GjVqREBAwGs/GytWrOCbb75h165dVKxYkebNm/Ptt98yadIkHB0d6dy5M8eOHXuv1/O2dOrUifv37xMZGan24PpduHXrFrVq1WLVqlVMmTJFrWvLZDK2bt3Kli1bsLOzo1+/fkycOJHc3FyeP39OuXLlSpyzekBAAF5eXkRFReHq6vrWz583bx6LFy8uUmWPJrCysiIrK0v135aWlkilUrKzs2nQoAHe3t46vUnTo0cPUlJSCAwM1JkGdfHjjz8yYcIEZsyYweLFi/Hy8uLcuXP06dOHsWPHkpCQgJeX11tNlSmsiCucYtKyZUvOnTv3wjEODg7Mnj2bqVOnqvkVfTikpKRgb2+vFm8OdSAIAj/++CNTpkyhTp067N+/n4oVK5KYmEivXr2YO3fuGyuEFEoBvwuZ7D+VwZMEOQbSd8/0F7avWphJ6N7Cik86WovZfBGR/0fM7H8gGBpIsLfRT3M4fUAQBA4cOECLFi1eGwwo/3/swbsGDJaWlrRt21Z1d16hUHDz5k0uXLjAxYsXuXDhAg8fPgTAxcUFd3d3LC0tSU9PZ+vWrSxZsgQAV1fXF4L/unXrFrmMPSEhgc6dO3P//n1OnjxJ8+bNX3t8YPwN5l3djlIQVGX72iA85SETL37P+ibjsDN5t0x44YXo5s2b+fXXXxk6dOhbu0E3atSIo0ePMmLEiDf+3gtnH5cqVYq1a9cCBaXA58+fB9C6OdyJEydUBlr6EOgDVK9enc8//5xFixbx2WefvXGG99tgamrKxIkTcXd3Z9u2bfj7+/PHH38gCAKTJk1i4MCBJS7Yf5/M/sqVK1m8eDGrVq3SSaAPsGTJEh49ekT16tUpW7Ys9vb2hIeHs2HDBgwNDUlKStJpsN+rVy8+//xznj9//t43WXXN9evXAcjJyaFu3bpERkYyatQotmzZwqxZs1i5ciUXLlygadOmb7124dSLyMhIfvzxR3r37l3Q9nXqFMnJyfz5559isP8eXL58GUAvzPkyMjIYM2YMe/fuZdKkSaxevVplpOvg4EBQUFCR1jGQFgTm3Zpbcv1eLn/+lUFQWA5KocBUTxB4rZnfP9tUPSoY07u1Fa3qmYtu+yIi/0LM7IuIUHARVKdOHY4fP/7au9GnT5/G0tKSRo0aaazvOi4ujkuXLqluAFy9epX8/HwsLCyoU6cOZcqUUWX/w8LCkMlkGBoaUrt27RduALi7u/8nsHn8+DEdOnQgNTUVf39/ateu/VotF5/d5JvQbWg3zP8fBhIpLhaO/NhsElbGL/YpvspjQRAE1U0ZiURCUFAQTZs25f/YO8+wqM6tDd8zdKSogIKKlWLvHY0NCypijz1qrDExdmNPjIm9xG4ssVdEsTcsIAp2wQbYQZCi9M7M/n7wMQnHAsgMM+C+ryvnXDB73neBzMx+3rXWs3R08mc0+fDhQ6pVq/ZZsXjo0CG+/fZbypYtS0REBJUqVWLTpk1MmTKF27dvc/36dZo0aZKvOHJLRkYGderUwcLCgkuXLmmM8RnA27dvsbW1ZdSoUSxfvlypa6empjJnzhzWrVtHcnJ2I6glS5Ywfvz4PM8O12S2bt3KiBEjyMjIyNO0j/Xr1zNu3Djmzp2rVi+HtLQ0BEFAR0cHqVSKXC5HKpWyf/9+BgwYwIQJExQHZ+ogIiICS0tLtmzZwvDhw9UWx5fy6NEjqlWrhkQiYeXKlUyePFnx2Pjx41m1ahVbtmxh1KhRNG/enL17935R20RISAijRo3izJkzSCQSrK2tsbS05NWrV4SHh/PTTz8p2mtE8s78+fNZtWoV7969U+t7+YMHD+jduzdv3rxh69at9O3bV6nrxybIePwyjaDXaQS8TuPxi1RiE+QK02kJYKAvwcZal6oVdLErn9mGWtbi6zaSFhH5HKLYFxEBZs+ezbp16wgPD/+sEGjevDnW1tYcOHCgwGJLTk7m1q1bisz/tWvXFB/4NWvWxN7enmLFihEfH8/Dhw8JCAgAMt25GzdurBD/ZmZm9O3bFy0tLc6fP4+Njc1n930Y/Yofr61FJsjUIvSzkEqk2JuWY13zH9GRZmblz507h4WFBfXq1VNcFxMTw7179wgLC0NPTw8rKysaNGigVGGXJUQ+xbNnz+jVqxd+fn6K7xkZGZGQkFDgJfzr16/nxx9/5NatWxrn3gywYMEC5s+fz5MnT6hcubLS1j19+jTOzs7I5XLatWtH1apVuXfvHjdv3sTQ0JDLly8XqfF7K1asYN68eYqxg7lhx44dDB06lIkTJ7J8+XKNOgjK4sGDB/Ts2RMXFxeWLl2q1lhatGiBmZkZ7u7uao0jr6xZs4Zff/2Vxo0bc/r0aR4/fszYsWMVlUa//PKLwiXf1NSUkydP0rx58y/e78KFC0yZMiXb+x+Ak5MTv/76K40aNcrXz/M107lzZwRB4PTp02qLYdeuXYwePZoqVarg6uqKvb19ge0tkwnI5HDY9QA//DCWx48fi4aPIiK5RBT7Il89giBQtWpVmjdvzj///PPJ65KSkihevDgrV65k3LhxBRhhdgRBIDAwUNH3f+3aNZ48eQKAlZUVDRs2pEyZMgiCQHBwMDdv3lSMCdTR0aFz5860adNGUf7/sfLuFFkaQy4vITw5+oOReepAAgy17cBw+8yqi/T0dEWmPiMjg/v373Po0CGCgoLo0KEDQ4cOVVvZ+uvXr1m2bBmenp48f/6chIQEhg8fzvjx4wtMZMbExGBjY4Ozs/Nn/6bVSVJSEra2trRs2ZL9+/crbd1JkyaxatUqRo8ezeTJkzE1NcXCwoKff/6ZNWvW5MqMsjAxd+5c/vnnH0UZdU64urry7bff8v3337Np0yaNEPr/rdLJyMggNjaWuLg4YmJiKFGixBd5ESiTpUuXMm/ePKKiojTOCf1TLFy4kFmzZlG8eHHGjBnDzJkzMTQ0ZN++ffz999/ZPAisrKxwdXX9ovL9/yUtLQ0PDw+ePHlCcnIypqam9OvXL08+ACLZEQQBMzMzfv75Z+bNm1fg+6ekpDB+/Hg2b97M0KFDWbdundpeBy1btuTq1av07t2bQ4cOqSUGEZHChtizL/LV8+DBAwIDA1m5cuVnr/P19SU9PZ1vvvmmgCL7OBKJBHt7e+zt7RVlpVFRUVy/fl2R/T9//jwpKSno6+tja2tLbGws5ubmdOjQgYCAAKZPn05qaio6OjrUrVs3W/m/jY0Nm5+c5m1ytJqK9z9EAHYEnaelZS1sTctmK8nX1tambt261KtXT2392AkJCezcuRM7OzscHR2ZM2eOosLC2NiYKlWq5Ojkr0wWLFhASkqKwuNBEzE0NOSPP/5g2LBhTJgwQWm9qFneFU5OTtmqV2rWrAlkVl8UJWJjY3Pdr3/q1CkGDBhAv3792LBhg0YIfUARx5o1azh58iTv3r2jYsWKdOrUie+//17N0WX6bkybNo3z58/j4uKi7nBy5NixY/z666/o6+vj5uZG69atFQcq3377LU2aNGHnzp3ExcVRtmxZevfuTaVKlZSyt66uLk5OTnTq1Elj/r4KO0FBQURHR6ulX//Zs2f07t2bJ0+esHXrVrW2smTd50DmoeXly5dp3bq12uIRESksiGJf5Kvn0KFDmJqa4ujo+NnrPD09KVGiBDVq1CigyHKPubk5zs7OODs7A5nZlbt377Jp0yZ27NiBtrY2YWFh7Nixg6pVq9K/f3+sra0RBIGXL19y9uxZ1q5dC0DZJvZUmuWUOahWk5BImH93N9u+mawo588iL73KqsDNzY0ff/wRBwcHGjdujIWFBRYWFmqJ5enTp6xevZo5c+Zo/Ki5wYMHs2rVKqZMmYKXl5dSxIGdnR0AO3fupESJEpQuXZp79+6xfv16gFwbWRYWciv2L1++TK9evejcuTPbt29X+2vmf/n+++85dOgQCQkJANy+fZvDhw/z5s0bpkyZotaMup2dHVWrVsXd3b1QiP2AgAAyMjJwdnamdevWZGRkIJfL0dXV5fnz59jZ2TF//nyVxiAKfeXh6+sLUOCjC48cOcLQoUMpVaoUPj4+OXr8qJrdu3dnM0keMWKExkyZERHRZIqWLbGISB7JcuF3cXHJsbfb09OTFi1aFAo3b11dXQIDA9m5cyc9evQgNjaWZ8+esWvXLlq3bs3t27dZsGABCxYs4MyZM1SrVo25c+eydNlSakzqgoYk9LMhF+S8Sgjn6Mtr6g7lA7Zu3QpklvuamJiQnp4OZJaU9+3bN9cl1spg2rRplC5dOpsRl6aipaXFsmXL8Pb25siRI0pZs2HDhtjY2ODm5saIESPo27cv48eP5/79+9jY2OQ4DqqwERsbS/HixT97ja+vL87OzrRs2ZIDBw7k26xS2Vy9epVTp06RkJCAtbU1Tk5OfPPNNxgaGrJ48WL8/f3VHSIuLi6cOHECWZb9twZy8eJF5HI5ISEhCILA7du3CQsLQ1tbG11dXaKiomjbti0LFixQd6giecDHxwd7e3tKlChRIPulp6czefJkevbsSfv27bl165bahb4gCGzatImszmO5XM7z589ZvHixWuMSESkMaL5qERFRIQ8fPuTJkyf06dPns9elpaVx/fp1tZfw55a//vqLIUOGMHToUA4cOIC+vj6VK1dm0KBBbNiwAT8/P6Kjozlz5gw//PADiYmJLF++nN+3rSTJUMgcWquhHHrhiVz4wmG8KiAuLo7bt29TunRpRU9+RkYGkFkC6erqmm2OuCq5cuUKR44cYdGiRYWmt9jR0ZFOnToxffp00tLS8r1e1apVWbx4MdbW1gQFBeHn50dERATFihVjzpw5GlmZkx9iYmI+m9m/f/8+nTp1om7duhw5ckQjs2BXrlwhPDyc3r17c/fuXU6ePMnly5f57rvvSE5O5ubNm+oOERcXFyIjIxVlxJpG165dGThwIEePHqVx48aYm5vz6tUrhg0bhr+/P35+fgwfPpzQ0FAiIyMVGVJV8PLlS8WBp0j+8fHxKbAS/pCQEFq3bs3q1atZtWqVovJR3dy8eVPhTZSFIAj8/vvvvHz5Uj1BiYgUEsQyfpGvGldXV0xMTGjfvv1nr7tz5w7JyckaL/YFQeDXX39l/vz5TJs2jUWLFn2ynNLU1JSOHTvSsWNHIFOgTr6yjrtJrxA0VOsLQFjye+5EPaWhhZ26wwEyBX3x4sVJTU3l+vXrtGvXDgMDA8LCwrh9+zbdu3cvENdiuVzOpEmTaNy4caEzoFu6dCl16tRh48aNjB8/Pl9raWlp0aNHDywsLLh16xYZGRmUK1eO9u3bF0mTsNjYWKpWrfrRx548eUL79u2pUqUKJ06coFixYgUcXe7IOphq3LgxJUuWJDExkWLFitGjRw82bNig8L9QJ02aNKF06dK4u7vTokULdYejQCaTceXKFU6dOkWzZs1wcHBALpfToEEDrly5wrlz5xR+M0lJSbRr145ly5aptELNycmJ9u3bs3r1apXt8bWQlJSEn58fI0aMUPle58+fZ8CAAejr6+Pp6akUw0Zlcf78+WxfS6VSypQpo3bzThGRwoAo9kW+arJK+HPKdnl6emJoaJht1JumIZfL+fnnn1m7di2LFi1i+vTpeXp+nCyZ+ynBGiv0s9CSSHF7eVUjxL4gCNSrV4/y5cvj4+NDr1696NmzJ9WqVcPb25umTZty4MCBAulf3blzJ3fu3MHb27tQtJr8l5o1azJ8+HB+++03hgwZkmNZek7I5XJatGjxgShLSkoiODiYihUramSG+0v4VM/+ixcvcHR0pFSpUpw9e1YjsnOfIuswLCQkBEDRUpXVv68Jf89SqRRnZ2fc3d1ZsmSJRvSkR0ZG0rJlS0xNTSlRogSurq6ULl0agMWLF7NkyRIuX75MaGgo1tbWDBgwgL///lulMaWkpBAYGMikSZNUus/Xwp07d8jIyFBpZl8mk/H7778zf/58OnTowO7duzE3N1fZfl/Czz//zDfffEOpUqUYP348urq6HD9+XN1hiYgUCtT/CSoioiYePXrEo0eP6N27d47Xenp60rx5c43rdc0iPT2dwYMHs27dOv7+++88C32Ai6F3kReCSZwyQc7V8IfEpyerOxQFs2bNwsbGhvj4eLZv38706dMxNTXl4MGDBSJUEhISmDlzJt9++22+5mSrk/nz55OSksLChQs/e11upsVKpVLu37/PggUL6NmzJ7Vr16Z48eIYGRlRrVo1rly5oqyw1U5MTMwHhyOhoaE4OjpiYGDA+fPnNb6ioXbt2lhYWHDw4EFCQ0MV77OVKlVi+fLl/PTTT2qOMBMXFxeCgoI+KCdWF6tXryYwMJC7d++iq6vL27dvFa+P2rVrs2bNGq5evcrly5c5ffq0yoU+ZH6uyuVyatWqpfK9vgZ8fHwwMDBQ2e8zMjKSTp06MX/+fH777TdOnTqlcUIfwMjIiJYtW2Jvb4+1tTXh4eHqDklEpNAgZvZFvloOHTqEsbExHTp0+Ox1MpmMq1evaqzhWVJSEn379uXcuXMcOHAgR/+BT/Eo+jVSiQTZR8RUjF8wD2a7ggAVhjhg3SfTFViQyfGbfoD4gLfoWRhTb81gXu+9TuzDN6RGxCFPTUfX3BiLlvaU7dkQbcPMjF3iqyjeuN0mPiCMtPeJIAF9q+JYda6DZYeaOcYqIPAg8jnNytRg6NChHDlyhBUrVtC/f/8C7VX38fHhwoULODs7M2PGDPbs2UNwcDADBw5k7ty52eaHq5IlS5bw/v17Fi1apPK9VIWVlRXTpk1j4cKFjB07Nl/lmcHBwfz666+4u7tn+36xYsVITEwsMA8FVSMIwgeZ/cjISBwdHUlPT8fLywsrKys1Rpg7ypUrx9mzZzEwMKBMmTJkZGSQkJBA7dq11W4M9l/atWuHoaEh7u7uVKtWTW1xxMfHY2xszOzZs3n58iV79uwhKiqKy5cvY2Njg7GxMYAi41+Qpc5ZZopZoy5F8oevry+NGjVCW1v5t+ve3t58++23pKenc/78edq1a6f0PVSBlZUV586dU3cYIiKFBjGzL/LV4urqSrdu3dDX1//sdQ8ePCA2NlYj+/VjYmLo2LEjly5d4sSJE18s9AEexrxC9gnju+K1rSnjnNnC8HqvD4kvIgEIcb1JfMBbkIDtxI5kJKQQeuwuSa/foWdujFRfl5TQGIIP+BKw5KRivYSgcCIuPiI9Ngl9S1OEDDmJzyJ4uuY8IYdzNuMS5HIev38FwLVr14iPj+fx48cKU6i5c+fSunVrNmzYoFJht3jxYubNm0dMTAzDhg3j2LFjeHh4MHfuXKBgxk8FBwezbNkyJk6cWOj7F6dMmULJkiWZNWvWJ6/Jze/02LFjuLu7Y25uzuDBg5k7dy6rV69my5YtHD16lIYNGyozbLWRlJSETCZTiP2s94P3799z4cIFKlSooOYIc0/dunWxt7fn4cOHLFy4kMmTJzNhwgTWrl2rMYczBgYGdOzY8YNDpILk9u3bdOvWjf3796Onp8eGDRtwcXFBJpMxd+5cXF1dSUpKAtTT/uDn50flypUxMjIq8L2LIj4+PjRp0kSpawqCwPLly2nVqhWVKlXi7t27hUboA1haWmarYhEREfk8YmZf5KvkyZMnPHjwIFcjiDw9PdHR0SnwGbc5ER4eTqdOnXj16hUXLlzIl5lOUkYKYUnvPntNxe9aEH33FcnB7wlYcQbbn9rzer8PAGW61ad4LWvSohOpOKwllp1qo22oizwtA/+ZrsQHhBF9+yUZCSloG+mjZ2FM1V+6YNbUBomWlJSIOO6O340sMZWIy08o16vR5wMW4HlSOImJiTx9+hQdHR3q1KmjED23b9/G09MTuVzOgAEDSEtLo02bNhgYGLB+/XqKFy+OhYVFvsS4IAhoa2tjZGSkKJ03NDTMU2WBMjL/M2bMwNjYmBkzZuRrHU2gWLFizJ8/n5EjRzJhwgQaNcr+dyCXy3MlYLKM6AYOHMj8+fORyWQYGRlly44VVNWFKomNjQUyM7gJCQl07tyZV69ecfnyZezs1O9pkVc2bdrE7Nmzefcu+3vRmzdvmDx5skaUF7u4uDBs2DDevn2LpaVlge799u1bevbsSXBwMHK5HFNTU5ycnNiyZQvJycmcO3eOmTNnoqurS8+ePTEwMCjQ+CAzs581lUQkf7x584aQkBCl9utnHUwfPXqUqVOn8scff2hse+KnsLS0JD09nffv32t8i5KIiCYgZvZFvkoOHTqEkZFRjiX8AF5eXjRu3FgtN06f4uXLl7Ro0YLw8HCluOY+jQsjpzNyqa429pM6IdGSkvQyCv8ZBxEy5Bhal6TiEAcAdEsUo9x/yvWlutoY2Zb+/wUk8P9CrXid8pg72CHRyvxav5QJehaZpadSHa0c45VoSQmIC1GUjJYtW5ayZcsCEBERwevXr9HT06NJkyaYmpry/Plzrl+/zsWLF5k5cyYtW7bEwMCAFStWKMbk5TV7+Pz5c8zNzZFKpdy9ezdXo6zi4+M5duwYly5d4uXLl0gkElJTU/O073+5ceMGe/bsYcGCBZiYmHzxOprEsGHDqFmzJlOmTPkgc3Pr1q1crdGgQQNq1KhBbGwsxsbGFC9eHG1tbQRBIDIykhcvXhR6oQ+ZN+6QmXF2cXHhwYMHnDlzplD2S7969Yq9e/fy7t07DA0NkUgk1KpVi5o1a7J48eIP3LjVRZcuXZBIJGoxB7O0tGTcuHFYWVnh7e3N0qVLuXjxImZmZmzdupVWrVoRHh7O2LFjCQ0NLfD4IDOzXxj//jQRX19fJBIJjo6OSlnv7t27NGjQgEuXLimMJgub0AcUrUlv375VcyQiIoUDUeyLfJUcOnQIZ2fnHAW8IAh4enpqVAn/o0ePaNGiBYIg4O3trZTeyLi03AldI5vSWH+bWeEgT5OBVILdpE5IdT9eJJQWk8S7a0EAWLS0VxwC/C+xD0JIep2ZzbPsmLsbxYSMZLy8vACoXLkypUqVAjKrNsLCwtDX16dKlSpA5qxxAB0dHby8vChVqhT29vbIZDK0tLT4559/6NevHzVr1sTJyYm//voLmUz22f2HDx/O33//TWpqKu/evftsxjk9PZ2jR4/i4OBA9+7d6dSpE61ateLBgwcKV/iNGzdy9erVXP3skPm3OXHiRGrXrs3w4cNz/TxNR0tLi6VLl+Lp6cmxY8eyPXbo0CGioqJyXMPGxobmzZsrPCxGjhxJ3759adOmDS1btsTFxUVV4RcoWZn933//nevXr3PixIkPqiEKCw8ePMDLy4suXbqwceNGBEGgefPmbNiwAYCzZ8+qOcJMzM3NadGiRYGW8t+7d09hCjht2jR+/PFHTExM8PLyYunSpXh7e1O2bFk2b96Mra0tc+bMUbz3FSQRERGEh4eLmX0l4efnh4eHR74PcgVB4O+//6ZZs2YUL16cO3fu0K1bNyVFWfBkVdSEhYWpORIRkcKBKPZFvjoCAgLw9/fPVX97UFAQ4eHhGiP2b9y4QcuWLTEzM+Pq1atUqlRJKeumyTNyfW1yaMy/X8gFUiLiPn5dWAx+0w+Q9j4Rk2plqPLDx3sC3996waP5R0EuYOVcN9diP02eocjslyxZknLlygGZPY7v37+nZMmSilLmO3fuAFCtWjV27tyJl5cX9+7do0ePHixYsIDvv/+ekydP8ujRI86ePYurqytaWp+vMMjIyEAqlbJt2zY6der02Wvd3d2ZPHkyDx48ULQQBAcHK3r7165dy7Rp02jdujU3b+bsWQCZwvfatWusWLEix1gLGx07dqR9+/ZMnz5d4cMgCAKurq7Ex8fn+HwdHR2OHDlCcnIyhw8fZuvWrbi6uuLl5cWLFy8ICgrK8TCnMPD+/Xsg07fiyJEjGvM+9SVktb9UqVIFJycnJBIJz58/V/Qrv3z5Uo3RZad79+5cuHBBMRpQlSxbtoz69evzzz//8Pz5cyCzdeeHH35AJpPh6enJihUruHHjBjY2Nty8eZOpU6eqPK6PkfV+LGb2lcO4cePy/ZpOTEzku+++Y/To0QwbNgxvb28qV66spAjVQ5bYFzP7IiK5Q+zZF/nqcHV1pVixYjkKNMjs15dKpRoxzszDwwMXFxfq1KnDiRMnKFGihNLWzm1Bc5R3EJGXMzNMeqVMSI2I4+k6D0yqlUG3RDHFdXFPQnn0+zEy4pIp2bgy9lM7o6X/Yblg2Kn7PNt0CeQC5Qc2o3y/3PcmSiQSxUzpLFd8CwsLtm7dCmQ6fGfd1GQJ6C5duuDg4KDo/b53757i+j59+vDLL78gkUiIiopSZP0/hbe3N2/fvqV06dKfLQkPCQlhypQpvH79GltbW/78809q1KjBqlWruHTpEjNnzmT79u2kpaVhYGDAzZs3c8zOpqSkMH36dJydnQuVsVJukUgkLF26lHr16rF582Z++OEH7ty5w8uXL3PVTpPlpaCnp4eFhQXFihWjRIkSmJubU7p0aYyNjUlNTS3QyQ3KRi6Xs2zZMgD++ecfOnbsqOaI8kdWJvrly5eUKFGC8uXLc/v2bYWvSlbljibg4uLCpEmTOHv2LL169VLpXteuXQNg8+bNGBsbM2TIEMqXL8+CBQvw8PDA19eXI0eOIJFI2L59u8KJXx34+/ujr6+PjY2N2mIoKgiCQIkSJfJ1kPv48WP69OnDixcv2LNnDwMGDFBihOrD0NAQExMTUeyLiOQSUeyLfHUcOnSIrl275ko0eHl5UbduXbX3Qx85coR+/frRtm1bxWGFMtHVyrlvLy06kafrPQAo0bAStj85cufHXWTEJfN07QWqz8ksjY7yDiRwxRnkaTKsutal8sjWSKTZxbAgCLzc7sUbt9tItLWwndieUq3zNspKV6rNTz+N5vTp0zx69Ijhw4ejra1NfHw82traVKxYkbJlyxITE5NtHFSxYsUU4tzX15fw8HD09fWZMmUK9erVy9XeT548oXTp0rky6PLw8OD169eUKVOGv/76izZt2qCnp8fkyZPZu3cvW7ZsISoqCmtra2bPns3IkSNzXHPVqlWEhIRw5syZXMVbGKlTpw5Dhw5l3rx5DBw4EFdXV8zMzHIt+lavXo1EIsHKygpzc3NKlCihViGkTLJaOK5cuYJEIqF///7qDinfWFtbY29vrzDWtLa25urVq8yfPx+AiRMnqjnCf6lcuTI1a9bE3d1d5WLfzc2NHj164O7uzqpVq9DX12fIkCGUKlUKHR0dhR/F+PHj1e6A7+fnR40aNYpcpZE6kEgk+Rq3t2/fPkaOHEn58uW5efMm1atXV2J06sfS0lIs4xcRySWi2Bf5qggKCuL+/fvMmTMnV9d7enrSvXt31QaVA9u2bWPkyJH06dOHnTt3oqv78b73/FBSL2cRFLTmPBlxyWgb62P7kyO6JY2w+aEdTxaf5P2N57w994ASDSryZPFJEECirUVC0Fv8pu1XrFFlTFuMbEoT5RnAG7fbAGgZ6hJ24h5hJ+4prquzLGfxUkLXiPLly3Pu3Dk8PT0JCwujXLlyzJkzh8DAQEqWLImOjg5Pnjzh3bt3lChRAhsbm2xZ+NTUVGQyGSYmJoqS/5SUlBzHMQ4aNIi+ffsybdq0HOPMMu4rUaIEjRs3Rk9PD7lczsKFC0lISCAxMZFy5cqxYcMGOnfuDEBycvInD6MEQeDMmTP88MMP2Nvb57h/Yeb3339n//79LFq0iEOHDtGjR49cjxPr2rVrtq9TUlIICQkhPDycwMBA6tatq9ZZ6flhzpw5rF69mh49enDp0qUiYTYokUj49ttvmT9/Pq6urpQtWxYzMzOqVKnCsGHDNG4aiouLCxs2bCAjI0PpM9BfvnyJXC4nJSWF6tWrc+TIEdq3b4+HhwfLly/n6dOnADx79ozFixfTqVMnrK2tlRrDl+Dv7y+W8KsZQRDw8fFhwIABDBw4kI0bN6r9EEgVZI3fExERyRlR7It8Vbi6umJoaIiTk1OO175+/ZqXL1+qtQ92+fLlTJkyhTFjxrB27VqVZUwqG1shlUiQf2Ju7duz/kTffAFAlbFt0S2ZefNg3sIOC99nRF5+wostVyhex5osW38hQ0Z8QPYP44zkNADk6f/2S2fEJRMfl5yneLUkUqqXqAhAmTJl6Nevn+Kx7t278+DBA4VYDgwMBMDIyAgLC4vM2P5/7FqrVq1Yu3YtSUlJ3Lx5E0dHxxyFvq+vL3fu3Mn1TW2DBg3Q19fn4cOH/PPPPwwYMIBZs2Zx6NAhJBIJVapUYcuWLVSuXJmePXuyf/9+DAwMPjkaTi6Xq3XOd0FStmxZJk+ezJIlS0hLS2PdunW5fu7169fZsWMHsbGxvHjxgjdv3hAeHq6YvjB8+HC2bNmiqtBVxqJFi/jjjz9YtmwZ79+/V/hRFAXGjBlD7dq1qV+/Pvr6+rRo0YL69evne9qIKnBxceGPP/7g6tWrtG7dWmnrzpgxg+PHjxMSEoKuri4///wzs2bN4tSpU7Ru3Zrr16/z999/A1CxYkW6deumaGdSJzKZjAcPHhSZUvHCikQioVmzZly8eJHWrVsXiYPAj2FlZSWKfRGRXCIR/ne2kYhIEaZ+/frY2tpy4MCBHK/ds2cPgwYNIiIiQiESCwpBEJg1axYLFy5k1qxZ/P777yr/0B58eTEvE8JVuoeykCBhfI3u9K7UMlfXR0RE8PbtW6pWrZqtMuLt27eMGDGCU6dOYWRkRPfu3Vm+fPln/72fPn3Kpk2bePPmDdu3b89VpcX58+f566+/FG77cXGZpob29vbs2rULc3NzmjRpQmRkJGPGjGH9+vUAn/QNyO28+aJAfHw8lpaWZGRkkJCQkOtRUatWrWLSpEkffF9HR4f09HTmzZvHvHnzlB2uSlm7di0//fQT8+bN49dff2XcuHF4e3tz7949dYf21ZHVatC3b19WrlyplDWHDh3Kzp07MTIyQiaTkZyceQg6ffp0Fi5cSHx8PFOmTCEyMhJBEFi/fr1iDJm6CQwMxN7envPnzyttVJxIznzss+BTB8VFiQkTJnDu3DkePXqk7lBERDQeMbMv8tXw7Nkz7t69y4wZM3J1vZeXF9WqVStwoS+TyRg3bhybNm1i+fLlHxUsqqBGiQoEJ0YiE3KeF69uBATsTcvl+vpSpUp9tNfb0tKSpUuXYmJigpubG7dv387x39vGxoalS5cil8uJiIigVKlSOQrv9u3bU7t2bYYNG8aZM2fQ19fHzs6OPXv2oKWlRc2aNUlKSkJXV5fg4GBcXV3p3bs3WlpaH72Z+1qEPmRWZBgbGxMeHo6/vz/169fP1fPatGmj+L1n+StERUWxc+dOIiIiNDJb/Dm2b9/OTz/9xKRJkxSHFLGxsZiamqo5sq8TqVRKt27dcHd3Z8WKFfkWV0uWLGHnzp1Ur16dXbt2ERgYiLu7O/v372fx4sU4ODjQtWtX1q1bh7a2Nunp6Ro1Iz3LF0Ucu6daQkJCuHbtGlpaWjRu3BgrK6sPPg+KutAHsYxfRCQviGJf5Kvh0KFDGBgYKPqic8LT07PAS/jT0tIYPHgwrq6ubNu2jWHDhhXY3jVLVORk8I0C2y8/6Ei0sDUtq5S1qlWrxt69e0lLSyMyMvKzWfP4+HhCQkIoV64cxsbGCoO+3GRSSpcuzdChQzlz5gw2NjYcPnyYuLg4GjZsiCAIWFlZoaenh4+PDydPnmTo0KFs27btqxL2H+Phw4eEh4djbW3NlClT8PDwyNXNbK1atTh48CB6enpoa2sjlUqRSqUMGTKEMmXK8Msvv9ChQ4cC+Anyz6FDh/j+++8ZPXo0y5YtU/z8othXLy4uLmzcuJEHDx7kq1c9IyMDHx8fILOVoV69etSsWRNbW1tevHiBr68vly5dUowkBDRK6EOmOd+nDlVFlMO+ffsYP3487969AzIrw4YMGcK4cePUbiJc0FhZWREdHU1qaip6enrqDkdERKP5uu8iRb4qXF1d6dKlS66c7CMiInj8+HGBiv3ExES6devG0aNHcXV1LVChD9DGqi56Us26gfwYWhIp7cvWR19LuUaFurq6lC1b9rPietWqVYwePZo1a9Zw/PhxHj58SEpKCqmpqYpe8M/Rt29fjhw5wsmTJwkLC6NBgwYIgkCLFi1YsmQJfn5+3Lx5k2bNmnHr1i2Cg4MVz80y+vvacHV1xdTUlNWrV3Pp0iVOnTqVq+dJpVJMTU3R19dXiH2AkiVL0qBBA96+fUtqaqoqQ1cKJ0+eZMCAAfTv35/169dnO+iIjY2lePHi6gtORRSW7sI2bdpgbGz8xR4a6enpJCUlARAVFQVkeoKEhISgo6ND/fr1FQeKJUuWREtLS2Od7v39/cWsvgrZuHEjAwcOJDo6mgkTJlClShUCAgLYtGkTu3fvVnd4BU7W60LM7ouI5Iwo9kW+Cp4/f87t27fp06dPrq7P6q1u2TJ3PeH5JTo6mvbt2+Pt7c3p06fp0aNHgez7X4rp6ONk3QgtiWa/LcgEOd0rOKhl799++42rV68ye/ZsRo0axbRp05g+fTq9e/fm0aNHyGSyHNdwcXFBLpcrDpLat2/PL7/8Qu/evTEyMqJixYr8888/HD9+HIlEohC3Uqn0qxT8hw4dolu3bri4uNC2bVumTp2ap9/Dx66dPHkya9asydW/lzq5dOkSvXr1omvXrmzfvv2Dg6iYmJgimdn39fXF0dFRIYQ1FT09PTp16vRFYj8yMpLvv/+evn37EhUVRdmymZVKXl5e7Nu3jzdv3vDq1Svu37+PRCLR+Mkbfn5+ohO/ikhOTmbfvn1AZsXhH3/8oZgAUbp0aaysrEhJSVFniAWOKPZFRHKPZt/Vi4goCVdXV/T19XNdwu/l5UXFihULZJxRWFgYrVq1IjAwkIsXL9K2bVuV7/kpuldortE9+xIkFE/RQT9GPSLt5MmTDB8+nBIlShAeHs7p06dZs2YNp06domvXrrnK7gNUqFCBqVOn0rRpUyZPnkyHDh0UpYhyuRw7Ozt0dHSoVasWXbt2ZdmyZcDXJ/gfPXrEo0eP6N27NxKJhKVLl/L48WPu3r2b6zWkUik3b95UHMqMHDkSExMTevXqhaGhoQqjzx8+Pj44OzvTqlUr9u/f/9HxbkW1jF8QBDw8PAgKClJ3KDni4uLCrVu3ePPmTa6f8/z5c1q2bMnu3bu5ffs2CQkJLF++nCpVqvD69WsWLlyIg4MDdevW5eXLl4wZM4bevXur8KfIHwkJCTx//lzM7KuIu3fv4u3tjY2NDffv38fU1JSAgADGjh3L0aNH8fHx4eDBg4WmIkYZZBlTimJfRCRnRLEv8lVw6NAhOnfunOt5swXVr//8+XNatGjB+/fv8fLyolGjRirf83NUMSlD3ZJVNDa7LyDgt+08bm5uatm/Y8eObNmyhXfv3nH9+nV+/vlnGjVqRN++fVm7dm2eegcXL17M7t27adeuXTYh9/r1awICAkhISGD//v1YWloybdo0Fi9eDGSK17zc1GUdDoSGhhIaGprr52kChw8fxtjYWNFbX79+fQYPHszu3btz/Ttwd3dn5MiRrFu3Dnd3d7Zu3UqHDh2YNm0a8fHxqgz/i7l37x5OTk7Ur1+fI0eOfPLvqqiKfVtbW+DfsZmaTOfOndHS0uLYsWO5uv7Zs2d06tSJwMBAJk+eTGhoKLGxsfj7+zN37lzKlCmDIAi8fv0aXV1dfvnllzyNnFQHDx8+RBAEMbOvRLZv387OnTsBqFSpEhYWFjx9+pRx48ZRvHhxtmzZwrp169i9ezdLly7lwYMHuT5sLgqYmZmhpaVFWFiYukMREdF4NPOOXkREibx8+ZJbt27luoQ/Li6Oe/fuqbyE39/fnxYtWqClpYW3tzfVqlVT6X65ZUrt3kjQPDdfLYmUemY2hJ73V1tG9uHDh3h6evL06VPq16/PypUr8fX1ZcuWLXTr1i3P61WuXBktLS2FcN2zZw/Dhw+ncePG9OvXD0tLSzw9PTEzM2PGjBmKkZE5GdT9Vwinp6cDmX4D5cqVw9bWttCManN1dcXZ2Rl9fX3F9xYsWMCTJ09yZdL37t07Nm3ahJ+fH0lJSZQtW5YyZcoglUrZuHEjhw8fVmX4X8STJ0/o0KEDNjY2nDhx4pN/63K5nLi4uCLZs29mZkaJEiUKRWa/RIkStGrVKtel/CdOnODp06eMHDmSpUuXsnjxYvr27YuTkxPr169n2LBhuLq6cubMGc6ePcuff/6p4p8g//j7+yOVSqlevbq6Qyn0vH//nk6dOjF8+HCGDh3KvXv3MDU1pVevXoprunfvTtOmTRk1ahTTp0+nRo0a9O/fX+NMG1WJlpYWpUqVEjP7IiK5QBT7IkWerBL+Ll265Or6a9euZeupVgXXr1/nm2++oXTp0ly9epUKFSqobK+8UsGoNKOq5q7doSDRlmgxtXovMjIycmWyqEySkpLYsmULPXv2pHXr1tSpU4dOnTqxb98+BEHIdcXIp5BIJKSnp3Po0CEuX75MfHw89+7do169eiQnJ7NgwQIg0405OTk5m5gPDw//6HpZ/c5ZWeHXr1+jpaWFRCJROGZrcs96YGAgfn5+H5Qvly9fPtetLvfv3+fChQtUrFiR48eP8+zZMwICApg9ezYJCQlcunRJFaF/MS9evMDR0ZHSpUtz5syZzzpsx8fHIwhCkczsSyQS7OzsCkVmHzJL+S9evEhcXFyO14aEhABw5coV2rZty8yZMzE3N6dJkyb4+vry8uVL2rVrR4cOHahbt66KI1cOfn5+2NraYmBgoO5QCjVBQUF06tSJc+fO0aFDB86ePYuNjQ2GhoZ069aNjh07ArBlyxZq1qzJli1bqFWrFocPH6ZevXpqjr7gsbKyEsW+iEguEMW+SJHn0KFDdOrUCWNj41xd7+npSenSpRWlpMrm3LlzODo6UqtWLS5fvqyRo4r6Vm5FVVNrjSrn/6mGC8ZCpnAt6Mz+oUOHmDhxIkFBQZibm5OcnMylS5cYOHAgO3bsUMoe79+/59mzZ0CmEeChQ4cAqFOnDsePHwcyBV6WYIfMnvaBAwcqevr/i4GBAZs3b2bMmDE8ePCAp0+fIpPJsLe3p0yZMgAKZ2+5XK5xwt/V1ZVixYrRqVOnDx4bPXp0rrwLihUrRkZGBnXr1qVLly5oaWlRrFgxhg8fjo6ODk+ePFFF6F/EmzdvaNeuHQYGBpw/fx4zM7PPXh8bGwtQJMU+ZJbyF4bMPmSK/fT0dM6cOZPjtT/88AONGjUiMDCQt2/f8ttvv+Hr66uoDJJKpaSkpBSq/mvRiV85eHl5cf/+ferVq8f+/ftp37694rOuQ4cOrFixgmHDhlG/fn1at27NjBkzuHv3LnZ2dmqOXD1YWlqKZfwiIrlAc+7kRURUwKtXr7hx40auS/jh33793JQJ55WDBw/StWtX2rZty9mzZzX2Rl1LImVe/UEYaushVcHvIS9IkNDKsjbdyjcjMTERoMAz++vXrycxMVHRP7t161ZF5ce+ffsUwis/lC5dmiZNmgCZWb/u3bszffp09PX1OX36NJA5O15XN3PkYEJCAiVLliQ4OJhp06Zx8eLFbOtJJBJGjhxJtWrVGDNmDBEREQA4ODgQExPDhg0bFDdKUqk020gvQRCQyWRqNQPMGpX5sWyhiYkJycnJOa6R5XCeNWIvq6dVV1eX9PR0lbzGv4TIyEgcHR2RyWR4eHgonKY/R1EX+4Ups1+hQgXq1KnD0aNHc7y2UqVKnD59Gjc3N86fP8+cOXPYtm0bs2fPRkdHh0GDBqGvr68xf5s5IQiC6MSfDxISEvD29gbAzc2N9PR0KlasSPHixbMd+vj7+1OtWjW2bt3KjRs3OHz4MH/88cdnR8UWdSwtLcXMvohILvh63yVEvgoOHz6Mnp4ezs7Oubo+OTmZGzduqKRf/++//6Zfv3707dsXNzc3jS95LFfMglVNx6Ir1UGqph5+CRLqm9swt96gbKXpBZnZj4iI4ObNm9jb2/Pnn3/Sp08f+vXrx7x58yhdujT+/v5ERkYqZa8tW7YwcOBAAgICqFmzJleuXFHc8PXu3ZtVq1YBmdUhPXr04O3btxw5coSZM2fStGnTj675888/07NnT0JCQjAwMKBly5b8888/jBs3DmdnZzZv3szEiRNZt26dYta3RCJBS0tLcSMpCEK2TGNaWhrTpk1j/PjxXLt2TSk/+3959uwZd+/e/awDeW5eP2XKlMHOzo7Tp0/z6NEjhRHi+/fvad++PcOGDVNazF9KTEwMHTp0IDo6mgsXLlC+fPlcPw8okj37kJnZj4qKIjo6Wt2h5Iru3btz6tQphUfG5yhZsiTdu3cnLi6Ozp07M2LECPT19XFzc6N9+/YFEK3yCAsL4/3792Jm/wsICAigVq1a/PTTT/j5+SnaNjw8PPD19UVfXx8tLS2uXLlCkyZNFMa0Uqm0yL7u84JYxi8ikjs+nOUjIlKEyGsJ/40bN0hPT1dqv74gCCxevJgZM2bw008/sWrVqkJzGm9nWo41zcYx0WcDSbI05AU4lk+ChMYW9vzRcCi6WplvVerI7AcEBGBkZISWlhaPHj2iSpUqGBgY0KZNG5KSktDX18fGxkZp++3cuRNPT0/Gjh3LjRs3ABg8eDAbNmwA4PTp06xatQoPDw9atWpFUFCQoqdfJpNly9BnMWnSJEJCQnBzc6NmzZqsWLECyOxp//nnn0lJSUFPT48WLVrg7+/Pvn37qFChAg0bNqRp06aK7LEgCEgkEiIiIvDx8eHq1avExsbSvHlzxWPK4PDhwxgYGHx2VGbWGMLPvZakUinr16/n7du3iiw/QPXq1Tl79qxSYs0PCQkJODk58fr1a65cuZKn1qHo2Gi0DHTBUJu4tET0tHTQleoUmoxwTmSVJgcFBdG4cWM1R5MzLi4u/Pbbb1y5cgVHR8dsj33qtZGSksL9+/dxcHBg2bJlisqewoSfnx+AmNnPI/fv38fd3Z1Xr17RqVMnbG1tsbW1pXTp0oSHhzNw4EBmz55NaGgoa9asISUlRXEYCzmbtH4NZGX2lfnZIyJSFBHFvkiRJTg4GB8fH3bt2pXr53h6elK8eHFq1qyplBgEQWDatGksW7aMefPmMW/evEL3oVS1uDUbHH5mxq2tvEl8h4Bqe0mlSJAj4Fy+CRNr9kJb+q94VUdm39bWllKlSvHo0SN+/vlnevXqhY6ODrdu3SI+Pp4ePXoodT+JRELz5s1JS0tDLpczZswYVq9ejba2NsePH2fp0qVcu3YNc3NzBgwYkGvPhxUrVmBpaYmpqanCmK58+fJs3boVQRAIDAykVq1adO3aNVvvsY6ODkOGDOHPP//EwsICgHLlynHy5EnFzGfIPGgQBCFbRcCX4urqSufOnXM81MnNaynLzC85OZlDhw7x9OlTLCwsqFWrFnXq1Mnm9F+QJCcn061bNx4+fMjFixc/+56TIZfxOOY1AbHBBMSG8DD6FcFCJM0OjmOk33rI1FsYaRtQrbg1VYuXx960HLVKVqKkXu4OOjWN/47fKwxiv27dupQvXx53d/dsYj8iIgI9PT2KFSuWbcQmQL169bh+/Tp6enqULl26oENWCv7+/hgZGVGxYkV1h1IoEAQBR0dHLl26RMmSJendu7fiILd///54e3tz7Ngxnj9/zvfff6+oqFq2bBmjRo1SZ+gah6WlJWlpaURHR1OyZEl1hyMiorGIYl+kyOLq6oqurm6uS/ghU+xnjcPLLxkZGYwePZpt27bx119/MX78+HyvqS4qGpdm+zdT+SfwLHufXUIiAbkKDKSkSCiuZ8TMOv1pUqrqB4+rQ+xbWloybtw4Jk+ejIeHB1euXEFfX5+EhATKli3LiBEjlL6njo4Ovr6+/P3338yYMQPI/Htevnw5N27coESJEvz444/MnTsXgF27dtGgQQOqV6/+yWy3IAhMnTqV+Ph4YmJiKF68ODNnzqR169YAtGnTBsg0B1y5ciUvXrzg/PnzbNq0iX/++Yfy5cszbdo09PT0WLduHd7e3nTu3FlRav+/QgYyXwNSqTRP4v/Vq1fcvHmTSZMm5Xhtbg/OLl++zLx587h37x7JycmK3v2VK1cyZsyYT86xVxVpaWn06dMHHx8fzp49S8OGDT963fvUeE689sHtpTfvUuOQIEEqkSAT5HyssyYhI5lbUYHcefcUmSBHioSWlrXoWdGBemY2heqg0djYGEtLy0Jj0ieRSOjWrRvu7u6sXr0aiUSimK5gZ2fHyZMnP/q83LZtaCp+fn7UrFmz0FSrqZv/Zujj4+MVRpzp6eno6uoyf/58mjRpwrp16zAzM8PIyIhp06bRrFkzdYatkVhZWQHw9u1bUeyLiHwGUeyLFFlcXV3p2LFjrg2s0tPTuXbtGvPmzcv33qmpqQwYMAB3d3d27drFoEGD8r2mutHT0mFMta58Y1mLBff2EpwYiVQiUYro15JIkQlynKwb8WN1F4x0Pt6PXdBl/GFhYURERDBw4EAgs8T+/v37aGlp0ahRI3799VdatGihkr3NzMwUQn/r1q1s2bKFGzduYGFhwaRJk5g2bRoAq1evZsKECWhpaREeHk7JkiU/KvglEoliTGDXrl0JCwtTjGvKKv8PCQnh/PnzxMTEUK9ePUaOHEl6ejpr165lx44dzJkzB4Dbt2+zf/9+vLy8cHZ2Rl9fn86dO2NpaanwMtDX1//oAUBOuLq6oqenl+tRmTmRkJDAtm3b8PLyUnwvqy1jzpw5WFpa8u233yplr9wgk8kYPHgw58+f5/jx4x/1BwlJjGRzwGmuhPkhFwRFNY2AgCyH15sAmYcBgByBq+EPuPLWj3LFzBlUpR2drRsXGtFfmEz6ILOUf+3atdy7dw89PT2Fm/rGjRuLrBj29/cvFJUX6ubo0aPo6OjQpUsX9u3bR/v27QkLC+PVq1e8ePGCSpUqAZmHy99//z0DBw5EX1+ftLQ0hSmrSHayjEzDwsKoXr26mqMREdFcRLEvUiQJCQnh2rVr7Ny5k6SMVJ7GvSEgJoSA2BCiUmJJkaUhIKCnpYupjiG2pmXhbRJp2vJ89+tnlXZ7e3tz5MiRPFUWFAaql6jArtbTuR7+iMMvr3IrKlAh1vOCBAkCAgZaunQt35TuFZpT3ujzJekFndlftWoVS5cuZc2aNUycOJHWrVtz4sQJ0tLS+OGHHxSZBVWSkJDAzp078fX1pXz58kycOJGff/4ZgEWLFjFz5kwALCwsuHz5Mp06dcLQ0JCMjIwPxLZEIkEul3PgwAFmzpypuFnS0tLi8ePHTJkyReH8n0XWGlkZqDdv3vD69WskEglt27bF1NSUd+/eKUr/U1NTiY+P59mzZ7Rs2ZLx48fn6UbM1dU1Tz4bOeHn58fhw4epXbs2gwcP5pdffqF9+/aMHDmSzp07c/LkyQIT+3K5nJEjR3L48GFcXV3p0KFD9scFOYdfXGXDkxPIBXmeX1MfI2uNkMQoFvkd4Nyb28yo0w9LQ83PhNna2nLv3j11h5FrWrVqhampKRs2bMDNzY2yZcty9uzZXE1XKIykp6fz6NEjlVQ3FSWmTJnCihUraNeuHZUrV6Z69er89ddf9O3blzNnzvDPP/8wadKkbKZ7WdVGotD/NFmvK9GkT0Tk84hiX6RIst/tEOWc63OmbAibz8xAgOwlsP9BigTPcH/kgkDTPWNZHH+GLgHRdCvfjFIGxfO077t37+jcuTNPnjzh7NmzSjX60yS0JFJaWNakhWVNghMiOf7ah5tRAbyIf/vv71cmR1tbR/GczKxk5mNZvcVtytTFsUw9DLRzV0adldkviEkGycnJ7NixAxMTE3r27MmOHTsYO3Ysurq61KhRg169ehWI2DcyMmLdunX06dOHsWPHKtpB5s6dqzDmK1GiBKmpqYwdO5aGDRuyb98+TExMPprhl0qlaGtr069fP0qUKKH4/u3bt7l//z4ACxYsoEaNGuzatYtLly4RHR2tKDV/8eIFwcHBSCQShYi/fv06kNl+cObMGSwsLAgMDOTx48ckJiZ+1DdDJpPh6upKXFwcTZo0oUaNGoSGhubZZyMndHR0SE5Opk6dOgwdOpTZs2cTGRmpcD1//Pix0vb6HIIgMGHCBLZv386uXbvo3r17tsdDEiNZcG8vD6NfqTSO+++fM+jyYn6q4UK38s00OstvZ2fHwYMHC40Bl46ODg0bNmTr1q00btyYU6dOZXuNFTUCAwNJT08XzflyQCKRYGBgwK1bt1i7di1//vknvXv3Zvbs2SxYsIBly5Zhb29P7969FSK/MPy9q5tixYphbGwsin0RkRwQxb5IkeJF/FsOv7zKUetXVBz5Da+T/h2J9qkSWDkC//Wci0qNY1fQBXYGXaBF6Rr0rNSCBma2OX74vnnzhg4dOhAZGcmlS5eoX7++0n4uTcbayIIfqjsDzqTLM3gR/5Z/Th9k36nDTJwyGUEKulIdDLR1qWJshX1xa0rpF/+im5mkpCQMDAwKpCT25MmTREREMG3aNAwNDVmyZAna2tqYm5tz/fp1du3aRZ06dQrkpqxmzZpcvXpVkV2fPn06S5cuBWDIkCE4OzvTvn17Bg4cyMmTJxk0aBBHjhz5pPeEjo4OdevWzdarXqlSJRISEgCIi4ujQoUK1KhRg8uXLwPQvHlzAJ48eUJUVBQmJibUqVMHQHGNjY0NixYtwtnZmVmzZrFw4UJu377N8+fPqVy5crYYtLS0OH78OPv27UMul1OsWDEsLS3R0tJCEATevHmTzUH/S8laIzY2lpIlS2JpaUlAQACenp5AwRwcAcyaNYs1a9awadMmRVtIFvfePWPqjc2kyzNUHofs/ysGlvm78iD6JdNrf5vNBFOTsLOzIz4+nvDw8EKRHT958iSenp7I5XK2bt1apIU+ZJbwg+jE/zHu3LmDiYkJNjY2LFiwgLdv37Jnzx6OHDlCpUqVmDJlCnPnzuXhw4ccOXKEcePGUbNmTcV7qkjusLS0JCwsTN1hiIhoNEWziUzkqyNVls7Gxyf47spSjr+6jkRHCvkQYXIy+2SvRTxios9GZt36h/ep8Z+8PigoCAcHBxISErh69epXI/T/Fx2pNnam5SgZLCPm2EN+rt2TCTV78kN1Z4bZdeQbq9qUNijxxQI5MTGxwPr1s8rSu3fvjpubG48fP2bjxo0sWrQIyBSPyhD6GRkZyOU5l2tnGRCNHj2apUuXIpFIGDVqFD/99BM9e/bExMQEBwcHAB4+fMibN28+u97/mtI5ODgwYMAAAJYsWYKjoyN///03sbGxSKVSGjRoAGSK/fj4eCwtLRUO8lnCuVOnTjRq1AjI/P0AmJiYEBcX99EYdu/eTVxcHFeuXGHevHnExMQo3P/LlStHuXLl6NWrF0uWLOHKlSuKyo68YGVlRaVKlbh16xYSiYSyZcsSGRlJu3btABg6dGie18wrCxcuZOHChSxfvvwDR+0bkQFM9NlImixdKWX7eeFsyC3m3dlJhlxWoPvmlixH/sJg0nfgwAG6d+9Ohw4d0NHRwcPDQ90hqRw/Pz/Kli0rmqP9D4MHD6Zhw4YcOnSIqKgo9PT0mD17Nk2aNFGIfjc3N7S1tVm8eDElSpSgc+fOotD/ArLG74mIiHwaUeyLFHoeRb9iqOdS9j67hICQmalXElk3394Rjxh4aSEeoXcVo3CyuHfvHi1atMDAwICrV68q5kN/zYSHh+d6JFxeSEpKKrB+/awxc4MHD2bixIm0bNmSnj178ujRI+Bf9/r8snjxYo4ePfrB39X/knWwkDXWa8SIEYwdO5YGDRogkUjYuXMns2bNAjIrAb6kxWD9+vX4+/uzZ88edu3axfTp05HJZBgaGlKlShXi4uIICgpCEATs7e0pV64cgiBw9+5dIFOcmZubAyh6rU1MTChTpky2ff77sxYrVoxvvvmGgQMH8v79ezZu3MibN29wc3Nj0KBBvH//nvnz59O6dWtFNcGoUaPYunUr0dHRufq9denShdDQUI4fP46ZmRk6OjqYm5vTt29flffrr1mzhpkzZ/Lbb799MGHA7/1zfrm5FZkgV+r7Vm4RAK+3D/jz/j7kBXzQkBuqVKmCRCLReJO+zZs3079/f/r378/Ro0dp06YN7u7u6g5L5fj7+1O7dm11h6ER/Pd9KDg4GMickuLh4UFKSgr29vZMmTIFyDyM3bp1Kzdv3sTGxoYHDx6wd+9etcRd2LGyshLFvohIDohl/CKFmr3PLrLx8UkkElQ6/10uyEnMSOHXO7u4WuYBM+v2R0eqjZeXF127dsXOzo7Tp08rhM7XTkREhErmRhdkZr9r165s2bKFZ8+eYWFhwbx589DR0WH79u0YGxsrxXgxNDSUhQsXMm7cOHr27Jmr5/Tp0wd7e3skEomifHbTpk1MnDgRQRCoVasW/fr1Q0dHJ4eVPk6NGjWoUaMGAE5OTvTq1YuwsDB0dHR48eIFL168QCaTKQ4Tbt26hUwmo3z58lSqVAltbW2io6N58uQJWlpaVK5c+YODn4yMDFxdXQkICKB58+Y0bdoUNzc3tLS06NatGyVKlKBHjx706NEDyOzvf/ToEb6+vvj6+uLj48PWrVsJDg5m5syZOZpYZZkpWltb0759e8qVK0ezZs1UPiXjn3/+Yfz48UyZMkUxySCLyOQYpvpuRiaXqfS9KycEBM6/uYN1MQuG2XVUWxwfQ19fn/Lly2t0Zn/ZsmVMnTqVH3/8kb/++gupVIqLiws///yzYsRlUcXPz49+/fqpOwyN4L9VXqdOnaJmzZo8efKELVu2YGlpSatWrejVqxe2trYEBQVx+vRpGjZsSIMGDQrE+6WoYmlpyYMHD9QdhoiIRiOKfZFCiSAIbHpykj3PLv7/1wWw5///v0foPWLTEvkmqgz9+3xLs2bNcHd3V5p7eFGgKGT2HRwc8PPzw9/fn+LFi9O4cWOmT5/Oy5cvGTt2LCYmJvneY/bs2ejr6ytG7OWW/2bTli9fzty5c0lJSaF69eoMHz5cqdlqa2trrK2tEQQBOzs7bt68ye3btxUjLb29vYHMCQlZ1RB3794lOjoac3NzqlWrBpDNZE1HR4egoCDWrl3Lb7/9hlQqxcDAACsrK06dOoWDgwMVKlRQXK+lpUWtWrWoVauWwvk7Pj6eN2/e5MqtumrVqkybNk2xzn+9DFRl/nbw4EFGjBjBmDFjWLJkSbY9BEFgkd8BUuXpasnof4ztgedoaVkTG5P8+yQoE00dvycIAnPmzOGPP/5g9uzZzJ8/X/Fv3K1bN8aNG8epU6cUrTFFjdjYWF6/fi1m9smcIPL27VsMDAyoV68e9evXZ//+/TRt2hQPDw/KlCmDRCLh4cOHRERE0LhxY+rXr89vv/2m7tALPWIZv4hIzohiX6RQsiXgtELoFzQCAreiAjl/5zwdnDpyYO9+9PX11RKLphIREUGVKlWUvm5Bin3ILBHMyrpkZGTg4uKCmZkZXbt2zffad+7cYfv27axZs+aLs3937txh6tSpANSrV49Ro0YxevRoQPkiNmstPT09hVmfXC5nwoQJODo6Eh0drZgV7enpiSAIpKSkYGNj89H15s6dy5w5cwgMDOTUqVNMmjQJY2NjRbbdysoKBwcHmjdvjoODA/Xq1ctWrWBsbEzVqlVzHX+WwP9f00JVCP0TJ04wcOBABgwYwLp16z7Y41TITW5EBih93/wgkUj4/e4etracrFGGfba2tgpPCE1BLpczfvx41q1bx9KlSxXl2VmUK1eOBg0a4O7uXmTFvmjOBzExMQwaNIhTp04pvlesWDEOHTpEp06dWL9+PT/88AO7d+/m2LFjxMbG4uLiwqpVq6hQoYIaIy86WFlZ8f79e1JTUz/woREREclEFPsihQ63l1fZ+fSCWmMQgOL1KlC/Sz1R6H+EiIgIlWT2C7KM/3/R1tamefPmCqGbHwRBYNKkSVStWlUhzr+E+vXrs3jxYjZs2MC4ceMYPny4Yv2CmBKQNRUhy6gvi0mTJlGnTh1ev36tMJ36WDwSiQR7e3suXbqElpYWDx48QBAErl+/zrVr1/D29mbmzJmkpKRgYGBAo0aNcHBwwMHBgWbNmmmkMdjFixfp3bs3zs7O/PPPPx9MjohMjuGvB25qiu7TyAQ5L+LfsuvpBY0q57ezs2Pr1q0fHSOpDjIyMhg+fDi7d+/m77//ZuTIkR+9zsXFhaVLlxZZEeLv74+2tnaeDtyKEi9evKB3797cvXuXBg0aYGFhQUBAAC9evGDKlClUqlSJMWPG8Pz5c1xdXQkODqZOnTrMnz9fFPpKJGtKR3h4OOXLl1dzNCIimon6PzlFRPLAq4Rw1jzUEOMjCVwIu8vF0HvqjkSjkMvlKuvZL+jMvqpwd3fnypUrLF++HG3t/J25Tp06FXd39wIX+p/DxMSEHj168PPPP1OuXLkcr3d1daVt27aYmZlhbm6Os7MzCxcuxNPTk9jYWHx8fFiwYAEWFhb8888/dO3aFTMzM6pXr86VK1dyNc3gvwiCgEwm+8DcLzQ0lDNnzrBlyxauXbtGcnJynta9fv063bp1o02bNuzbt++j/7b7n18htQBG7H0JArD7qQeJ6SnqDkWBnZ0dqampCtMzdZKSkkKfPn3Yt28f+/bt+6TQh0yxHx8fz6VLlwowwoLDz8+PqlWr5qqNpiji4eHB/fv3ad26NTdv3sTd3Z2FCxdSunRpHj16xKpVq4BMA1YPDw/Onj3LrVu3vupKCFWQJfbFUn4RkU8jin2RQoNMkPPHvX1qNbP6XyTAUr9DRH9mLN/XRkxMDBkZGUUisy8IAhkZyhVmaWlpTJ06lY4dO+Lk5KSUNbNuIP9X6Kenp3/RuLqCJDIykkuXLtG7d++PPq6rq0uTJk2YNGkSrq6uhIaG8uzZM3bt2kWrVq2YP38+Dx48QCaTKf6t5HI5crn8AzEfHx/Pw4cPkUgkaGlpIZFIEASBN2/e4OrqyvLly1mwYAE//fQTDg4OmJiY0LBhQ8aNG8fOnTsJCAj45MHC3bt3cXJyokGDBhw+fPij2dwUWRonXvtopPN9FunyDM6+uaXuMBRoyvi9hIQEunbtypkzZ3B3d8/RF6NWrVpUrFixyLryf41O/DKZjPfv3wOZB3tyuRwDAwPkcjk6Ojq0bt2ajh0zq2ICAgKIiYlBIpFQqVIl2rZt+0ELkUj+yWqzE8W+iMinEcv4RQoNB59f4XHMa3WHkQ0BSJKlsszflQUNhqo9o6oJhIeHAxSJzP7ChQvp2rWrUm9q165dy4sXLzh69KjS1szif03goqKiaNy4MevWraNbt25K308ZZP0eunfvnqvrJRIJlStXpnLlyor+/tjYWIKCgkhLS0Mmk/H06VOCgoIIDg7m5cuX6Ojo8P3333Pt2jW2b9+u+BvNWq9s2bL07t1bceCQnp6Ov7+/wv3/4sWLrF+/HkBh1tikSRPFf5GRkXTo0AE7OzuOHz/+yb9Rj9B7JMlSv/A3VXC4vvCiRwUHjXg/q1ixItra2gQGBirGThY079+/p0uXLjx8+JCzZ8/yzTff5PgciURC9+7dOXjwIOvWrdOIFgRlIQgC/v7+SvEuKSz4+/szb948YmJi2Ldvn+LQLyIigosXL+Lo6EipUqUwMjICMitSivIkBk3B3NwcqVRKWFiYukMREdFYRLEvUiiITUtkc8BpdYfxUeSCHM+3/tx995T65rbqDkftREREABT6zP7r16+ZNWsWlSpVUprYj4qKYv78+YwaNUox3k5VSCQSLCwsaNKkCX369OHkyZNqE0ufw9XVlVatWuXr78XU1FQxHQAys6r+/v54e3vj6+vL3bt3OX78uOLxAQMG0KpVKxwcHKhevfoHQkxHR4f69etTv359xo4dC2RWrNy8eVNxALBx40Z+//13INP0z8jIiO7du/Po0SPq1av30cz+4RdeSJBoVHXS/yIAwYmR3Hv3jHrmHzdXLEi0tbWpXLmy2jL7b9++pUOHDoSGhnLx4kUaNmyY6+dmmbHdvn2bRo0aqTDKguX169fExcV9NZn9LVu28MMPP5CRkUHZsmWJj49n5MiR7Nixg9u3b7N48WKeP3+Onp4eO3fuRCKR0KpVK3WH/VWgpaVFqVKlxMy+iMhnKDpHzSJFmlPBN8iQy9QdxifRkkg5/PKqusPQCLKypoV99N6RI0fQ1dWlS5cuSlvz119/RRCEAhu5pK2tzd69e2nbti0uLi6KMXmawrt37/Dw8PhkCf+Xoq2tTb169fjxxx+5fv06lStXxtHRkXnz5gFw//59xo0bR61atShZsiROTk4sWLCAS5cufbLtoXjx4rRv357Zs2dz/PhxwsPD8fb2xsLCAmNjY2xsbJg/fz7NmjXD2NiYxo0b89NPP7F7926CgoKISo4lKO6NRgv9LLQkUq5FPFJ3GArUNX7v1atXtGzZknfv3uHp6ZknoQ/QokULSpYsWeRK+f38/ICvw4l/9erVjBo1Ch0dHbZv305wcDCpqalYWVkpRqZ6eHgwZswYhg0bRkJCAosWLaJ///45ri0IAnK5XCNHSxYmrKysRLEvIvIZRLEvovHIBTmHX3hp9E2yTJBz9e0DIpNj1B2K2omIiEBXVzdbplVZFGRm383NDUdHR0xMTJSy3qNHj9i4cSOzZ89WzKMvCHR1dTl8+DANGzakc+fO3Llzp8D2zoljx44hl8vp2bOnyvbQ09Nj4cKFXLhwQeEcvnTpUmJjY7l48SJTpkxBIpGwbNky2rZti6mpKQ0bNmT8+PEcOHCAkJCQj64bGRnJ8OHDMTAw4P79+9y6dYu4uDhu3rzJypUrqVq1KmfPnmXw4MHY2dnRoEvLPMce4xfM1W4rueq8kuBDNxTfF2Ry7k/Zx1XnldwcvoWMpH9bAzKS0rg1chtXnTOfF3b6fp73lQlyjWqZUofYf/LkCS1atEAul3P16lWqV6+e5zW0tbXp0qVLkRP7/v7+mJqa5sp8szCTlJTEqVOn0NbWxs3NjZ49ezJ69Gi6deuGjY0NiYmJfPfdd7i4uNCoUSOcnJy4dOmSYhxqTqSmptKmTRuVHIx/TVhaWopl/CIin0Es4xfReG5GBhCeEqPuMHLF8dc+DLfvpO4w1Ep4eDilSpVSSb9vQWX2w8PD8fLyYsuWLUpbc8qUKVSoUIHx48crbc3cYmhoyPHjx3F0dKRDhw54enp+kXhRNq6urrRs2VLhqKwq+vTpw4oVK1iyZAna2tq8fPmSzp0706ZNG9q0aQNkmvo9evRIMfLv1KlTrFmzBgBra2vFyL/mzZtjbW1Nhw4diI2NxcvLSzHySVdXl4YNGypM/SCz3/vGjRvse+3JCyEFIQ8vi+K1rSnjXI/QY3d5vdeHkg0rUaySBSGuN4kPeAsSsJ3YEW3Df1sGnm+6SMrb2Hz/zgJiQ5ALcqQS9ecEbG1tefHiBenp6ejo6Kh8v7t379KxY0dKlSrF+fPnFSZgX4KLiwu7du3i+fPnVK5cWYlRqg8/Pz9q166tEZ4OqsTQ0JCUlBQyMjKYOHEir169IiMjg1q1ahEaGsrOnTtZu3YtvXv3JiUlBX19/TxNJ5g3bx6RkZFib38+sbS05NEjzalEEhHRNNT/KS4ikgNn39xGSwNuOHNCjsCpkJvqDkPtqGrsnlwuJzk5uUDEvru7OxKJRGmmdmfPnuX06dMsWbJEbTO3TUxMOHPmDGXKlMHR0ZFnz56pJY4sYmJiOH/+vNJL+D+GRCJh+fLl3L17l5IlS/Ly5csPrpFKpdSsWZNRo0axY8cOnj59ytu3b3Fzc+Pbb7/l1atXTJ48mQYNGihuLl1cXHj27BmxsZ8W1yVLlqRTp05Y1q0MXyCOKn7XAgPrkggZMgJWnCE+8C2v9/sAUKZbfYrXslZcG+kVQMTFx5i3sMvzPv9LiiyNkMSofK+jDOzs7JDJZLx48ULle129epXWrVtTsWJFrly5ki+hD9CxY0f09PSKVHbf39//qyjhh0yTVmtra+Lj4+nUqROnT5/mxo0b1KhRg5iYGAwMDNDV1cXExCTPYwjPnz9PkyZNVBT514NYxi8i8nnEzL6IxvPg/UtknxhVFeMXzIPZriBAhSEOWPdpDGSWufpNP0B8wFv0LIypt3YwkVcCiLz0mITnEchTM0d01V//HYbWJbOtGfvwDcEHfEl8HoEsOR3DiuZYf9sYs8ZVcow1PDmauLRETHQLbjycphEREaGSssSsmecFUcbv5uZGq1atMDc3z/daGRkZTJ48mW+++Ual5eq5oWTJkpw/f56WLVvSrl07rl69qrZS3GPHjpGenl5gvxMHBwd69erFiRMnePr0aa6eU7p0aXr06EGPHj0AiI6Opl27djx69IgmTZpw+PBhNm3ahEQioWbNmorMv4ODA5UqVcqW+XwWH/ZFrUhSXW3sJ3Xi/pT9JL2Mwn/GQYQMOYbWJak4xEFxXWpkPE/XeWBkU4oKg5sTdTX/Ze+vEiIob6T+EuP/jt+zs8v/QcanOHv2LD169KBJkyYcO3YMY2PjfK9pZGREu3btcHd3Z+LEiUqIUr2kpqYSEBCglgolddCsWTNu3LiBvr4+pqamvH37lu+++447d+5Qv379Lz70SExMxM/Pj9GjRys54q+PrDL+/x09KyIikonmp0tFvmoS01MIS37/ycezylwBXu/1IfFFJMBHy1yjb78k4XkEOqafzgzH3H+N/8xDxNx9BVIJehbGJAS+5fGCY0Rdz51ACIx9k4efsOgRHh6usrF7gMoz+9HR0Xh4eChNhG7ZsoVHjx6xYsUKjbgRKV26NB4eHgA4OjoqpicUNK6urjRv3pyyZcsW2J6LFi0iLS2NGzdu5Hzx/5CWlsagQYN48uQJFy5c4MqVK0RERBAQEMDWrVtp0qQJV65cYciQIVSpUoUyZcrQq1cvVqxYgY+PDykZXz5yz8imNNbfZh5kytNkIJVgN6kTUt3M83pBLhCw4gyCTI79lM5ItJTz0Z4qS1PKOvmlbNmyGBgYqLRv39XVFWdnZxwdHTl16pRShH4WLi4ueHl58e7dO6WtqS4eP36MTCb7ajL7kGk2m5GRwbhx46hWrRp79uzBwcEBd3d3bGy+bGLF7du3kclkNG3aVMnRfn1YWlqSlpZGTEyMukMREdFIRLEvotEExn3cHOu/5LbMtcrYtjQ7MI7y/T/94fr2tB/IBXTNjGi09XsabByKRauqIMDL7V45xiJFwpPY4Fz+dEUTVWX2s1zSVZ3ZP3HiBBkZGYpsbn6IjY1l7ty5DBkyhAYNGighOuVgbW3NhQsXiI2NpUOHDkRHRxfo/nFxcZw9e7ZASvj/i42NDU2bNiU0NJTIyMhcPy8jI4NBgwZx4cIF3N3dadGiBZDZHmBnZ8ewYcPYvHkzjx49IioqihMnTjBs2DDevXvH7NmzadasGe9i8/c7Tg6N+fcLuUBKRJziy9Bjd4l7EELlka0xKFsiX/v8lzR5htLWyg9SqRQbGxuVif1t27bx7bff0qdPHw4fPoyBgYFS13d2dkYul3Py5EmlrqsO/P39AahZs6aaI1ENgvBh9Y1EIsHQ0JCXL19SrFgxfv/9d7y8vPJ1UOnr60uxYsVUPoL1ayCr1UYs5RcR+Tii2BfRaIJi3yDh89nQrDJXiZb0s2WuemZGOWa8FB/0EsX/KP4vJTQm2w32J2OOEzP7hTmz7+bmRtOmTZWScf7jjz9ITEzkzz//VEJkysXGxoYLFy4QEhKCk5MT8fHxBbb3iRMnSEtLo1evXgW2ZxaDBw9GEARmz56dq+vlcjkjR47Ezc2NgwcP0r59+89eb2ZmRpcuXfjzzz+5fPkyMTEx+Pr6Yqj35QIyyjuIyMtPANArlTkd4uk6D9KiMw/Asiqanm++zLU+a7kzbqfiuc83X+H+1P1ftK+OVOuLY1Y2dnZ2BAUFKX3dVatW8f333zNq1Ch27dqlEgNAKysrmjRpUiT69v38/KhYsaLSppRoCoIgsGLFCubPn/9RwW9gYMCePXu4ePEis2bNyvd+Pj4+NGzYEG1tsZs2v2QZvIqO/CIiH0cU+yIaTUJ6Mlq5KH3Oqcw1t2QZW6VFJXBrxFZuj92huMkGSHuf8NnnyxGIT0vK055FiaSkJBISEgptZj8xMZEzZ84opYT/+fPn/PXXX0yfPp0yZcooITrlU6NGDc6ePcvjx4/p1q2bwhdB1Rw6dIgmTZooXOwLktq1awOwdetWAgICPnutIAiMHz+eHTt2sGvXLlxcXPK8n66uLo0bN6Z4sS8TR2nRiTxdn9l2UaJhJeos/RZtY30y4pJ5uvZCtmvlKemZ/6X+m5EX0mXZvs4LelLVO9/nFmWP3xMEgd9++42JEycyffp01q9fj1SqulsiFxcXzp49S0pKisr2KAj8/f0Vr6GiQmxsLL169WLy5MkkJCR8VOwDFC9eXGmeET4+PmIJv5LIEvtiZl9E5OOIYl9Eo8ksI81dn/Pnylxzi0VLe2wndMCwojkZianI0zMw/8Ze8XhuemFTNKTPVR1k9X+rQuwXRGb/9OnTpKSkKEXsT5s2DQsLCyZPnqyEyFRHgwYNOHnyJL6+vvTu3Zu0NNX+/cbHx3P69OkCL+HPomLFikBmBn769OmfvXbmzJmsW7eOTZs20b9//3ztW8GoVC7fybITtOY8GXHJaBvrY/uTI7oljbD5oR0A72885+25B9hN7EiL4xMV/zXcMlzx/Co/tKXe6kFfFHO5YhZf9DxVYGtrS3BwsFIOpORyOZMmTeLXX39l4cKFLFq0SOV+Gi4uLiQmJir8Mgorfn5+Rapf/969ezRo0ICLFy9y5MgRli5dqtJDH4CQkBBCQ0NFsa8kjIyMMDIyEsW+iMgnEMW+iEaT2xuwnMpc80LpdjWov2YwzV1/otGW7ylW8f8d2aUSDMrk3A+rCXOp1UWW2FdFGX9BZPbd3NyoU6cOVarkPHnhc3h6enL48GEWLlxYINMD8kuLFi1wd3fnwoULDBo0iIwM1fVqnzp1itTUVLWU8ENmSbWOjg5OTk64u7vj6en50ev+/PNPFi1axMqVKxk5cmS+961avHye3xvenvUn+mbmuLkqY9uiW9IIyKxAsmhdFYAXW66QEv7p0X9fio5UWyOc+LPIyqjmdpLCp8jIyGDEiBH89ddfrF+/nl9++UUZ4eVItWrVsLGxKdSl/FFRUYSFhRWJzL4gCGzevJmmTZtiYmLC7du36d69e4Hs7eOT6Skkjt1THlmO/CIiIh/y9aoSkUKBrlQ7x3FVeSlzzQlZagbxAf9+YCS+iuLN0TuZa9eviHaxnGek62vlbdZuUSI8PBwonJn91NRUTpw4ke+sflbWsGHDhgwcOFBJ0ame9u3bc/DgQdzc3Bg5ciRy+cfHXeYXV1dXGjRoQKVKlVSyfk5IpVIqVKiAmZkZjRo1YsqUKR/8rH/99RezZs1i/vz5TJgwQSn72puW++QI0U9h2bGWIltv0dI+22P2k51ocXwizQ6OQ7+0abbH9EubKp5n5VTni+K1MSmDtgb17P93/N6XkpqaSr9+/di5cye7du1i7NixygovRyQSCS4uLhw7dkxlry1Vk2XOV9gz+4mJiQwdOpRRo0bx3Xffce3atXwf8OYFHx8fypcvrzCWE8k/VlZWYmZfROQTiM4gIhqNmZ5JjjfInypzfbL4pKLM1bJDTV5s9+LdtSBkyemK5z6c54ZEW0qZrvUo060e8pR07k/Zj27JYmgV0yMlNAZBJkfbxIDKI1vnGK+WRIqZftEyLsoLWZl9Cwvll/+qOrPv4eFBfHx8vsX+7t27uX37Nl5eXiovB1U2Li4u7Ny5k0GDBmFkZMTq1auVWt6cmJjIqVOnmDt3rtLW/BIqVqzIq1evWLZsGa1ateLAgQOKMv1t27YxYcIEpk6dmmsTv9xQtbi10tZSNVoSKdWLF7yfwuewsLDA1NT0i/v2ExMT6dmzJ1euXOHIkSM4OzsrOcKccXFxYfny5fj6+tKsWbMC3z+/+Pv7o6enpzh4KYw8efKE3r178+LFC3bt2sWgQV/W4pIffH19xRJ+JWNpaSmKfRGRT1C47kRFvjrsTct99vG8lLmmRyeREhZLesy/BnqpkfGZ30vINE2S6mlTon5FBLlASlgM2sb6lGpbjbor+mNQpniO8coFeY4xF2XCw8MxMzNTicNwUlIS2traKnHLBjh8+DB2dnb5GoWUmJjIjBkz6NOnj2I8W2FjwIABbNy4kbVr1yrFdfq/nDlzhqSkJLWV8GdRsWJFXr58yTfffEP37t2ZMWMGKSkpHDhwgBEjRjB27FgWL16s1IOOUvrFKWto9kV9+wWNTJDTyMI+5wsLkKwxh18i9mNiYujYsSPe3t6cOnVKLUIfoHnz5pibmxfaUn4/Pz+qV69eaB3k9+/fT6NGjZDJZNy4cUMtQj89PZ1bt26JJfxKRizjFxH5NIXzHVvkq6GSsRVaEukns/uWHWth2fHjJYX2k52wn+yk+NpuYkfsJnb87H5a+jrU+O3L56sL5HxAUZSJiIhQSb8+ZIp9VZXwZ2Rk4O7uzsiRI/Ml8JYuXUpUVBSLFy9WYnQFz6hRo0hISGDy5MkYGxszY8YMpax76NAh6tati42NjVLW+1IqVarEkSNHAFi0aBE1atRg7Nix7N69m8GDB7N27VqlG7a9f/+eki8yeFNKABWbweUXc31Tmpaqpu4wPsDW1jbPZfwRERF07NiRV69e4eHhoVaRpaWlhbOzM+7u7ixatEhtcXwphdWJPzU1lcmTJ7Nu3Tr69+/P33//jZGRkVpi8fPzIyUlRczsKxmxjF9E5NOImX0RjUZXS5uKRpbqDiPXSJFgY6KZY9YKgoiICJX060Nm1lxVJfxeXl68e/cuXyX8ISEhLFmyhIkTJ6qtH12ZZLmVz5w5kzVr1uR7veTkZE6cOKE2F/7/UrFiRd69e0d8fDz29vZ06dKF7du306lTJ7Zu3aq09gtBELhx4wZDhw6lXLlybJ+yDImmt2sL0Nq4GlINrEHIa2Y/ODiYli1b8vbtWzw9PTUim+ri4sKTJ0+UOkawIJDL5Tx48KDQ9eu/fPmSli1bsnnzZtavX8+ePXvUJvQhs19fR0eHevXqqS2GooilpSXv3r1T+TQZEZHCiCj2RTSeemZV0CoEDvcSoIpJGfS+coO+wpjZP3z4MNbW1jRs2PCL15g5cybGxsbMnDlTiZGpl7lz5zJ58mTGjx/PP//8k6+1zp49S2JiosaIfcgUAteuXePChQtoaWlRoUIFpZQoJyYmsmXLFho2bEiTJk24cuUKv/76K68Cn9OlYlONfj+Ty2RM7TgUKysrevbsybJly7h+/TqpqanqDg1bW1siIiKIjc15+kBQUBAtWrQgLS2Nq1evUrNmzQKIMGfat2+PgYFBoSvlf/78OUlJSYVK7J84cYL69esTGRmJt7c3Y8eOVfmIxZzw9fWlTp06GBgYqDWOooalZWZSKMskWERE5F80945DROT/6VK+cZ5drNWBAHSv0FzdYaiVwpjZl8vlHDlyhJ49e37xjeDNmzfZtWsXv//+OyYmRcegUSKRsHTpUkaPHs2IESM4dOjQF6/l6upKzZo1sbdXfy94ltj38PCgc+fONGrUiLlz57Jp06Z8ub0/efKEn3/+mbJlyzJq1CisrKw4efIkT58+Zfr06VhYWNC/ShskGpg1h8zKJOdyTTi615URI0YQHR3N3Llzad68OaamprRo0YLp06dz7NgxIiMjCzy+rPF7Of0b+fn50bJlSwwNDfHy8ipQp/WcMDQ0pH379oVO7Pv5+QEUijL+jIwMZsyYgbOzMy1atODOnTv5OshVJj4+PmIJvwrImmwglvKLiHyIKPZFNB4bk7JUL15BI8tK/4u+li6OZeurOwy1Eh4erjKxr6rM/o0bNwgNDf3iEn5BEJg4cSI1a9Zk+PDhSo5O/UgkEtavX0///v0ZMGAAJ0+ezPMaqampHDt2jD59+qggwrxjaWmJjo4Os2fPxt7enuPHjzN16lSsrKzy7E+Qnp6Oq6srbdu2pVq1auzbt4+xY8fy/PlzTpw4QefOndHS+neEXXmjUoywd/rMiupBigRzfVPG1+1F586dWbBgAZcuXSI2NpabN2+yePFiypQpw+7du3FxcaFUqVLY29szbNgwtmzZwuPHj1U+Ui7LBf5zJfDXr1+nVatWlC1bFk9PT8qV0zwPFRcXF65du6aYXlIY8Pf3x9zcXGWVW8oiLCwMR0dHli5dyuLFizl69CglSpRQd1gAvHv3jqCgIFHsq4CszL4o9kVEPkQ06BMpFPSu1IL5d/eoO4xPoiWR0sW6MYbaeuoORW3IZDKioqJUdjOoqsy+m5sbpUqVwsHB4Yuef/jwYby9vTl37lyhdanOCalUyvbt20lMTKRXr16cPn2aNm3a5Pr558+fJz4+XiNK+AFevHiBXC7HwMCA06dPY2xsDMCff/7J4MGD8fb2zvHvISQkhM2bN7N582bCwsJo0aIFe/bsoVevXujpff59oF+V1lwKu8/TuDcaU7UkR2B23QEfvIfp6OjQsGFDGjZsyM8//4wgCLx+/Rpvb2+uXbuGt7c3O3fuRC6XU7JkSZo1a4aDgwPNmzenUaNGSj2gMzU1pVSpUp/M7F+4cAEXFxcaNGjA8ePHMTU1VdreyqRr165AZpl5YTkg9PPzo3bt2movg/8cly9fpl+/fkilUi5evMg333yj7pCycePGDQCN8I4oalhYWCCVSkVH/i8gQybwKiydwNdpBAanEZcgJzVdQALo6kgwNZJia62LXXldKljpoK2lue8BIh+naN6ZihQ5WlnWoaTeMaJTExAQ1B3OBwiCQM+KhXPUmrKIiopCEIRCldkXBIHDhw/TvXv3bNnX3JKSksK0adPo0qUL7du3V2psmoa2tjb79++nW7duODs7c+HChVxnqA4dOkS1atWoXr26iqPMmZCQENq1a4eenh6NGjWiZMmSiscGDBjAypUrmTx5MtevX/9A2Mjlcjw8PFi/fj3Hjx/HwMCAwYMHM3bs2Dz1MmtJpMyuO4BhnsuQgNrf0SRI6F6hOfXMc56SIJFIqFChAhUqVGDAgAEAxMfH4+vrqzgAWLhwIfHx8Whra1O/fn2aN2+uOAAoUyZ/BqafMuk7evQo3377Le3atcPV1VVl/h7KoFSpUjRv3hx3d/dCI/b9/f3p3LmzusP4KHK5nEWLFjFnzhxat27N3r17NbICwcfHBzMzM41qKykqaGlpUapUKTGzn0uSU+VcvJXEKe8EgoLTyJBlfl9LC+RyEP7/Q0kiAakUZP//uLYW2Frr0sXBiLaNDNHXFQvECwPiv5JIoUBXS5tfan+rkUJfAgyxbU95I9WI3MJCVklqYcrs+/n58fz58y8u4V+9ejXBwcEsW7ZMqXFpKnp6ehw5coR69erh5OTEvXv3cnxOWloa7u7uGpHVj4iIwNHREYDu3bt/cGMolUpZtmwZvr6+2fwJ3r9/z4oVK7C3t6dDhw48e/aMNWvWEBoayvr167/ItKyicWl+rT8Y1NyeJEVCPbMq/Fjd5YvXMDY2xtHRkXnz5nH27Fmio6O5d+8eq1evxtbWlqNHj9KnTx/Kli1LpUqVGDRoEOvXr+f+/fvIsu4ic8nHxu/t2rWL3r170717d44eParRQj8LFxcXzp8/T1JSkrpDyZGkpCSePn2qkf367969w9nZmVmzZjFz5kzOnTunkUIf/u3X1+TqiMKMpaWlKPZz4HV4OmsPRdP7lzcs3/OeJ6/+FfqQKeqF/9xmC8K/Qh8gQwZPXqWxbM97ek1/wzrXaILD0wvuBxD5IsTMvkihoVnp6nQq15BzIbeRa4jol0qkVChWiiG2juoORe1kueAWpsy+m5sbpqameSpJzyIiIoIFCxYwduxYqlatqtS4NBlDQ0NOnDhBu3bt6NChA56enp/9+T08PIiNjVW72H///j3t27cnLi4OLy8vDh48yOnTpz+4rk2bNnTt2pVffvmFMmXKsHXrVvbv349MJqNPnz5s27aNSvWqEhj3ht0hl3mdEElyRipp8gx0pdoYaOthXcwC++LlqGpqTRlDs0/e3Leyqs2MOv348/4+tWT4pUioWrw8Cxt9j66W8m4HtLS0qFOnDnXq1GHs2LEAhIaGcu3aNUXp/4EDB8jIyMDY2JimTZvi4OCAg4MDTZo0UbRVfAw7Ozvc3NwQBAGJRMLatWv56aefGDFiBBs3bvyiCh114OLiwrRp0zh//jwuLl9+0FIQPHz4EEEQNM6J/8aNG/Tp04eEhAROnTqFk5PmeWFkIZfLuXHjBpMnT1Z3KEUWS0tLsYz/E6SlC2w/GcuB83FIJJnZe8gu7HNL1nOSUwWOXI7H7VI8/TuYMKSzKbo64kGWJiKKfZFCxfgaPfCNCCA2LUEzBL8gMKfeQHSk4ktJ1Zl9VYl9Z2dndHXzPi5x7ty5aGtrM2/ePKXGVBgwNTXl7NmztGrVCkdHR7y8vKhUqdJHr3V1dcXW1latQiE+Ph4nJyfevHmDp6cnVapUoWLFikRHRxMbG5uttzspKYnGjRtz4sQJWrZsScWKFZk7by7N+3TgUuwjfg8/RfLlI0BmOf7Heu7/+30DLT2ala5GzwotqF2y0gfC38m6EXpaOsy/uxtBEArsfU2ChHrmNixsOByDAvAaKVOmDL1791Yc+iQlJXHr1i28vb3x9vbmr7/+4tdff0UqlVK7dm1F6b+DgwPly5dX/N5sbW2JjY0lMjKSzZs3M3v2bCZPnszSpUsLVcbUzs6OqlWr4u7urvFi39/fH4lEQo0aNdQdCpDZfrVu3TomTZpE/fr1OXjwIOXLl1d3WJ8lMDCQmJgYsV9fhVhZWfH48WN1h6FxPH6ZysLt73gTmYEgfJnA/xRZhwb7zsXheTeJmUPNqFrx6/Wu0lREhSKikWRlbQBiYmJISUnB0tISYx0D5jcYwkSfjQiCTO1y/6caLtiallVzFJpBREQEhoaGKjHRA+WX8QcGBvLgwQN+//33PD/X39+fzZs3s3z5cszMzJQWU2HCzMyM8+fP880339CuXTu8vLwoWzb7ayE9PZ2jR48yZswYtQmx5ORkunXrxpMnT7h06ZLCNyBr/N6rV6+oXbs2T548YePGjezYsYPY2FjKly9PTGIcvx/fyJmoe5x6vOcDcf8pc73/fj9ZlsqVMD8uht6jfLFS9K7Ukk7lGmYT2G3L1MVc35QFd/fwNjlape1KUqQICAyyacdQ2w5KzejnBUNDQ7755huFiZpcLicgIEDR93/hwgXWr18PZB4UZAn/rMqhCRMmsG/fPhYsWMDMmTMLldDPwsXFhW3btiGTyTS6IsHPzw8bGxuNaI+Ij49nxIgRHDx4kPHjx7N06dIvOqwtaHx8fJBIJDRu3FjdoRRZLC0tuXTpkrrD0BgEQWDv2Ti2HY9FIlGuyP9wLwiNymDc0nC+72ZK/w4mhfI9uagiin0RjUQQBB4+fMjUqVOBTFOo5s2bM3bsWGqXqMSChkOZeXMbqLGLf5htB3pX0iy3X3USHh6u0l5JZWf23dzcMDQ0pEOHDnl6niAITJ48mSpVqvDDDz8oLZ7CiJWVFRcuXKBly5Y4Ojri6emJhYWF4vFLly7x/v17tZXwp6Wl0atXL27cuMG5c+eoX//f0ZhZlQh79uxh4sSJXLx4EXNzc8aMGcOoUaN4nhHJTO8tbHpxlqx7li91zs96XnBiBCseHGbX0wvMqjuABua2imtql6zEztbTWHh1Fx5xD5BKpEp/d5MgoVwxc+bUG0jV4tZKXTu/SKVSqlWrRrVq1RgxYgQAkZGRXL9+XXEAMH36dFJTUwHYt28f7du3p169esTExGjMeLW84OLiwuLFi7l+/TotWmiuwau/vz+1a9cmOjWegNgQ3iRGkSJLRybI0JFqo6+lS0Wj0tialsVIx0ClcfTu3ZuwsDAOHjyoMaM8c4Ovry/VqlXT2AkRRYGsMv7/Jou+VgRBYP3hGA5fjP//r1W/Z1aWf4t7LLEJcsb0LP7V/ztoCqLYF9FITp06xcSJE3n27Jnie8WLF+fevXs8e/aMgQMH8mej4cy+tR25IC/wkv6R9k4MthH79P9LRESEyvr1QfmZfTc3N5ycnPJ8gHDq1CnOnz/P0aNHC0VGSdVUqFCBCxcu8M0339ChQwcuXbpE8eLFgcwS/sqVK1O3bt0CjysjI4MBAwbg4eHByZMns43SCwkJ4e+//wZgyZIlODg4KMbmybRgw+PjHH11DT1zIwSU10uftc67lDgm+Gyge/nmjK3urBh3pyfVweu3PcToJNF0Vl8C4kI+2SqQWyRIEBAw1Najb6VWDLZxVFs2P69YWFjQrVs3unXrBmRmdXv06IGHhweWlpbcv3+fLl26AFC9enWF47+DgwM2NjYaf6PZpEkTSpcujbu7u0aK/cT0FM6G3OJdqxJQqwLdzme2LEmQIP3P71Yu/PsJbGlQgholKtCidE1aWdVWWovbjh07GDt2LDY2Nty6dQs7OzulrFtQ+Pj4iCX8KsbKyorU1FRiY2MVn0FfI/8r9NXBIY/MvUXBrxkUjk98ka+OVatW8ezZM1asWMHOnTvx9/enb9++XL58mT/++IPq1avTokULVjYdw9zbOwukh19LIkVLImVCzZ44l8/dyLGvifDwcJWKfWVm9l+/fs3NmzeZMGFCnp6Xnp7OlClTaNOmjUKAiGT2H58/f55WrVrRuXNnzp07h76+PkeOHGH48OEF/mEvl8v5/vvvOXr0KG5ubjg6OirG5m3YsIFjx45hYGBA8eLF6dq1K7t27QLgVUI4k702EZkSC6jOMC/rverY6+t4RzxkeZPRVDK2xM3NjUuXLmWajX3jRFDsG46+8uZMyC3S5BloSaRkyGU5/j61JFLkgoCAgK1JWXpXaknbMnXQ0yq8h1NJSUn069cPLy8vateuja2tLYcOHeL58+eKvv9r166xZcsWBEHAwsIi28i/Bg0aoK+vr+4fIxtSqRRnZ2eOHj3KkiVLNOam+FlcKEdeXeN08A3S5BkY1SlHmta/rwYBAdknUoVvk6OJSInBI/QeJg8McanQHJcKzSht8GWVF8nJyfz0009s3bqVYcOGsXbtWo1oJ8gLiYmJ+Pn5KcwqRVSDpaUlAG/fvv2qxf6+c3FqFfpZHPKIp4SxFv06mKg7lK8eiSAURHGHiEjuiY6OxszMjLp163Lnzh0sLS2RSqW8ePGCESNGsGfPHm7cuEHDhg0BiE9PZu1Dd06F3FBksVRBrRKVmFW3P2WLmatk/cJO48aNqVOnDps3b1b62mlpaejp6bFjxw6GDBmS7/X++usvpk2bRmRkJCYmuf8gWrt2LePHj+fOnTtqyVZrOjdv3qRdu3Y0atSIqVOn4uTkxI0bN2jUqFGBxSAIAj/++CMbNmxg7969dOjQge3bt7Nx40aCgoKoWbMmP/zwA4MGDaJPnz4YGBhw5MgRAmJDmHB9A0myVOT5yKTnFalEiqGWLovqDqNbE0dq167N8ePHs12TkJ6MT8RjHscEs+XkPkpULYtM+uH7nAQoY2hG9RIVsDe1pp5ZFexMyxXQT6I64uLicHZ25tatW7i7u3P48GGuXbvG/fv3P7g2JiYGHx8fxQGAr68vSUlJ6Orq0rBhw2wHAKo8nMwtJ06cwNnZmYcPHyr8JNRFVEosS/0OcS3iUb4rSrKQIkEAupVvyg/VnTHUzv2BS1BQEH369CEgIID169czbNiwfMejDq5cuULr1q25f/++Ro4vLCoEBQVhZ2fHxYsXv2jCTlEg8HUaYxe/LZCy/dwglcCGXyyxtS68B81FATGzL6Jx+Pv7A5kGWtevXyciIoLvv/8ePT09rl27hrm5OfXq1VNcb6xjwIy6/WhTpg6L7h/gXWocUiT5zvRn5Vh0pDqMrdaVnhUdkEqk+VqzKKPKzH7WLGplZXSysr15EfrR0dHMmzeP4cOHi0L/EzRq1IgTJ07QqVMnxowZQ4UKFRSHcgWBIAj88ssvrF+/nlmzZnH27FmGDRuGTCajd+/ebNu2DQcHB0UGtWLFivj6+vIsLpTx19eRIktDXsB3SXJBTlJGKj/7biBGJ40VK1Z8cI2RjgGOZevTrLg946d3Z/ee3bTt7kRSRgqpsnS0pVroSnUoZWCaJzFVGIiKiqJTp048e/aMCxcu0KxZM/z9/dmxYwdyuRypNPt7cvHixenUqROdOnUCMts57t+/r8j879+/n2XLlgFgY2OjMP5r3rw51apV+2A9VdOuXTsMDQ1xd3dXm9gXBIEzIbdY9cCNVHnmzGxlCH34t4rl+GsfrkU8+sCr4lMcPnyYYcOGYWlpiY+PD3Xq1FFKPOrA19eXYsWKacw0g6KKlZUVkJnZ/xpJSxf4858olZvx5QkJ/Lk9ir9nWKGjrRmVS18jotgX0TiqVKlCrVq1OHnyJE+ePAGgTp06bNmyhRcvXtCrV6+POhc3LVWNQ+1m4/nWn8MvvPCPfvlF2Yms51gZmtGnUks6lmuEsQpNh4oCgiAQERGhMoO+xMREAKX07IeHh+Pl5ZXnCoTff/+dtLQ0FixYkO8YijLffPMNrq6udOnSBXt7e+RyeYE5jf/6668sWbKEcuXK8ccff1ChQgXmzp3L999//9GDqEqVKnH43HF+9tlASka62sZ5yhEQkFN/aX9My1l88rrY2Mz2guKmxbEyLFlQ4amNN2/e0L59e969e8fly5cVgs/Ozo7k5GTevHmDtfXnjQa1tbVp0KABDRo0YPz48UBmG8+1a9cUBwC7du1CLpdTokQJmjVrpsj+N2rUSGXTRbIwMDCgU6dOuLu7M2PGDJXu9THi0hL5/e5efCIfI0G1rSsKr4oKzRlfo/tH+/nT0tKYPn06q1atonfv3mzdujVPh7KaiI+PD40aNdLoiQtFASMjI4oVK0ZYWJi6Q1ELu07HEhyeofYpVf9FLofXYRnsORPL0K7F1R3OV4so9kU0jrJly9K0aVP8/f0VYn/u3LkkJydjYGDwWQd0Hak27crUo12ZejyPC+NEsC/33z3jefxbMgQZkCnmJf+ft5cL8sySXYlE4VRds0RFOpZrSH0zzTd40hTi4+NJSUkpFJl9d3d3JBJJnmZbBwUFsXbtWn799VdFX6DIp8kSSEFBQYwePZq///5bpRnTgIAARo0ahaenJwC1a9dmw4YNODk5ffYGu0LFCpT6rgnxacnIKbjS/Y8h0ZIi15Ky6P5+ljcZ/dH3niyx/zU4ej979gxHR0dkMhleXl7ZDNlsbTMzw0FBQTmK/Y9Rvnx5ypcvT79+/QBISEjA19dXcQCwZMkS4uLi0NbWpm7dutmM//53vKQycHFx4bvvviMsLEyRnSwI3qXE8bPPBoITIwHVCf0ssg7T3F9dJzTpHX80HIb+f3wk3r9/z8aNG0lKSuLChQu0bdu20H8GC4KAj48P3333nbpD+SqwtLT8KjP7oVEZ7D0bp1FCPwsB2H06jk7NjLA0E2WnOhB/6yIayaZNm7C1teXgwYM8ffqUmJgYypcvz6+//krr1q1ztUZlEyvG1+gOQIZcxov4twTEBvM+NYE0eTpyQeCR3wMO7tjLsa0HqGFeMdvsa5HcExERAaCyzL4yxb6bmxutWrXC3Dz33gtTp07FysqKiRMn5nv/rwFXV1fKlSvHggULGDp0KEZGRqxcuVKpN+7p6ekcO3aM9evXc/HiRSDT3Xzv3r1Urlw5V2tEWULJYhXVLvSzkCPnZlQgp4Jv0KX8h87dMTExAEXefOrBgwe0b98eExMTzp8/T/ny5bM9XqlSJbS0tAgMDKRt27b53s/IyIh27drRrl07AGQyGY8ePVL0/R8/fpy//voLyDwo+G/pf+3atfOdse3SpQtaWlocP36cUaNG5fvnyQ3vU+P54doawpOjC9SjAjIN/m5FBjLVdzPLmoxCT0sHgJIlSzJz5swCjUXVJCYm4ujoqPjbElEtVlZWX6XYP+4Zr1nl+x/huFcCI7sXV3cYXyWi2BfRKE6cOEFiYiK9evVi7NixNGvWjHfv3mFoaEjJkiWzzcnOC9pSLWxNy2Jrmj0rc+61Nn+dmo55ip4o9PNBlthXVWZfWWX8MTExeHh4sHLlylw/59KlS7i7u7Nv3z4MDMR2jpyQy+UcPnyYvn378t1335GUlMQPP/yAsbExv//+e77Xf/PmDZs3b+bvv/8mLCwMOzs7JBIJo0ePZv369bk+UIhMjsE98S6CXEAi1azs4aqHR2hoYfeBg/nXkNm/ceMGTk5OlC9fnrNnz370PUVHR4dKlSoRFBSkkhi0tLSoVasWtWrVYsyYMQCEhYVx/fp1xQGAq6sr6enpGBkZ0bRpU0Xmv2nTpnkuOzczM6NFixa4u7sXiNhPTE9hgs8GwpOjldabn1fkCNx//5x5d3byR8NhaBVRPxxDQ0N27typ7jC+GiwtLb+6Mv7UNDknriYo5txrInIBjnvF810XU3R1NOvz9mtAFPsiGkNcXBxjxowhNDQUb29vmjVrlm02tirIKpkMCwujYsWKKt2rKBMeHg5ofmb/xIkTZGRk0KNHj1xdL5PJmDhxIk2bNuXbb7/N195fC9evXycsLIzevXsDMHbsWBISEpg2bRrGxsZMmzYtz2vK5XIuXrzIhg0bcHd3R19fn8GDB1OtWjUmTZrEkCFDWLduXZ4qBzY9OUm6INM4oQ+QLs9g4+OTzKs/KNv3i7rYv3TpEt26daN27dqcPHnysxUMdnZ2BAYGFlhsVlZW9OzZk549ewKZI+Fu3bql6Ptft24d8+fPRyKRUKtWrWzZ/4oVK+b4t+ni4sKMGTNISEjAyMhIpT/LXw+P8Co+XG0eFVkICHiHP+TQc0/6VWmt1lhURUEbPn7tWFpaKto/vxau3EkiMUWDU/r/T0KygOfdJBwbq9YHReRDxHchEY3h8OHDhIaGMmHCBJo1a4ZMltljf/HiRbp27cqNGzeUvud/xb7IlxMREYFUKqVkSdWYhikrs3/48GGaNm2a677bHTt2cP/+faWXoBdlXF1dsbKyonnz5orvTZ06lTlz5jB9+nTWr1+f67Wio6NZuXIlVatWpX379gQGBrJ69WpCQ0Pp1asXU6dOpXv37mzZsiVPN9XRqQlcCL2rtqxmTsgEOZfC7hGdmn1WcmxsLBKJROViUB0cP34cJycnmjdvzrlz53JsVbC1tS1Qsf+/GBgY0LJlS3755ReOHTtGZGQkjx8/ZsuWLTRs2JCLFy8yaNAgKleuTNmyZenduzcrV67kxo0bpKWlfbCei4sLqampnD17VqVxXw9/xOmQm2oX+v9l05OTvE6IUHcYIkWAr7GM//T1RDTwzPoDpBI4fT1B3WF8lYiZfRGN4fTp00CmmzdkmiaZmpoSGRnJqVOnqFu3Lo0bN1bqnmZmZujo6IhiP5+Eh4djYWGhsiyGMjL7iYmJnDlzhvnz5+fq+vj4eGbNmkX//v1p2rTpF+/7NSGXy3F1daVXr14f/C389ttvxMfHM27cOIyMjBgyZMgn17l58yYbNmxg3759irF5W7dupUWLFkgkEry9vXFxcaFdu3bs3bsXbe28fZSdCvYt8BF7eUUuCJwI9mWwjaPiezExMZiamha5bOHevXsZMmQI3bt3Z8+ePejp5dxSZWdnx7p168jIyMjzv78qkEgkVK1alapVqzJ8+HAgc2zg9evXFcZ/M2fOJCUlBQMDAxo1aqTI/Ddv3pzKlStTs2ZN3N3d6dWrl0pijE9PZuH9/UiQIGiQ2BcQWHBvLxscxuernD8sLIy4uDiKFStGuXLllBihSGHB0tKSqKgo0tLS0NUt+rPd5XKBJ6/SkCvh5Rz95jr3jmWaljYdeBUDk3/NT2NCfXl1dz3xEX6kp7wHwO6bPyhbI3v1mVyWzqs763gb4Epq4lt0DcywqNKFSo0no61TjCcv0xAEQUyeFDBF645BpNCSlpamyN4+fvwY+LdU1cPDA0Al87olEslX2eOlbFQ5dg/+zeznp2f+zJkzpKSkKMpwc2Lx4sXExMSwaNGiL97za+PGjRuEhIQoSvj/i0QiYcWKFYwYMYJhw4Zx+PDhbI8nJSWxbds2GjVqROPGjfHw8GDu3LkEBwezd+9eWrZsiUQi4fbt23Tu3JnGjRtz+PDhPN/QyQQ5h19e1Six8zEEBNxeXM1WfRAbG1vkSvg3btzIoEGDGDx4MPv378+V0IdMsZ+RkcHLly9VG2A+MDc3x9nZmYULF+Lp6UlsbCw+Pj4sWLAAc3Nztm3bhrOzM2ZmZlSvXh0tLS3c3Nx4+PAhggoOo/5+fJLYtESN+9uXCXIex7zG/eW1L14jNTWV7777jmrVqjF48GDF9wVByPa7/N+vRYoWWdNysnyEijpvIjNITVP933N85AOiQ66irVf8s9c9uTyVl7dWkpLwBgOT8qQlvyPEbyv+p4YjCHKSUwVCozJUHq9IdtR/HC4iAujq6uLg4MDp06eZNWsWt2/fpm3btrx7944tW7ZgZGSEk5OTSva2srIiNDRUJWt/LYSHh6vMnA8yhaCBgUG+Mppubm7UqVOHKlWq5Hjt69evWb58OZMnT/7ACVzk07i6ulKqVClatGjx0cclEgkbN24kMTGR/v374+7uTuXKldm4cSPbt28nNjaWTp06KUq6/9fl/OHDh3Ts2JFq1apx7NixLzr8efD+JZEpsV/08xU0Ualx+L17Tj1zG6Doif3Fixfzyy+/MH78eFauXJmn1/d/x+/Z2NioKkSloqurS5MmTWjSpAmTJk1CEARevHih6Ps/f/48iYmJ1KxZE3Nzc0XW38HBgYYNG6Kvr//Fe8enJXEi2Fejyvf/iwTY//wy3Ss2R/oF2X1tbW369OmDra0tdevW/Xfd/8kgqiOjmHW4IGYzVU9Wa+bbt2+LTHXHq1evAKhQocIHjwW+TuP6bgdS4kMoX3cMsowkwoOOIZFoUdq2G1Waz0Yq1UYuS+XV7XWEP3UnJf4N2rommFVsS5WmM9E1KMmLmyt5eWuVYl2fPZmf4Zb2vanWdjmW9j0pU2MgaUmRisf+l/hIf8IDjwBg6zCPcrWGEvXyAv6nvycm1IeoF2exqOxE4Ks0ylroKPm3JPI5RLEvojEMHjyY06dP4+vri5ubG25ubkDmWKRx48blOuOTV6ysrMTMfj6JiIj4onnXuSUxMTFf/fqpqamcOHGCyZMn5+r6X375heLFi/PLL7988Z5fG4Ig4OrqSs+ePT87ikxLS4stW7YQFBRE165dkcvlmJubM3r0aEaNGvXJsXnPnj2jffv2lCtXjtOnT2NsbPxFcT6OeY0UySdFT4xfMA9mu4IAFYY4YN0ns3VIkMnxm36A+IC36FkYU2/tYCKvBBB56TEJzyOQp2ZmK+qv/w5D6+zeFVedPz79wbpvYyoM/rQJqRQJj2NfK8R+TExMkRi7JwgCM2fOZNGiRcybN4958+blWQhZW1ujp6dHYGCgyg6CVY1EIqFy5cpUrlyZwYMHI5fLKVeuHE2bNqVmzZpcu3aN33//ncTERHR0dGjQoIGi9N/BwSFP1VSnQm5qrEcFZM7iDkt+/3/snXd8U2UXx783SfduaWkKhRY62EPZu0yZZQk4EBFFUUBARFRQVBwoylKGIi+IMiwbkU2ZpWXTUqGD0UEndO8mue8fNZFCS1fapJDv5+P7tsm9zz2laXJ/zznndzgVHUzXei0oLCwkLy8PQRCwtbUlKyuL/Px8CgsLUalUSKVSLCwsNP4VUqmUsWPHMmzYME21jyiKXL16FZlMRsOGDUlPTyc5ORmZTEb9+vWxs7N7TESVIzMzk8jISIyMjHB1dcXGxsYg8msQdWb/SbqnGz9+PGfOnOHll1/m448/xsvLS/NcRMx//h8xwb8iNbJAKjMlPzuB2JD/YWHvjUuzFwg58CYp0f4IghRzey/yMmNJuOFHRuIV2o3+CxMLZ8ztPMhJjQTAsk4zJBITzKyLkh1GpmX/rdyPPq752rFR0XuyQ8PeSKQmqJT53I8+gbPnQCJiC/HRfqGugcdgEPsGdE5GRgY//vgjnTt3Zv78+axevZrg4GBEUSQ1NZUFCxbw8ssvl71QJZHL5Zw9e7ba1n8aSExM5Nlnn6229XNycqrUr3/06FEyMjLKVcIfGBjI5s2b+fXXX59II7Tq4uLFi0RFRZVYwq9GPTbvl19+IS4uDhsbG/Lz89m5c2ep1QAAMTEx9OnTB2traw4dOlSlm/Sw9BgeN5DYtpUrLkPbErfnMtGbArFv546FuyOx286TGZYAAnjOHIDM3ITUi3fIupWEkY05+UkZZV7bopEjEqP/NkKM65S9YRGWFqv5+knI7KtUKt555x1Wr17NDz/8wMyZMyu1jkQiwcPDo9rG7+kCiUSCr68vBw8eZPv27QiCgEKhIDg4WNP3/+eff/L9998D0LhxY43w79q1K82aNSuxOkIlqth++xToaVZfjUqhZMraTxkjbcvhw4c5e/YsEydOZO3atQwZMoRLly6RlVVk8GVubs7o0aP56quvcHFxobCwkDFjxnDo0CE6depEQEAA2dnZmnG9U6ZM4cyZMwQHByOVSpk4cSI//vijVvq61T3IGzduZMWKFRQUFGBiYkLdunVxd3enadOmuLq64uPjU+WJMgYej6OjI4IgPFEmfdnZ2ahUKjZt2sTGjRsZN24c8+fPp2nTpmRm/7eBZ2LhTPvn/0aQGhO4qQcF2Ymk3j2Dma07KdH+ALQZthlbl47kZycSuKkHOakRJEbswqXZC5jZuGl69lsM+LlYz355yM/6b4PF2KwOAIIgwcjUnvzsePKz4kCEzGxlVf9JDFQQg9g3oHP27NnDvHnzmDdvHp9//jm9e/cmJCSE9PR02rVrV+2Cy8XF5YnaBdYFNdGzX5WbpB07duDp6Unz5s0fe5woisycOZM2bdowYcKESl/vaWTbtm3UqVOHnj17FntcFEWOHTvGypUrNWPzXn75ZaZMmYKHhwf9+/dn2LBhHD9+nFatWj2ybmJiIn379kUQBI4cOVLldpHQ1ChUZWQ43SZ0I/VyFLkxKYT9cADPaf2I3hIIgMuwZ7BtWXQT1HhKb4xtzUnyv07EskNlXrvpR0MxrVt+sa5CJDT1jub79PT0Eks5awuFhYW8+uqrbNmyhV9//VVjZFdZanr8Xk3g6+vL6tWruXbtGi1btkQmk/HMM8/wzDPPMHXqVKBo8ysgIECzAbBp0yaUSiU2NjaakbVdunShY8eOWFhYcPX+LeJzU3T8k5WNRCbFvn0jvp20hLqW9vTu3Zv69eujVCqJiIigadOmNGjQgMzMTM6fP89vv/1GUlISf//9N1BkuCuVSqlTp0hoqCuMjI2N+eWXX+jduzdOTk4cOXKEtWvXMmjQIIYPH17luAVBIDc3lzlz5mjG0KoxMjLC1tYWiURCSEjIUyn2RVFEpVKhUqmKff3w9497riLH2tnZcenSJc6fP19j16zOY+/evQuAQlFUPbZlyxY2b95MixYtGD39iObfuY5bP2Qm1gCYWblSkJ1IQU4ymYlXNMdc3j3mkd9PRuJlXJqOq85XQLGv8gv1e9PxScQg9g3onJSUopuQrl2LylllMhlt27atsevL5XKSk5P1xtW5tlFQUEBqamq19+xXtoxfoVCwa9cu3njjjTLLKbds2UJgYCDHjh17bCm6geKIooifnx8jRozQ/A2lpqayYcMGVq1aRXh4OM2bN2fZsmWMHz8ea2trzbn79u2jd+/e9OvXj1OnThUrUUxJSaFfv35kZmZy6tSpKvdg5ijyyyV6JMYyvGc9x9XZW8i5c4+QD/9EVKgwd7XH7ZX/yu5NHCq2EXll5iZU+QpM61rj6NOUesOfQWL0+PecxLw0chR5mMtMa3VmPy8vj7Fjx7J//362bNnC888/X+U1vby82LJlixai0x98fHywsrJi165dtGzZssRjXF1dGTt2LGPHjgWKJtecP3+eM2fOcObMGRYvXkx6ejpSqbTIp+Tlbkg8ZeXu1y93K8uK8URvOkt66F3ykzJQ5RdiXMcKx+7e1BvZDpl5xbPmgkSg7eDunFn/V7HHT5w4QaNGjcjLy6OgoIDPPvuMZcuWcfz4cVQqFYIgIIoiSqWSwsLCorX+fb9XKpWMGTOGP/74A6VSiampKVKplLNnz5Yo9lUqFUuXLn1EeI0dOxY3N7di1RPqrH5ISAiJiYm0b9+ekSNH8s8//xAcHMzt27dJTk7GyMhIswlREgqFgiNHjvDbb7/ppeCsyrG6YPXq1axevbpGrykIAhKJRPP/6v8e9315jk1PL+4xo/43vXnzJgpFoeZxtdAHECQlf65YOz16b21s7qiNHx8TS7nm64Lce5hY1EUUVRTmpf77vEtRbFq5moGKYFA2BnRKQUHRGA5zc3Pu3LmDUqmscZEll8sRRZHExMRyz1838B/JyckA1ZrZr0oZ/6lTp7h//36ZJfy5ubnMnTsXX19ffHx8KnWtp5UrV65w69YtVq1axYULF1i5ciVbtmxBoVAwatQofvnlF42b/sPY2tpy8OBBevbsSd++fTl16hQNGzYkMzOTgQMHEh8fz4kTJ8plrFgW2YW55T7W0qMurmM7EL0pEFWBEiQCXrOeQ2JcuY9NmaUJJnWsyEvKICcmhajfzpB9K5kmHwwu89zMwlzMZaYl9uyr3cV1fUP/uGOzs7NZsGABN27c4OOPP8bExIRdu3ZVaV1RFImOjiY6Oppvv/0WmUymVz93VdaRyWR888037Ny5s1LrmpubI5PJKCgoIDQ0lNz79bFv7I5QTgPE8rayKLLyiNtzGcFIinl9e/LvZ5EXl0bM1iCyIhNpvmBEhf9OVAoVLfp21Ly2BUEgLy+PNWvWsGHDBu7du/fI6z85OVlTvq1+DNCIcolEQv/+/YEiUe3o6EhSUtIjIurBNRcsWFBMdEkkEqZOnVqqiWRBQQF2dnaMHj2a999/X/N4QkIC58+fJyPj8W0+MpmMc+fOkZCQ8FjhJ5VKMTIyqpRofFqOnT59OqampixdurRGY6guunTpUqzV1MXFhc8++4wJEyawbGvZ7WNWTq01Xzd45m0c3Yv+FlQqBamxpzG3Lfpslcr+M7xVKcr/WanGoUEvbp9bDEDyrf3Ub/kq96OOoVLm//t8TwTAxNgwCK6mMYh9AzplzZo1zJw5EyMjI5YsWYKJiQldunTBxcUFCwuLGjG2Ubu3xsfHG8R+JVCPuKnOzH5VDPp27NhB/fr1yxzduGTJEuLj4zly5MhjjzPwKJs3b8bCwoIPP/yQS5cu0aBBA+bNm8ekSZPKtQnk6OjIkSNH6N69O3369OHgwYO89tprhIWF4e/vT7NmzbQSZ4GqYiN/cuPS/vtGJZKXlIGlR8U3tVovHoellzOCIKDMK+SfL3aTHhzDvdPh5L/WAxPHx/fuN2vVgty7qeTm5vL111+zaNEijbirbSxYsKDS5z58o63e6FiwYIFGAFXXDX1l1zEyMqrwuhYWFvj7+9OyZUusrKyqHMORJvfIl1TstVKeVpaC1GzcJnbH+blWyMyNURUoCPloG5lh8aRevIMiKw+ZZcUmCAgSgUzLop5e9ef/unXr+P7775HJZHTv3p0GDRoQGhrKlStXio3Se1jsP3j/oO7Nl0qlpQp2NVKptExxrka9IZGeno69vT2HDx9mwIABGgNAZ2dnhg4dWuzY0vjkk0/45JNPynVdA6Xj7e1NWFhYiW1htRF1Aqxu3bosWLCA1157TfN6trEsOzlmV68z9q49SYk5wbUDbxSJe0FCfuZdlIoc2gzbgpm1K2Y2DREkRoiqQq7sfRFTy/q4tnkDp8aDSb61n5tnv0YU/+u3v33uB2Ku/Ix13TY067scK8eWOHkMIylyDxFnPuPutd/IzYguilPegTruA/6N2SD2axqD2DegU2Jji8ynCgsLCQ8P57XXXqNJkyb07duXjh070qtXr2oX4A+KfQMVR92jWN1l/JXJ7KtUKnbu3MmoUaMee5OVkJDA119/zdSpUzUjvQyUTXh4OKtWrWL58uWoVCrq1q3Lnj17GDRoUIUrdFxcXDh69Chdu3alTZs2qFQqDh8+rNWWHqECBYT3zkSQfPwGACZO1uQnZRD501Gsm7pgbFexjScr7//KG6WmRjh09iA9OAaA/HuZZYr9WTNmYqkwYubMmYwdO5YePXroVSattOfu3bvHyy+/THJyMps3b6ZVq1aVFtol/f0mJCQgl8vZtGmTVnqv9YXU1FQcHR3p2LEjb7/9dtXWys9k3+FPK3xeeVpZjO0sqD+yXbFzLD3rkhkWDxIByhDVJSFIBJLI1nwviiLXrl0DwMbGhoMHD1JQUMDUqVO5cuWK5piHXy9Asf9/cAOgPIK/vKjXGTVqFAUFBcTGxjJ79mw6duyIu7s7bm5u2Nvb07x5c4yMDOPGagJnZ2eOHz+u6zC0xgcffMBLL73Eq6+++sj4Tc8G5WuVafHcz0RfWkli5B5yM6KRGllgbueBfYOeWNh7A0WO+57dFhB16Sfys+IpyEmmIKeoclNRkEVuRlSxNQvz7lOYd79Y+X7T3j9gbuNOQvh2cjOiMTKzx6nRINw7zEYQJChV4OladVNMAxXDIPYN6JRFixbx+uuvc/DgQfbu3Yu/vz83btzgxo0b/Pjjj+zatavaxb6TkxMSicQg9itJTWX2HR0r3ld27tw57t69y6hRox573Lx58zAxMWH+/PmVDfGpQaFQsGfPHlauXMnRo0exsbFBpVJpxXCtfv36NG/enMOHD5fLULGiGEvLd7NdkJpN5MqjANi1c8dzWl8uTd2IIiOXyB+P0Gy+b7mvmX4tlsL0HBw6eSBIJagKFKQE3dQ8b+Jk/Zizi5j82uuYFEqYMWMGvr6+ml5tfeb27duMGzeO/Px8AgICaNKkidavUbduXaysrJ44kz47Ozt69erF7t27qyz27+eXL0NdEhVtZSlIy+F+QNF0BMfu3pXq2QfIlyhRqJTIJFIEQaBbt26sW7eO+/fvY2FhgZ2dnUY4FxQUoFQqEQSBgoICTdsI/CfECwoKKCgoGlEmCAKZmZkoFAqNs39lUbcdJiUladbPz8/nyJEjHDlyBIlEQv369WnQoAHHjh2r0rUMlB9nZ2cSEhLKrKSoLQwZMqTU57wbGNP55TOPPN7Wd2ux76UyU9w7zMK9w6zHXqte85ep1/zR6VfyJs8jb1K2z4pEalTmdbzKuUFhQHsYxL4BnXH37l1UKhWenp54enoydepUbt68yeHDh9m9ezdHjhypkd5pqVSKk5OTQexXksTERKytrR/ZcdYmlc3s79ixA0dHR435Y0lcuXKFdevWsXz58mqZu/ykEBcXxy+//MLPP/9MXFwcXbp0YePGjVy/fp2ffvqpyuMxVSoVr732Gv7+/ixbtoxPP/2UIUOGcODAgUq3cDyMtZE5EkFAVYZpVMSKwygycpFZmeI5rS/G9pZ4vN2HG4v2kXLuFgmHruHcvwW315/ifkAEytz/TJJCP92BIJPgMqQtLsPakpeQTsSyQ0hMjTB1tqHgXiaKrKIeRqe+zcs0+ZMgYG1sQWJy0fvTwz37+sj169fp168fZmZmnD59Gjc3t2q5jiAIeHp6PnFiH4pc+d97770qmzLmKwvLPugxlLeVJTc+jdAFOylIyca6qQuN3+5TpesWqBTIJEXVQS+++CJRUVFs3rwZlUrFyJEjadWqFbNnz8bY2FhjCtqwYUOaNGmiMfkUBIGWLVtiZGSk2YyWSCT06NGDe/fulWqAWF7U1UtOTk6oVCoiIiIICAjg1KlTnD17luvXrxMdHU1cXJzB/LcGkcvl5OXlkZGRUWsNTcuLs4MUc1OBnLza4XBvaSZQ195gflzTGN59aimiKJKYoiQpVUF+gYhKBGOZgIWZhIbOslphgDF37lzCw8Pp27cvHTp0oF27djRu3JjGjRvz1ltvkZCQgJVV2XOotYFcLicuLq5GrvWkUd1j96ByPfuiKLJjxw6GDx9eakm5KIrMmjULb29v3nzzTW2E+kShHpu3atUqdu3aVWxsXuvWRaY/zZo1w9fXt0rzqkVRZOrUqfzxxx9s2rSJsWPH0qFDB/r27cuIESPYu3cvJiYmVf55jKUyGlrU5XZW6TOYEw6GkHr+NvDvaD37IjFep5sXjkE3ST5+g9trT2Db2pXC1Bzy4oubfOUnZwJQmJUHgHWzejgPbEX6tVjyE9NBIsHSw4m6/Vvi3L9FmTG7WjphIjXSmInp+83rxYsXGTBgAC4uLhw6dAhnZ+dqvZ6XlxcRERHVeg1dMGzYMKZPn86BAweqVMmhrIIbenlbWTJuxPHPF3tQZORi36ER3u8PQmpatZL1h8djfvjhh3z44YfFHhs9enSx7xctWsSiRYs03wuCwNWrVx9Ze9euXVWKDWDZsmVkZGTw3nvvkZeXh729vSZxoR7bmpeXR2BgIDk5OVW+noHyo37PiY+P1/v3y6oiCALNG5lw8XoeKj3X+xIBmjcyeSKqLWobBrFfS1CqRC5ez+NqRD5hUfmERRWQXcpOnkSA+k4ymrqb4N3QmO5tzHGw0a+dtNzcXDZt2oQoigQHB+Pk5ISXlxdt27bV9OzW5DxpuVxuyOxXksTExGot4YfKZfZDQkK4efMmP/30U6nH7NmzB39/f/bt22fop3yAh8fmNWvWjGXLlvHyyy8Xu3n6559/uH79erEb7IoiiiIffPABq1at4tdff9UIm06dOrF3714GDRrE2LFj8fPz08rvqJldQ6Kzk1CKJRuWOQ9oifOAkjN+3u8NxPu9gZrvvWYOwGvmgMdez8zFFo9KZjmlgoTmdkXvg7VB7J88eZIhQ4bQvHlz9u3bh729fbVf08vL64nqz1XTsGFD2rRpw+7du6sk9k3K2bryMOVtZbl3JpzwHw6gKlAiH9KGRm/0QpBU/WbeWKLf78fffvstCoWCDz/8kJdffpn4+HieffZZmjVrRsuWLWnSpAmOjo706tULKNucz4D2UIv9hISEamkf0jcGdbHk/D95ug6jTFQiDOpasXG1BrSDQezrOamZSvYHZLHrRBb30pRIJaAsw1RXJUJ0ooK7yQoOBWXz45+pdGtjxvCeVrT21I9dtYKCAj7//HMuX77MhQsXiIuLIyYmhqCgIP78808aNmzI4cOHq5QtrAhyubzEDICBstHXzP727duxsbEptRWkoKCA2bNn069fPwYOHFjiMU8bFy5cYNWqVWzevBmFQsHIkSMfOzZv27ZtWFlZ0a9fv0pfc+HChXz33XcsW7bskZ5/Hx8ftm/fzvDhw3n11Vf57bffqjyas4mtK3/HBFVpjZpCJarwtqkPQFpaGqC/Zfx///03o0aNokuXLuzevRtLy5q5qfP09CQhIYHMzMwaqwSrKXx9fVm6dCmFhYWV3uiylFWuvao8rSx2z7pxY9E+EEGQScmKSCB4zhbNGo3f6l2p6RVGghQjiX4lKB4kNzeXxo0b4+npiUwm4++//6agoICgoCBkMhm2trbI5XK8vLxwdXXl888/r7G/BwP/mS4nJJRewfUk0bW1GbaWEtKy9Hs6i52VhC4tzco+0IDWMYh9PSUzR8XqHakcCsxGJYK6Eq8sof8g6mNF4MzVXE5ezqW+k4xpY+xo30y3f3A2NjZ8/PHHQFEG9tixY6xbt46QkBCysrLw8PCoMaEPRU7gBw4cqLHrPUkkJibSqVOnar1GZTL7O3bsYOjQoaW+jlauXMmtW7fYuXOnXmyA6YqcnBy2bt3KqlWrOH/+fIXG5m3bto2hQ4dW2q9hyZIlfPLJJ3z55ZdMnz69xGMGDRqkKe23sLBgzZo1Vfp9tbBzQ8+rHTWIFMUL+p3Z//PPP3nppZcYPHgwW7ZsqVb/jodR92dHRETwzDPP1Nh1awJfX18+++wzTpw4Qd++fSu1htzcHlOpEXkV6N2vSCuL+o9JVCjJDCsurhS5BZWKuZG1XK/fk83MzPDz80OpVJKdnc2bb77J/fv3uXXrFvHx8aSmpnL9+nVCQkIwNTXlhx9+0HXITxWWlpaYm5s/NdWaMqnAsB6W/L4/Q29L+QUBhve0QirV37/rJxmD2NdDzobk8t3G+2TkqNDWGGW18L+brOCDH5MZ2MWCKaPssDSr+d5+lUpFaGgo9erVw97enpYtW9KyZUumTp2qKX2r6VmzcrmcxMREVCqV1kbyPC1Ud2ZfpVKRm5tbIbEfHh7OtWvX+Pzzz0t8/v79+3z22We88cYbtGhRdt/0k0h4eDirV69m/fr1pKWlMWDAgAqNzQsLCyMkJKTUf+Oy+OWXX5g1axZz587lo48+euyxo0ePZt26dbz66qtYWVmxePHiSosBD2sXPK3rEZkRh6jHsl9AoJGVM57WRdNI0tPTkclkmJnpV2Zk7dq1TJ48mZdeeol169bVeDuMelTmkyj227RpQ4MGDdi9e3elxb5EkOBlXZ/g1NvlPqcirSzd9s6sVFylIRUkNLOtuRa+yvLgZ96yZcvIz88nJiaGW7duER4eTkREBFevXq02c0oDpSMIgsaR/2lhSDdLNh3MQKXUdSQlI5XAYEMJv84wiH09IitXxYqtKRw+l4Mg/JfN1ybqNQ+ezSboWi5zJzjQrmnN3jzu3LmTL774gqFDh9K6dWtNqZuFhQUODg4888wzj3VPrw7kcjkKhYJ79+5Ve//5k4QoiiQlJVXrv1lubi5Ahcr4d+zYgbm5OQMGlNxP/dlnn6FSqSotVGsr6rF5q1at4siRIzg4OPD666/z5ptv0rhx4wqttX37diwsLEr9N34cmzZt4s0332Tq1Kl89dVX5TpnwoQJZGVlMXXqVKysrFiwYEGFr6tmlHt3vrm6pewDdYiIyGj3/9on1K7s+pTx/P7775k9ezbvvPMOy5cv18lGqZ2dHXXq1HkiHfkFQWDYsGHs3r2b5cuXV/p339SuAf+kRaEoxadCn1CKKrxtXXUdRrlQ9+Hn5+djYmKCh4cHHh4e9O/fHyjaVFaP5DNQs8jl8qdK7NexlTFpmC1rdqbpOpQSeWO4LfZ65h32NGEQ+3pCaqaS95clcSehqNSuOoT+g6hESM1U8cGPybz/sj3Pda65HbfvvvuO4OBggoODsbW1pW3btrRo0YKEhATOnTuHra1tlftyK4q6xys+Pt4g9itAamoqCoWiWv/N1E7GFcns79ixg4EDB5Z4zo0bN1i5ciVfffXVU/O7Vo/N++WXX7h79y6dO3dm48aNjB49utIl135+fgwZMqTCmebdu3fzyiuvMGHCBJYtW1YhAfPOO++QmZnJhx9+iJWVFe+9915Fwwagj0sblofuJEeRX6nzawIzqTF96/2XqU5LS9Obfn1RFPnkk09YuHAhH330EQsXLtTpJoSXl9cTKfahqJT/xx9/5MqVK7Rt27ZSazSxaVArhL6aJv/6VOg7giAQFRXFggULNCMm27VrR4cOHWjdujVubm6GSkEd4ezs/NSU8asZ3ceKE5dyiIgpqFDLb3UilYB3Q2NG+jxZfiq1DYPY1wNSMpRMX5xIYopCa2X75UG9ofDtxhQKFSJDu9fMH+OaNWv4/fff8fPzIzo6Gn9/f/z9/TXPP2zSVRM8KPbVI8UMlE1SUhJAtZbxZ2dnA+XP7EdHR3P+/HlmzJhR4vOzZ8+mQYMGvPvuu9oKUS8RRRF/f39WrlypGZv30ksvMWXKFNq0aVPiOan5mYSnx3IvP5MCZSEiIsYSGZZGZnhZ10dubo8gCERGRnLlyhWN70Z5OXz4MGPGjGHkyJGsXbu2UjfCc+fOJTMzk9mzZ2NpaVmpkYmmUmNGNOzK5pv+qPSwlF+CwPCGXTGV/uc3UdV569pCpVIxY8YMVqxYwaJFi5gzZ46uQ8LT05MbN27oOoxqoWfPntjY2LB79+5Ki/0udZtWuG9fFwhAA8u6NLKS6zqUcpGZmclrr72muX+5efMmR48WTTCQSCS4uroSGhpaYb8ZA1XH2dn5id0ALA2pRGDuqw68vlB/NjkEAeZOcECqhQkdBiqPQezrmKwcFbOXJZFQw0L/YZZsTsXcVEKf9hVzPK8MrVu3pnXr1nz33XeEhoayadMmjh49ipWVFS+88AK+vr7VHsPDPDiX1UD5SUxMBNCrzP6uXbswMjJi8ODBjzx3+PBh9u3bh5+fn1bmtusj6rF5q1evJiwsjGbNmrF06VLGjx//iFhMyc/kYOwFglNu809aFCn5mZrnhH//98G+dnOZCd42rmTciMPOy6VCUwxOnz6Nr68v/fr14/fff69S9c7ChQvJyspiypQpWFhY8PLLL1d4jQme/Thy9xLJeel6JfglCNQxteFVr/7FHtcHsa9QKJg0aRIbN25kzZo1TJ48WafxqPHy8mLPnj26DqNaMDIyYtCgQezevbvSrSvmMlMG1e/A7uizpY6c1AdEKNa6oq+ovX2CgoLw9/enefPmtGjRgq1bt+Lk5ER+fj7p6encvXvXIPR1xNNWxq+mQV0j3h1nz/d/pOg6FABmvmBPfSf9HqP5NGAQ+zpEFEW+/f0+0YmFOhX6ar7ZcJ9G9Yxwd6leF/ybN29y+/ZtXF1dcXNz48svv+TLL7/UaZmqsbExDg4OBrFfQfQxs799+3b69ev3iDBSKBTMmjWLbt26MWrUKK3HqWsuXrzIypUr2bx5M4WFhYwaNYo1a9bQo0ePYjfPoigSknqbHXfOcDz+KipRRIBHBK/4wP+qyVHkc/l+JDhA8+/H8v6VXxnl3p0ezi0xkpT+cXLx4kUGDx5Mp06d8PPzq/KkDUEQWLJkCZmZmbz66qtYWFgwYsSICq1hJjPh47YvMv3syirFom1UiMxr8yLmsuKbUenp6Tot48/Pz2fcuHH89ddfbNq0iXHjxukslofx9PQkNTWV+/fv4+DgoOtwtI6vry+bN28mKiqKhg0rZ1433K0rO6LOaDky7WIqNaJ/Pf03WVSLfXVG/6uvviImJoatW7cyceJEoqOjCQkJKbcfiQHt4+zsTHJycpXGVtZWBne1JD1Lydrd6TqNY/IIWwZ2MZjy6QOGZiIdcvxiDqev5OqF0Ffz9fr7KJXVk+USRZHNmzczatQo+vfvT9OmTenfvz+rVq1CoVBga2uLWN1mBY9BLpcbxH4FSUxMxNjYuFozjhXJ7CcmJnLq1ClGjhz5yHPr1q3j2rVr/PDDD3qfOSovubm5rF+/ng4dOtCuXTsOHz7Mxx9/TExMDFu2bKFnz57Fftbw9FheO/U97wT8yPH4qyhFFSJixTPb/35yhKZGseDSRkYe+ZyjcZdL/PsNDQ1lwIABNGvWjN27d2vNTV4ikfDLL78watQoxo0bx6FDhyq8RlsHD0a5dUOCfrweJAiMaNiVtnU8HnkuLS1NZ5n97OxshgwZwoEDB9i1a5deCX34b/zek1q2O3DgQIyMjNi9e3el13C3cqaVvTsSPX3vkwoSBtXvgLms5sY2VhZ1+1FwcDAA7du358KFCwB88MEHtG3bloKCggqbnhrQHupqTXVC4mnjxQE2vO6ru0qwySNsGdfPWmfXN1Acg9jXEamZSn7YnKInt5hFKFUQGVvI1sMZ1bL+kSNHmDp1KsHBwTg6OgJw9uxZ3nnnHRYvXgygUxEml8uJi4vT2fVrI2on/ur8vVUks79nzx6Ng/WDZGRkMH/+fMaPH0/79u2rJc6aJCIigvfee4969eoxceJEHBwc2L17N7du3eLjjz/W3OioKVQp+DXsAG+cWsKtzKLSRm2U86o3CdILslhwaSPzLq4n9YFWgMjISPr27Yurqyt///03Vlba9QWRSqVs3LiRfv36MXz4cE6dOlXhNd5sMpjG1i5IBN1+HEoFCY2s5bzVdEiJz+uqjD81NZV+/foRGBjI/v37S2yP0TUeHkWbI0+q2Le2tsbHx6dKYh/g3eYjqt38tzIIgJnU5JHWFX1FLfbVQtLJyYl//vkHgEOHDrF//37Cw8Nr3GjYwH+ofZiexlJ+NS8OsGH2S/YYyYqM8qobqQSMZPD+eHuD0NczDGJfRyzfmkJuvn5Oef7fX+lEJ2jfyGfNmjWkpqYyffp0VqxYwR9//MGgQYMA2Lx5s86z6obMfsVJTEysdkf7imT2d+zYQc+ePTWbSWq++uorMjMza3VZpUKhYOfOnfTv3x8vLy/Wr1/P66+/TmRkJPv372fYsGHIZI+W0t/OTOC1k9+zIeIQKkRU1dCzq34fO50Yyov+X3MyPpjo6Gj69OmDra0tBw8exM7OTuvXhaIWHD8/Pzp16sTgwYM1GbbyYiYz4YdOb1LP3KFoTIkOkAoS5Ob2LOn01iPl+2p0IfYTExPp1asXYWFhHDt2jF69etXo9cuLhYUF9erVIyIiQtehVBu+vr6cOHGC1NTUSq/hZVOfVzz76lWSAYreP95v9Tx2JrXHsVupVDJx4kT69u3L7du38fT0BGDcuHH4+/tjZ2enqTgxUPMYfJiKGNTVknXz5DRxq972XICmbsasmy9nYA1O9zJQPgxiXwfcTS7kxCX9Kt9/mO3HMss+qAIoFAqOHTuGra0tS5cuZcyYMQwfPpzPP/8cDw8Pbt26xZ07d7R6zYri4uLy1H8wVJSkpKRq7deH8ov9tLQ0jh49+kgJ/+3bt1myZAlz5syhfv3aMdLpQeLi4vj8889xc3Nj5MiRZGZm8ttvv3H37l2+/fbbx5aKhqbe4a0zy4jOTq6RjUWVqCJbkcfHF9czdP5rSCQSDh8+XO0bQmZmZuzZs4fmzZszYMAArl27VqHzbY0t+anLVEyzQazhmUUSQUIDSyd+6jINW+PSb5Jq2tMkKiqK7t27k5yczMmTJ/W+IuZJHr8HMGzYMJRKJX///XeV1png2Y+GlnV1XsmiRiJI6Oncit4ubXQdSrlQtyrFx8czaNAgDh06ROPGjZk2bRodOnTA0dERFxcXPvjgAx1H+nSjrjh8mjP7auo5GdG1/gk6NAzHSFbkkK8tBAGMZTD1eTuWzqpLPcenyx+htqAf7/ZPGXtPZaHPo1eVKjgYlE1WrvZuesPDwzE1NcXCwoJTp06Rl5eHmZkZzzzzDCqVitzcXJo2baq161UGdWZfl74BtQ11GX91kp2djUwmK9PU7a+//qKwsJDhw4cXe/yDDz6gTp06vP/++9UYpXYRRZFjx47x/PPP07BhQxYtWsTgwYO5fPkyZ8+eZfz48ZiaPr639VrqHaafXUmeoqBasvmlof7rsX6+FXP9ltTYBoulpSV///03DRo0oF+/fhXO8tqZWNEvqT4ZwbEANZb9bFfHi5+6TMP+MVlNhUJBdnZ2jWX2w8LC6N69O0qlktOnT9O8efMauW5V8PT0fKIz+/Xr16ddu3ZVLuU3ksj4pO3LyAQJgo5z/BJBgo2RBe+1rD2GqUqlEoBFixbRvn17zai9du3asWLFCr7//nsOHTqkFyMpn2ZkMhmOjo5PvdjPyMjg9ddf54UXxrFh6Xi2flmP131tcbQtajGpjBZRn+NoJ+UNX1u2fFmPkT5WSAzj9fQWgxt/DZNfoGLf6Sy9zuoDFBaKHArMZqSPdsrq6tevT6NGjQgICOD999/nxRdfxMLCgrCwMG7dukXv3r116jQNRWI/Pz+ftLS0ais5ftJITEyka9eu1XqNnJyccpfwd+zYsZi4PH36NH5+fmzYsKHcbv66JC0tTTM278aNGzRt2pQlS5aUODbvcdzMiOO9wDUoVEqdjpX7PeEkDWPr81z9djVyPTs7Ow4ePEjPnj3p27cvp06dokGDBuU+37NBI0JGzmZr6BHWRh2mQKWollFlUkGCsUTGjBYjGVi/fZmeFxkZRT4qNSH2r1y5Qv/+/XF0dOTw4cO4uLhU+zW1gZeXF3/88QeiKD4xBpwP4+vry6JFi8jPz6/S6FBPm3p83X4Sc879gkrUTTuhRBAwlxqzvPPbtap8X92HHx4eTkpKiqayShAE2rdvr/cVME8Tzs7OT3W15t9//82kSZM0I5KbN2+OrZWUF/pbM6avFedD89gfmEXozXxSMoo+5yQSkAhovD0Eoai7Ta1Z7K0lNG9swsDOlrRvZorUIPBrBQaxX8OcuJxLdl7tyBzvPJ6pNbFvbW3NlClTCAoK4ty5c5w7dw5ra2syMjJwcHDg7bff1sp1qoLa0CU+Pt4g9stJTZTxZ2dnlynUs7OzOXDgAJ999pnmMZVKxcyZM2nXrl2l5rBXhYoKjosXL7Jq1So2bdpEYWEhI0eOZPXq1Y+MzSsP+coCPr7wP/KUhXoxP37R1a00tXWloWX1vk7UODk5cfjwYbp3707fvn05efLkI4aFpeHm5lb0/1lW/NFrLouC/yQo+QZSQaIV0a9e59k6XsxtNQZHM9tynZeeXjRCqbrF/pkzZxg8eDCenp4cOHCgVo2x8/T0JDs7m/j4+FqzQVFRfH19mT9/Pv7+/jz33HNVWquDozdftpvIvAvrNVM5agqpIMFcZsKyTm/jZlUz7wvaQhAEVCoVHTp0IDAwUFNx9qRuMNVmnJ2dn8rM/r1795g+fTqbN29GEATN/ciDG99SiUCnlmZ0alk0HSc1U0lEdAHh0QVkZKvILywayWtsJGBjKcHT1RivBsbYWhlMJ2sjelxM/mRyOSyvRlwxq4oI3E1WcD9dWeW1EhMTCQgIoH///vzyyy906dIFKCqHa9WqFStXrmTo0KFVvk5VeVDsGyib3NxcMjMza8Sgr6zM/oEDB8jNzS02a/2PP/7gwoUL/PDDDxr35OpGXeJZnhu/vLw81q9fT8eOHWnXrh2HDh3io48+0sxrfnhsXnn5NewgcTkpqNCP8iERkYWXN1VLhrw06tevz9GjR8nOzqZ///6kpKSU6zy12L9z5w6OZrYs7jiZtd1m8lz9dhhJZJUuexYQkAlSBtRrxy/dZvJ9x8nlFvpQVPEBVGv106FDh+jfvz9t2rTh6NGjtUrow5M/fg+gRYsWuLu7V7mUX03Xus35vuNkzKTGNeZVIUHAwcSa1V3fxdOmXo1cU1uo39+Dg4PZv38/mZmZjBw5ku3bt3Pt2jUSExPJy8vTcZQG1Mjl8qdS7E+aNInNmzcD/3lMyGQy7O3tSz3HzkpKh+ZmvDzQhrdH2zHzBXtmvGDP26PteOk5Gzo0NzMI/VqMIbNfw/xzOx/1Z+rl3WNJiwvE1LoBnV8qPjIqNz2KwE09AHDv8B63z30PgLP3aJr2Lvr67O9dycss6i9t2mcpzl5FQud+9HGC900AoM2wLdjV61zpeMOjC+jcsmpzsVevXs1nn33GJ598woIFC2jXrh379u3j/v37vP3225obbF1jEPsVQz12SB8y+zt27KBVq1aaEVw5OTl8+OGHjBo1iu7du2s9JpVKhUQiQRRFzdeCIGhKPIOCghAEgQ4dOpR4vlKpZP369UyZMoUBAwawe/duBg0aVKKbfkUITb3DllvHazRLVxZKUcWN9Bj+vHWCFxr71Nh1GzVqxJEjR+jRowfPPfccR44cwdr68eOAbG1tsba2LmYW6m3rylzbcbzTdBj7Y8/z1/XTRGTFIbMoKqOWPtT7LCJqNjbMZSY0tWlAp7pNGVS/PdbGlWslqe7M/vbt23nhhRcYMGAAf/75J2ZmVXvP1wWNGjVCIpEQHh6ut1MDqoogCPj6+vLnn3/y008/aWUT85k6nvzaeQbPLZ2CXTs3BKiWdw8JAipEhjXozJRmQzCXPd5zRB9Rv7//+uuvXLp0CYBz584xbdo0GjVqhLe3N3K5nL59+z6xr8HahLOzMydPntR1GDXOF198QXx8POfPn9c8JoqioWL1KcYg9muQ3HwVsUkKzffO3qNJiwskLyOatPjz2Mr/6/VKCN9Z9IUgwdlrlEbsl8bt8z/g1HgIEmn5nDBvn1/CnQtL6fTSacysXUs8RiKputhXKpWsXbsWMzMzzW7jW2+9hUKhoFmzZgwfPhw3Nze96LM0NzfH2traIPbLiboPTNeZ/fz8fP766y9mzZqleWzx4sUkJyfz7bffai0OlUrFunXrWLlyJe+++y4TJkxAFEXNDaBCoeD48ePMnDmT0NBQ7O3tmTt3LpMmTXrkQ1YqlTJx4kT69ev3WDf9iqAUVSy8sgnhgX47feLnG3/TU94KF/Oayxg3bdqUQ4cO4ePjw9ChQ9m/f/9jX0uCIODm5lbiZBArY3Oed+/BwuHTCAkJ4VLkNdLMFMRkJ5GvLKRApcBYIsNEaoSrhRPetvWRm9lr5X2tOsX++vXrmTRpEmPGjOG3337DyKh2uikbGxvj5ub2RJv0QVEp/9KlS7l48aLW+sMTb8YS+tlOfjy+mT05V8lTFmitBUj96ncwtebjNi/ybB1Praxb09y+fRsXFxdMTEx4++23MTY2JigoiLNnz5KQkEBCQgIBAQFA0aahQezrHnUZvz7cX9YkrVq14vTp0zRq1IjExERUKhUKhcIg9p9iDGK/BrkZW1jsJtyx8SAiTn2CUpFDYvjOYmI/MaJI7Nu5dMbUquxSt7yMaOKvb6Fei/Fai1cUISwqv0prHDx4kLt37zJt2jQcHBz49ttvEUWRBg0acPHiRX777Tc6dOhQ5YymtlA78hsoG33J7B89epSMjAxGjSpydL579y6LFi3i3XffpVGjRlqLIywsjEWLFnH79m3NrGuJRMKFCxeYN28eTZs25dy5c4SGhtKgQQOio6NZs2YNDg4OTJw48ZEbDhMTE60JfYCgpBvEZt/T2nraRoXIzjtneKfZsBq9btu2bfn777/p378/o0aNYteuXY81N3N3dy91DOiePXsICQmhXr16tG1ccw716jJ+bYv9ZcuWMWPGDN58801++uknzcaVvpOSn0lYWgyRmXFkFeZSoFQgESQ0fKUrwXkJhKbewcPaBRNp9c+Wrmm6deuGvb09u3fv1prYDw4ORhAEJjw7hHGyQeyKCmBn1BnSC7I1GfmKovankJs7MNqtO4MbdMRcVnlTQV3Tp08f6tatS9OmTfHx8WHy5Ml88803GBkZERUVxdmzZzl27BibN2+mY8eOug7XAEX3c+p2w7Kqup401qxZQ1xcHP7+/uzdu5dly5ZpWp0MPH3oh8J6Soi/pyj2vczIAsfGg0gI20bSzb/w7PYpEqkJ6QkXyU2/A4Bzk9Flrmvh0JTslDDuXFyOs3fZx5cXUaRYJUJl2L9/PwCDBw9m7969XL16lbVr11KvXj0GDhxIWlqa3gh9KPpwiIuL03UYtQJ1Zr9OnTrVep2yMvs7duzA09NTMx7s448/xsLCgo8//lircTRt2pTVq1fTtGlT5HI59+/fx8HBgS1btnDo0CGOHz+Ovb09V65cwdLSkubNm3Pz5k3++usvhg8fXu276tvvnNaakVx1oBJV7I0O5HXv52pchHXp0oXdu3czePBgXnzxRbZu3Vrq+46bmxsHDx585PG8vDxmzpyJlZUV/fr1q+6Qi5Geno6pqWmVHNgfRBRFvvjiCz799FPmzJnDN998o9eZL4VKyamEEA7fvcS11ChSCzKBotFtkgdaKJRtHSgQ4K0zy5EgUN/SkWccPBjaoBNeNjUzArK6kclkDB48mN27d7Nw4UKtrBkSEkKjRo2wtLTEEpjk/RwTPPtxKiGEbXdOcy3lNiqKDLskpbzHPPjeI6hEusibMdK9G886eOr1a6s8hISEcOfOHWJjYwkKCmL9+vXY2Njg5OSEh4cH7du3p3Pnznz++ef8/PPPug7XwL+ojVnj4+OfKrGfnJzMJ598wuuvv07Pnj3p2bMnX3/9da2t2jJQdfRHZT0F5Bc+ujvu7D2ahLBtKPLTuXfnKE6NB5H4bwm/1NgKR/eBZa5rYeeBVZ3mJIRtIzbkf1jWaaa1mAtKiLkiqPvgJ0yYQE5ODp07d2bMmDGsXr0agN69e1c5Rm0il8u5e/eursOoFSQlJeHg4KCVD5AcRR7h6XcJS48lLD2Gf1KjSSvIolCloOC1RggijD76Bc1sG+BtUx9vG1e8bepjJjFm9+7dTJo0CUEQuHjxIhs2bGDz5s1VzoKKoogoiprefEEQ6N69O8uXL2f+/PmMHz+en3/+mVmzZvHDDz9QWFhIy5YtadGiBRKJhPHjx7N27VpCQkI4ffo0Q4cOrbZywrjs+5xLvqH1dbVNtiKPY3FXGeha8+Op+vTpg5+fHyNHjuS1115j/fr1JfY8q8v4H/5d/fDDD0RHRyOKIt26davJ0ElPT9daVl8URd577z2WLFnC119/zdy5c7WybnWQlJvG3uhAdkWdIa2ELLNKfMiGUvKfe4IKkeisJO5m32NXVABNbFwZ7d6dXvLWmJSz3U1f8fX1ZePGjdy6dUsr1UshISG0atWq2GMyiRQflzb4uLQhX1lAZEY84f++P0dlJZGvLKBQpcRYIsNMZkIjKznetq78uWwd5/af5KvQJVWOS18QBIFx48aRlJTE3bt3SUlJITk5mfT0dCIiIjh48CCWlpYolUr69u3Lzp07dR2yAf4T+wkJCXh7e+s4mppDnej48ssvNY8ZhP7TjUHs1yBKpfiI+Y2tSydMrVzJy4whMXwnddz6kXTzLwCcGg1CalS+fnm3djNIjNhD9JXVeHUvebfff1XDRx4L/OO/m9YHzf/UKJRVE/sDBw5k7dq13Llzhzp16vDFF19gYWHBL7/8gpmZWTH3dH3AxcWFCxcu6DqMWkFiYmKV+vVFUSQ0LYodd05zLO4KSlGFgIBEEIpnjmQSRCAxN5Xk3DROxAf/m2US8JY6UVjPnBEjRyKKIrt27eLcuXNVKm9VKpUIgqAx3YP/3PULCgo4dOgQ+fn5XLlyhbi4OFxcXBg6dCh79+7F2NiYGzdu0KxZMyZOnMj//vc/YmNjOXr0KEOHDq22DNdfMUF6ndVXIyCw885pnYh9gKFDh7Jx40ZefPFFLC0t+emnnx75nbi5uZGXl1dsrGRsbCxffvklI0aMYNu2bZqJIjWFtsS+Uqlk8uTJrFu3jp9++kkvRp6WRIFSwYaIQ/x+8yiIaAR+ZcrJ1X8T4emxLLyyiZX/7OXDNuPo5NRUqzHXJAMGDMDExITdu3czc+bMKq8XHBzMW2+9VerzJlJjmts1pLndo/cQD5PV/ja/fb9G8974JNCiRQs2bdoEQEBAANOmTcPY2BhnZ2cKCwsJDg4mIyMD4LGO5wZqFnWy6Wly5L9w4QJr165l+fLlODo66jocA3pCLRgC9+RgbCQ8cqsiCALO3kW9xvej/UkI305hXlE/sHOT58u9tpm1Ky7NX0SRn070lTUlHmPt1Fbzn4lF0Y6nZZ1mmsfMrBs8co6RrGripG3btly6dIlTp05x8OBBevfuzbx584iIiODll1/WuzcjQ89++UlKSqqU2FeJKvbFnGPCye+Ycma5RuhDcSfzEs9F1Nzwi4jcKEyg5cJRfJ91iC0R/nzy2ac8++yzlfuB/kUqlSKRSIiNjWXp0qV89NFHnDx5koyMDCwtLRk7dix169bl2rVr7NmzB4Dp06cDEBgYSGhoKACdO3emV69e5OXlsX//fs6dO1eluB7HpXsRei/0oeh3FpYRS76yQGcxjBs3jl9++YVVq1Yxd+5czWgiNQ+O31MzZ84cLC0t8fT0xM7OrsazRGlpaVUeu1dQUMALL7zAhg0b2Lhxo94K/bC0GF47tZiNkUdRiaLWjOLU66QWZPH+uV/46spmMgtztbJ2TWNpaUmfPn20MoIvMTGRpKSkRzL7lUVtTHf8+HGtrKcPqFQqCgsLAdi0aRORkZFs27aN8+fPc/LkSf766y+cnZ1p2bIlr7zyio6jNaDGysoKMzOzp+aeTqVSMX36dFq0aPHYzTsDTx+GzH4NYmpcsnB29h7FnQvLEFWFRJ75HAAzG7dihn3lwe2ZaSTc8CPr3rUSn3921C7N12o3/hYDfi7VjR/AzKTqmUhbW1u6du0KFDmWDx8+HHt7e5577rkqr61t5HI5WVlZZGVlYWlpqetw9JoHM5/lJTY7mS+vbOZa6h3NuLIqiVRJ0RoJOSmsCv+L/XEXmN/2pXLPb1apVMUc9aFobN7ixYvZvn275rHvvvuOuXPn8sUXX9CzZ0+aNGnCiRMn+Ouvv3jzzTfp06cPjRs35ubNm5w5c4Zu3bohl8sZPnw4R48epU2bNtU2tUApqojIKL31JC04hmvztoEIDV/piuvzReMARaWK4A+2khmWgImjFW1XjCd601nSQ++Sn5SBKr8Q4zpWOHb3pt7IdsjM/+uzL0jN5s5vZ0g9fwtFdgGmchvkg1rjMqRNmfGqRJHIjPhyZQmri0mTJpGVlcWMGTOwsrJi3rx5muceFPsdO3bk1KlTbN68mXXr1rFlyxY6d+6slZFnFaGqmf2cnBxGjRrFsWPH2L59O76+vlqMTjuIosiGiMOsCz+IgFBt4yPV6x6MvUBg0g2+eHYCrR20Z+RZU/j6+jJlyhTu3btXJd+UkJAQAFq2bKmVuOrWrUvz5s05duwYL774olbW1DUSiQSJRIJSqWTVqlXUqVNH89lnbW3NoEGDkMvltGnTptRxqwZqHkEQNI78TwO///47Z8+exd/fX6+8sAzoHkNmvwZxcym5Z8bMugG2LkXurcrCbABNtr8iGJvXoX6r1yof4ENIJeBRX7tGWjKZjPbt2/Pee+9pDNX0CXXZ19OyE1wVKlLGrxJVbLt9kldOfMf1tGgArd7Mi//+F5WdxOunfmBd2AEKVf+ZS+bn53P27FmgqJRZoSh6TiKRIJVKSU1NJTMzkxMnTtCtWze2b99O27ZtmT9/PiNHjkSpVLJ48WKio6Px8PCgR48emJubc/78eY4cOQLA1KlTgSLDQPUN9OTJk4mLi2Pr1q0aEaltorOSKFCVbqRp28oVl6Fti47dFEj27WQAYredJzMsAQTwnDkARVYecXsukxN9H5M6VkhMjcmLSyNmaxBh3+7TrKfMKyTkQz+SjoSizC3ExMmK3JgUbq3xJ+r3gDLjFSgqqdY17777LgsXLmT+/PksXbpU87itrS22trbcvn0bpVLJ9OnTad++PS+//DKBgYGajcuapCpiPz09nQEDBnDq1Cn+/vtvvRT6KlHF9yHb+DX8ACIiD3XiV881EUkvyGJG4CrOJv5T7dfTNkOHDkWlUrFv376yD34MISEhmJmZaXUyiI+PD/7+/lpbT1+IiYnB3t6e5ORkPv/8c4KCgoiMjGTr1q3cvn2bPXv2YGZW+VHFBrSPXC5/KsR+RkYGH3zwAWPGjDGMfTTwCAaxX4M0qGuEUSmbbcVc9AUJzl4VF/sADVpPRmZiW6lzH0YlglfDqot9URQ14krfMYj98lPezH6+spAPz69jWeguClWKai03LzLsElkfcYipAT+SUZDNokWLsLa2ZtSoUdy9exepVKrZ9U5JSWHu3Lk0btyYNWvW4OnpiaOjI7t27eLixYuMGTOGqKgoZDIZ+fn5/P777wD069cPNzc3UlJS2Lt3LwATJ04EwMnJiQYNilpiZDKZxiSouggrh3B2m9ANM1d7RIWSsB8OkBmeQPSWQABchj2DbUtXJMYy3CZ2p+Pvb9F2+ct0+N/rWHkX/T2kXryDIisPgIQDweTeTQUBWi8eR7s1E3EZ/gwAsdvPU5Ca/dhYJIKEsPSYqvzIWuOjjz7igw8+YObMmfz666+ax9UmfWvXruXKlSusWLGCGzdukJGRUeP9+lAk2CtTxp+cnIyPjw+hoaEcPXqUPn36aD+4KiKKIt8G+7E7+myNX1uFiFJUMvfCrwQmXa/x61cFuVxOx44dq1zKHxwcTPPmzbU6dtHHx4dbt24RFRWltTX1ATc3N2bMmAHA+vXr6dy5M71792b69OmkpaXRqVMn3QZo4BGcnZ2fivu5L774gvT0dBYvXqzrUAzoIYY6jxpEKhVoXN+YG3ce7VeVN3ke+WN69H2mPPqh2fnlM488JjOxpvtrV8uMxb39TNzbP97YRxTBq0HVxf7mzZtxcXGhZ8+eej+CxyD2y4dSqeTevXtlZvZzFPnMOfcLISm3ayiyIkTgRnos7wT8iHNOOkqlkry8PPbu3ctbb73F119/zfHjx2nevDnLly+nYcOGSCQSXFxcOHPmDDExMXTq1EnTZ1+3bl0SExP5448/eO+99+jYsSOdOnXin3/+4Y8//mD69Ol4eHgQGxtbzJSqJl7vyXlpZZrzSYxleM96jquzt5Bz5x4hH/6JqFBh7mqP2ytFmWpjOwvqj2xX7BxLz7pkhsUXtUv8W7qeevEOAGYudli4F3lu1OniSdyuS4gKFWlXY3Dq1aTUWJSiisTctCr+1NpBEAS+/vprsrKyeOONN7CwsGDcuHG4ubkRERHBtm3bmDBhAh07dmT16tVIpVKtzTavCGlpaRXO7MfGxtKvXz9SU1M5fvy41nqytc2aG/vYFxOks+uLAKLIRxf+x7JOU2hp766zWCqKr68vCxcuJDc3t9IZ5ZCQEFq3bq3VuNSf9f7+/rz66qtaXVvXvPbaa6SkpLBr1y5iY2OJjS3abB04cKBWzBINaBdnZ2dOnz6t6zCqlRs3brB06VI+/fRTXF1Lb8s18PRiyOzXME3djJHWon/1qpbxq1Qq3n//fXbs2KH3Qh+K+u+eJkOXynL//n1UKtVjM/sFSgUfnV9HyL8zmmsalagiJjuZ2G4WeDT3Ji0tTZOFnzdvHocPH2b58uUMGzaMkJAQZs2aBRQJwKlTp3Lu3DkGDhzIiRMnGD16NKamply/fp19+/ZhZGRE165d6dWrF4sWLaJx48aIoqgT9+l8ZSECZf9tWXrUxXVsUT+pqkAJEgGvWc8hMS55z7cgLYf7AREAOHb31vTs5ycXzTg3svlPXBjZmv8XT3JGmbHk6dCg72EEQWD58uW88sorjB8/nj179uDm5salS5coKCjg66+/BopcuNu2bYuFhUWNx1jRMv6IiAi6detGbm4up0+f1luhfz45jD9uHtN1GIiAUqXk00u/kaPI03U45cbX15ecnByOHj1aqfOVSiWhoaFa69dX4+DgQOvWrZ/IUn65XM7333/PoUOH2Lx5M7///jtbtmzht99+07tRwgae/DJ+URR59913cXV1Zfbs2boOx4CeUotk55NBt9bmKPXfNBuJAG29TTA3rdpL5OzZs8TFxfH88+WfLKBLBEEwOPKXg8TERIDHZva/C/mTS/cjdSL01ShFFXH5KTSc0QdjE2MCAgK4fv06S5YUzYCWSqV06dIFc3NzFAoFoihy5coVrl0rMrmcN28eEomEo0ePaubUbtiwAYCXX36ZY8eO8frrryMIgs42s1Ri+f99c+PSHjyRvKSShXlufBrBH2ylICUb66YuNH67jPLvCv6KFSplxU6oZiQSCWvXrsXX15fnn3+euLg40tLSmD9/vqbaJyAgQCcl/FAxsR8cHEz37t0xMzPj9OnTeHh4VHN0lSO7MI8vr2xGUo6NqppAhcj9vAxW/fOXrkMpN02bNsXT07PSpfyRkZHk5eVVy2ZQ7969OXbs2CPTLp4UGjduzMiRI3nxxRcZM2YMDg4Oug7JQAk4OzuTnJxca1pJK8qePXs4dOgQS5YswdTUVNfhGNBTDGK/hmnjZYKLo0xPbm9KRyXCyF5WVV5n27ZtyOVynZhaVRa5XE5cXJyuw9BrkpKSAErN7J9OuMaB2AvV5qhdEVSI5DjKcOzXjOzsbNauXavpry8sLEQURfLy8pDJZAiCgFQq1YxWGzBgAN27d6dJkyYsXbqUzz//XCP21eJf1xhLZOX6d753JoLk4zcAMHGyBiDyp6OP9Nhn3Ijj6uwt5MWlYd+hEc0/H1nMid/Eseh9oTD9v7Flhek5DzxvXWYsplLtGn9qA5lMxqZNm+jTpw9+fn4AjB07Fija3Lp586ZOxH5+fj55eXnl6tkPDAykZ8+e1KtXj5MnT1K/fv3qD7CS/HR9D6n5mTrdDHwYFSK7ogO4eC9C16GUC0EQ8PX1Ze/evahUFc8iBAcHA9pz4n8QHx8fYmNjuXnzptbXNmCgvMjlckRR1NyzPEnk5eUxc+ZMBgwYwLBhw3QdjgE9xiD2axhBELQioqsbe2sJnVpUzVVWpVKxbds2Ro0aVeOjqqqCIbNfNo/L7GcUZPNN8NZylZbXGCI0mNANqYM5e/fuRSKR8PLLLwNF1SfqvkuAHj16MHXqVJo0aYJKpWLEiBF8+eWXTJw4kXnz5lV53rm2sZCZlpndL0jNJnJlUamvXTt3Wn83FpmVKYqMXCJ/PKI57t6ZcK59vA1FRi7yIW1o+vEwpKbFNzVsn3EDIDcuVePsf+/fcn9BJsG29eN7BgUELI3007Ha2NiYl156SZONPHasqMQ8IKBoyoCuzPmAMjP7R48epW/fvrRo0YJjx47h6OhYE+FVitDUO+yNDtQroa9GgsDXVzZXq5GoNvH19SUxMZGgoIr7HoSEhFC3bt1qea306NEDqVSq+RsyYEAXqA1yn8RS/sWLFxMTE8PSpUtrRZusAd1RexTYE0T/ThYYGenvH6ZEAN+eVkilVYsxKCiI2NhYRo8eXfbBeoSLi4tB7JdBUlISZmZmJfYvLwvdRWZhjl5k9TUIIDWW4TVjAHei7uDn56fpbztz5owmwwVFouqdd95hz5493L59m+3bt9O0aVNdRV4mja3lZf5bR6w4jCIjF5mVKZ7T+mJsb4nHv6X5KedukXDoGvn3s7ixaB+qAiWCTEpWRALBc7ZwdfZmrs7eTFZk0QaP/LmWmLrYgghXZ2/h4lvridt1CYB6I9phbPf4nnaJIOBhXfPeBuUhJyeHjz76SONaP23aNP755x8CAgJwdXXViflRecT+7t27GTRoEN27d+fgwYOVHtNXU/jdPoVU0M/bDxUiiXlptWYcX+fOnXF0dKxUKX9wcHC1+TlYW1vz7LPPPpF9+1A0ycWA/qMW+0/aPV1MTAxfffUVM2bMoEmT0g1xDRgAg9jXCZZmEl5+zlqf8p4aBAFsLCWM6Fn16gM/Pz/q1q1Lt27dtBBZzWHI7JeNeuzew7vJNzPiOHT3YoX6yGsKUQDr5vWwalWf9evX06pVK1q2bElycjJ79uzRlPmps7oeHh56nR1V42Xz+FLthIMhpJ4vmobQeEpvjO0tAajTzQvHf13zb689gahQanrvRYWSzLCEYv8pcotM9aRmxrT6+nmcejdDYmpEXmI6ZvXtcX+jp8bZ/3EoRRVNbPXTMfi7774jISGB1atXY2Njg6WlJX379uXYsWM67deH0sX+xo0bGTVqFL6+vuzevRtzc/MSj9MXUvIzOR5/Va8z5xJBYPud2uHgLZVKGTJkSKXEfkhISLWU8Kvx8fHB39//ievbLygowMXFpdi4TgP6iZOTE4IgPHGZ/dmzZ2NjY8P8+fN1HYqBWoBh9J6OGNffmuOXcrgTX0glWu2qDVGEOa84YGletX0gURQ1JfzanN9bE8jlclJTU8nLyzMYnpRCYmJiiSX8u6ICyhwDp0tEpQrnQa0I+fEUZ8+eZerUqbz55ps0btwYK6uiDa7aVg5naWSGs5kdCbmpJT7vPKAlzgNKvqH3fm8g3u8N1HzfbW/5RkcZ21viNXNAxYNVX7eMDQpdEBUVxTfffMPMmTPx8PCgUaNGNG/enKCgIC5duoSvr+9jzxdFkcTcVG6kxxCWHktkehyZhTnkqwqRCBJMpUbUNbOjiY0r3jaueNrUw1xmUmZcaWlpACW2j/z0009MnTqVSZMmsWbNmlrxXvtXdKDeiz+VKHLhXjgxWcm4Wur/hp+vry//+9//CA8Px8vLq1znZGZmcuvWrWqd1NC7d28WLVrE9evXadasWbVdp6a5evUq+fn5tGjRQtehGCgDIyMj6tSp80SJ/ePHj/Pnn3+yYcMGrK3L9sgxYMAg9nWETCrw0asOvPm1/rwBSSTQr4MFHZtXvZ/23LlzxMTE1BoX/gdRu28nJCTg5uam22D0FHVm/0GyC/PYH3Neb4U+gCCVYNfOnVtGxzlw4AALFizg1Vdf1RuzvcrSws6NpNx0VOjvv70aW2ML6pjqX5n57NmzsbOz4+OPPwbA3d2dpKQkFi1axMiRI1m3bh1vvfXWI5tctzMT2BUVwKHYi2QpikwLS9vwkgpRHLl7GRERAWhs5cIIt670rfdMqcK/pMy+KIp8/fXXfPzxx8yaNYvFixfXmk2qPVFn9bJX/2GkgoS/Y8/xZpPBug6lTPr164eZmRm7d+/m/fffL9c5oaGhQPWY86np2rUrRkZG+Pv7P1FiPzAwEGNjY9q0aaPrUAyUg4CAAE05f21HoVAwffp0OnfurPEdMmCgLAxiX4c0qmfMxCE2rN2TrutQkEjAzkrCm8O1Yx7o5+eHk5MT3bt318p6NYla7MfHxxvEfikkJiY+khE6dPciBapCHUVUfiQIzPnjOz7r8wagP676VaGPS1uOxF3WdRhlIhEk9K/XTtdhPIK/vz/btm1j48aNmgoPNzc39u7dy82bNzE1NSU/P5/+/fvj7++Pja0NJ+KD2XbnNMEptx4R96VteD34uAjczIzjuxA/Vvyzm8GuHRjp1o0GlsU3E9RiX53BEUWRuXPn8u233/L5558zb968WiP0U/IzScxLq9A5acExXJu3DURo+EpXXJ/vABRV6QR/sJXMsARMHK1o++N4CtNzid50lvRrsRSm5SI1M8K8gQP1hj+LQ6fGFbquUlQRnHK7QufoCnNzc/r161chsR8cHIxEIqlWEW5hYUHHjh05duwY77zzTrVdp6YJDAykbdu2mJiUXZljQPfo6/jRyrB69WquXbvG+fPna5XxtQHdYnil6JgXBlgzsLOFTvv3JQKYmwiIUd9ib2tKu3btWLBgAcePHycvL6/C66lL+EeOHFkrykof5kGxb6BkSsrsH4u7optgKogowHUSdR2GVulctxl1TPS/nE8lqvBt2FnXYRTjwUzJSy+9pHnczc2NqKgozpw5Q6dOnThy5AixsbEMfHEEb51axieXfuPav2KwstUs6vx2nrKAnVEBvHLiWzZEHEahUmqOSUtLw9LSEplMhlKp5K233uLbb79l2bJlzJ8/v9YIfYCwtJgKn2PbyhWXoW0BiN4UqJkAEbvtPJlhCSCA58wBSM2MuTZ/O8nHb1CYnot5AwdElUhG6F2uf7WHrH/Pqwjh6bGo9LhS6UF8fX0JCAgo94ixkJAQvLy8qr1VzcfHh+PHj1dqNKC+EhQURKdOnXQdhoGnjOTkZObPn8/rr7/Os88+q+twDNQiDGJfxwiCwKyX7OndXjemSlIJmJkKLH63LqOHdUEURS5evMgXX3yBj48PVlZWdOvWjS1btpR7zQsXLhAVFVUrS/gBHBwcMDIyMoj9UhBF8ZGefVEUCUuPKbU4Ny04htPDlnB66BJi/M79d55SxdXZmzk9dAnnX1uLIief+P3BBM/ZSsDoFZweWnROTkzJzsf3z0YSPPdPzo75kYBRy7kw+X/F1i+N+NwUsgpzyzyutiAVJIxw64ZEL20/i5AIAs84eD6SudY1q1evJjQ0lBUrVhQTzm5ubhQUFHD69Gm6dOlC02ZN+WjHMqSTW3M9NRpAq+XoKlGFUlTxa9h+Xj+1hJsZcUBRZt/GxobCwkJefvll1q5dy/r165k+fbrWrl1ThKXHVsqF321CN8xc7REVSsJ+OEBmeALRWwIBcBn2DLYtXSm4n0V+YgYADV/sTNtlL9H0o6FFC4hQkJxZ4evmKQu4m32/wufpgiFDhgDw119/lev4kJCQau3XV9O7d29SUlKKTTypzSQnJ3Pz5k06duyo61AMPGXMmzcPgC+//FLHkRiobRjK+PUAqUTgwwkOWJpJ2H0yCwFqpKNRIgErCwk/zKiLm9wIT9exfPTRR9y+fVuzC69QKDhz5gxubm6MGzeuXOv6+fnh6OhIjx49qjP8akMQBJydnQ1ivxSysrLIy8srltm/m3OPXGVBqeeos3Nxey4TvSkQ+3buWLg7PpKdk5mbkHrxDlm3kjCyMSc/KaPUNWN3XuTOupMAGNmZY2xnSWF6DunBMZpS38cRkX6XtnWenPK+IQ06si78QJHLph6iEkVGuZXt1l+T3Lt3j/nz5zNp0qRHMiXqFp579+7RrktHZgSu5nJGJBKj6q1WEoE7WQlMOvUD77UcTXp6OtbW1owYMYJDhw7h5+fHyJEjqzWG6iIsPbZSkzokxjK8Zz3H1dlbyLlzj5AP/0RUqDB3tddMgDC2s8BUbktefBpRm86SfCqcvMR0BKkEp95NsXvWrdIx1waTPicnJ7p06cLOfbt5xrcnYemxhKXHcCMthqzCXApUCiSCgLHECEdTG5Jam9HU24tbGfE0sHRCJqme13WnTp0wMTHB39//iehxDwoKAjBk9g3UKBcvXuSXX35h2bJltWJKkAH9wiD29QSJRGD6WDtaNDZh6eYUcgvEanPpV28mdG9txrvj7LG1KvqQFwSBWbNmMX36dI1bsiAIeHl58dNPP5VrbVEU8fPzY8SIEchktfflJZfLiYuL03UYekliYlEJ/IOZ/bD02DLPc5vQjdTLUeTGpBD2wwE8p/V7JDsH/46HszUnyf86EcsOlbhWfnImURuKRmM1mtwL+ZA2mqysIqf0TQc1EgRupMc8UWLf3sSK8R592RBxSO/sz6SChBZ2bnRz1i/36vnz5yOKYomZErXYl1mbstPsOlH3y1cerQ3UbQHfBv+JbZ0c7t69S1RUFH/99Rf9+/evsTi0TXJeGmIlX52WHnVxHduB6E2BqAqUIBHwmvUcEuOizxlBKqHlV6O5/uUesiKTyL5V9PsysjHDorETgrTiFQUCAmkFFa8IqGlUooqL9yKQv9OdeItcpp39CQEBiSCU0GKSy/38DBz6NOGaJJsJJ7/DQmbK0AadGN6wC/Us6mg1NlNTU7p27Yq/vz8zZ5Zv2oc+ExQUhJOTk8HPx0CNoVKpmDZtGs2bN2fKlCm6DsdALcRQxq9HCIJAn/YWbPjUhU4tihzxJVquypVIwNJcwqev1+HTNxw1Ql/NhAkTMDMz08QjiiINGjQot3C/ePEid+7cqbUl/Grkcrkhs18K6p7QB8X+rYx4ZGWU56qzc4JUUmp2DsDEwbLMG/N7ZyMQlSokpkZkhiUQ9NJqgl5ZQ9j3+1Hll20SKAgCtzL1ZxKGtnjFsy9uls5IKlEqXZ1IBQkftX5Br+K6fPkya9as4bPPPitxjKSVlRXmdla0+Xos0bnJOnOQT2tjiXVvTw4fPlyrhT5AvrJqBp65cWn/faMSyXug8kdUiUT+dJSsyCRchrWls99UmswdTGF6LrdW+3P/bGSFrycRhCrHXJ3kKwv589YJxh37illBa0i2LkT417RLRHy8l8QDNxfZijz+vH2Scf5fMStwNeeSw7Qap4+PDydOnEChUGh1XV0QGBhIx44da5VXhoHiFBSUnRDQJ/744w/Onj3LihUranUSzYDu0J87LwMa7G2kfPFmHRa8UQevBsZAUW99ZVF/JpmZCIzsZcWGT+X0fKZkjwArKysmTpwIFLmUL168mICAAHr27FmuTPe2bduoU6cOvXr1qnzAeoBB7JeOOrP/YBl/rjIfytEvrs7OASVm58pLbmzRTHlVXiH3zoRjbGeBIjOP5OM3CF2wC5VC+djzVaKKXEV+ha5ZGzCSyJjf9iW9K+V/p9kwXCwcdB2GBlEUmT59Ok2bNuXtt98u8RilqMJz7iBM6tvqfJyk26Qe5LpVfSRqbebemQiSj98AwMSpyIwy8qejFKRmA5B2NZrUC0WGiU69myE1NaJOVy+k5saa5yuDvo4J/Cc1ildPfseP/+wmIbfI06Qqr1O1EeHF+5G8F7SGzy//TkZBtlZi9fHxISMjg8uX9X9iyONQKpUGc75aRkxMDNu2bSMiIgKAH3/8kVGjRtGtWzdOnDih4+jKJiMjgzlz5jBmzJhaf19tQHcYxL6eIggCPdqas/IDZ9Z86MxznS0wkqmfK8rQP44HNwcauRjx/sv2bF9Uj7dH2z2SzX+Y6dOnU7duXf744w/ee+89Tp8+TUJCAh07duTq1aulnveklPADuLi4GMR+KSQlJSGRSLC3t9c8VqBSlrs893HZufIiPtDj4jm9P8/89Aqe0/oBkH0riYzrj9+YEqFWjAmsDJ429Zjk/ZyuwwCK2iWerePJ8IZddB1KMbZs2cLp06dZunRpqaMXf/vnIJZN5ZpMqU4RRb69+if38nQ/prUqGEsrN+ayIDWbyJVHAbBr507r78YiszJFkZFL5I9HAFDm/Ld5lxVZtCGZezcVZW5RFk9iWvFri6KIiUS/RnPmKwtZff0v3jqznLic+4ho1+NHLfqPxl3mxePfcDrhWpXXbN++PRYWFhw7dqzKa+mSGzdukJmZaRD7tYglS5YwZswYbty4QXx8PAsXLmTfvn0EBAQwe/ZsEhL0u8Jv4cKFpKen89133+k6FAO1mNqtyJ4SPF2Nee8lB94eZUd4dAHhMQWERxfwz+187qUpUSiKPuylkqLsfeP6xjRpaIxXA2O8GhpTz7FiNyteXl7Ex8drytTatGnDuXPnGDp0KN26dWPr1q0MGjTokfMuX77MrVu3WLVqlTZ+bJ0il8tJTk5GoVDU+o0LbZOUlISjo2OxsYpSQYJQjsz+w9m5/KQMIn86inVTF4ztLModg4mDpeZrS8+iCgNLL2fNY/mJGdDy8WvIhNo3FrK8jPfoS1JuGrujz+osBokgwcNKzlftJupV+X52djbvv/8+I0aMoF+/fiUeE5WVyPrbR/SnVFcQyFHmM/n0Ul5q3Jsmtq542dTHSFK73ptsjS0qZUAbseIwioxcZFameE7ri7G9JR5v9+HGon2knLtFwqFrOHRqjMzSBEVWPpErjxK39zJ5iRkggiCT4NjDu8LxqhCxNtbNpJySSMnPZGbgKm5nJiIiVmsBj0oUySjI4cML6xjj3pN3mg2t9N+xsbEx3bp1w9/fnw8++EDLkdYcQUFBCIJA+/btdR2KgXKiFvMtW7YkKCiIlJQUvv76awIDA9m9ezd37tzB2dm5jFV0Q1hYGEuXLuWTTz6hQYMGug7HQC2mdt0pPOWYmUpo7WVKa6/ic3FFsehDX6LFBv+Hb3JdXFw4efIkL774IkOHDmXZsmVMnTq12DF+fn7Y29vj4+OjtTh0hVwu14yYq1evnq7D0SseHrsHYFwO0fFwds5zWl8uTd2oyc41m+9b7hhsWzcgelORuV9WZCLm9e012TwAMxfbx54vQcCkklnG2oAgCMxsOQqFqGRfTNmjCLWNBIHGVnJ+6PQW5rLqneNdUb7++mvu3bvH999/X+LzSlHFwsubikxK9UTrq0nOS2dp6E4ArI3M8W3YhWENOuFsbl/GmfqBt40rF+9FVKjcPOFgCKnni8rzG0/pjbF90UZfnW5eOAbdJPn4DW6vPYFta1dafTuWmD/PkRF6l9y4NGSWJti0qI/r2A5YNqrcyEdPa/14/0/MTWVawE8kVcHksKKor/Pn7RNkFubwQeuxlRqdCEUj+D777DMKCgowNjbWZpg1RmBgIM2bN8fKykrXoRgoJ+p7WZVKRV5eHgqFgmHDhmFjY8Pu3buJjo7Wy0oNURR59913qV+/PrNnz9Z1OAZqOQax/wQgCAI1kYCysLBgx44dzJkzh2nTphEeHs6SJUuQSqWIosi2bdsYMWJEqWWxtQm5XA5AfHy8Qew/RFJSUrF+fQAXcweU4uP75MuTnXPu34Lb609xPyACZe5/Zfahn+5AkElwGdIWl2FtsW5WD/uOjUkJuknEskPEbjtP7t2iPn6b1q5YN3v870wQhFojkCqLVJDwQauxWBtZsPmWPwJCjYmEVvaN+Kb9JCyM9Evo37x5k++++445c+bg7u5e4jGH717iRnqM3gn9h8kozOGPyKP8HnmUzk5NmeDZj2Z2DXUd1mPxtqlf4b5y5wEtcR5QcpmO93sD8X5v4COPaQsjiYyGlnXLPrCaSc3PZPrZlSTlpenMP2J/7HmMJDJmtxxdqYoXHx8fPvjgA86fP0/Xrvo1grO8BAYG6qUwNFA69evXB8Df35/w8HDMzMzIy8vTbDhlZ2vHl0Lb7N27l4MHD7Jr1y5MTfXrc9RA7UN/aisN1AqkUinff/89K1euZOXKlfj6+pKZmcnVq1eJjIys9S78ah4U+waKU1Jm38um/mNl5GOzc72aAHB77QnyEtMpTM0hLz6dwrQczfn5yZlFj2XlaR5rMmcQ9Ue1w9jWgty4NEzr2uA6tiPN5g8v82dQiiq8beqX8yeuvQiCwNvNhvJdhzewNbZEUo0KVipIkAlS3mk6jKWdp+id0Ad47733cHJyYu7cuaUes+32yXK1pOgDqqJibgKTb/DWmeWsur5Xr93ja9vfXGMrebXNny8vCpWS94J+JjE3VedGkXuiz/L7zaOVOrdt27bY2Njg7++v5ahqhszMTEJDQw1iv5bRtm1bAN555x2+++476tSpg7GxMVeuXAHAxMREh9GVTF5eHjNnzqR///4MGzZM1+EYeAIwZPYNVIopU6bQqFEjnn/+ebp370737t2xs7Ojd+/eug5NKzg5OSGRSAxivwSSkpJ49tlnNd+Lokj81ZugEkudFVmR7JzXzAF4zRxQZhwSYxlur3bH7dXuFfwJ/r2ujWulzquNdHJqyh8+c1kRuov9seeRChKtCQd1xYCXTX3mtXmRBpaVK5eubg4dOsTu3bvZsmULFhYl+0OEpcUQlh5bw5FVHbWp2uabxzmZEMK8Ni/RXA+z/HXN7LA2MiejMKfsg3WMVJDQws5N12GwMfIIkRl39WYmwK9hB+js1AwPa5cKnSeTyejRowfHjh1j3rx51RRd9XHhwgVUKhUdO3bUdSgGKkDPnj15++232blzJ46OjkyePJnmzZszffp0Bg4cqJe/z++//57o6Gj27dunP74xBmo1hsy+gUozYMAAAgICSElJYdWqVXTr1u2JKOGHogoGJycng9gvAXVmPz09nR9//JEWLVrQz6cPiqQsXYdWbixkpjib2ek6jBrFysiMj9q8wPLOb9PFqRkCQpUy/ereXU/renzU+gVWdZ2ut0K/sLCQd999lx49ejBmzJhSj9sZdabSPcn6gIhIXM59ppxZzt868GooC0EQGOTaQa8MG0tDKap4rn47ncYQkX6X9eGH9Eboq1l4+Q8Uqse3bZWEj48PAQEB5OXllX2wnhEYGIiVlRVNmzbVdSgGKoBcLmfp0qUsWLCANm3acOvWLd566y02btxIy5Yti00V0gdiYmL46quvePfdd2nSpImuwzHwhGDI7BuoEi1atGD9+vX06dNHkznz9S2/0Zo+I5fLiYt7/Ai3p42CggJSU1PZv38/CxcuJC8vjxEjRrBixQqu1c1gx53TOi81LQupIOHZOp5P7Y55WwcP2jp4kJibyt7oQHZHBZD27zztx2X8H3zOWCKjr8szjHDrShNb/a+Q+PHHHwkPD2fLli2l/t4VKiWH717W+9dvWaj+tWj/+uoWchX5jHKvXOVLdTG8YRe23Dqu6zAei4CAp3U9vHX42laolHxx5Y+i12t12u5XEKWo4lZmPBsjjzDRq+wKrAfp3bs3+fn5nD17ttYZ+QYFBdGhQ4diU2gM1A5SUlIICAjgt99+K/b4vn37+O2332jWrJmOInuU999/HysrKz755BNdh2LgCcIg9g1UGX9/f2xtbfHx8WHEiBEsXryYmTNn1noxJZfLDZn9f8nLy8PPz4+lS5cCcO3aNebMmcPrr7+Oi0tROWfjrET8bp/UYZTlQymqGOFWOw2itEldMzte9x7IJK/niM9N0ZSwX02K5Nz1KzjXl2NiaoqJxAgrY3Oa2LjibeuKt0193Czr6ryXubwkJiayYMEC3nzzTVq3bl3qcdFZSRSoSu93TwuO4dq8bSBCw1e64vp8BwBEpYrgD7aSGZaAiaMVbX8cT/KJMJL9r5N1KwlVvgKAZ1ZOwNy1eBbp5hp/0q/FkhN9H1QiRrbmdNz4phZ+6iKWhu7EVGrM4Ab6U6paz6IO7et4cfF+pKb9QN8QERmt402Sg3cvcjtTP2eAi8BvEUcY6dYNG+Pyj0xt2bIlDg4O+Pv71yqxL4oigYGBTJo0SdehGKggoiiyceNGNmzYgKmpKe3atcPc3JygoCAuXbrEggUL+PPPP3UdJgAnTpxg69atrF+/Hmtra12HY+AJwiD2DVQJURTx8/PD19eXdevW8fHHH/Pee+8RHh7OihUranVZv1wu5+rVq7oOQ6fcvHmTNWvWsG7dOu7fv0+HDkUC56+//qJz587Fjm1oWZc29o0JTrmFSu8KT4sQALm5A886eOo6FL1BEARczB1wMXfAx6UNN4QbNO01k5MnT9K9u35lhSvDxx9/jFQq5YsvvnjscWX16tu2csVlaFvi9lwmelMg9u3csXB3JHbbeTLDEkAAz5kDkJmbkHrxDlm3kjCyMSc/KaPUNZP8ryORSTCyMqUwPbdSP19ZLAr+ExdzB9rW8aiW9SvDaPcenL8XruswSkQALGRm9HYpfWOouhFFUWMUWVMTNCqKUlSxLyaIFxuX36dHIpHQq1cvjh07xueff16N0WmXqKgoEhMTDeZ8tRBBEPjtt98wNTXlgw8+YNiwYVhaWhIfH8+4cePYt28fhYWFOr9XVSgUTJs2jU6dOjF+/HidxmLgyUP/G+cM6DXXrl0jLCyM559/HolEwtdff83atWv59ddfGTJkCOnp6boOsdK4uLg8lZl9pVLJnj17eO655/Dw8GDt2rW88sorhIWFaW7QShtHOMq9m94KfTWj3brX+qqT6iQlJQVA73oZK8P58+dZt24dCxcuxMHB4bHH3kiPQVZGL7nbhG6YudojKpSE/XCAzPAEorcEAuAy7BlsWxaVfTee0pvOW9+hwQuPFwfPrBhPx9/fwu7ZkscAagMBWHhlEzmK/Gq7RkXp7NSUjo5N9NIfQQRmtBiBiVR3s+Cvp0UTmRGnt0Ifiqoftt8+XeHqDB8fH4KCgvR25FlJBAUFAeilmZuBsklNTUUQBD799FPatm2Lp6cnPXr0wNvbm9zcXO7fv6/rEFm9ejXXrl1jxYoVSCT6975ooHZjeEUZqBLbtm3DxsaGfv36aR6bNGkSBw8e5Ny5c3Tt2pU7d+7oLsAqIJfLSUxMRKXSz1JTbZOQkMCXX36Ju7s7vr6+pKSksG7dOmJjY/nhhx/w8vIiMTER4JHRe2q61W1BPXMHJHoopgXAysic51zb6zoUvSY1NRUAO7vabWCoUqmYPn06LVq0YPLkyWUeH54ei6IM4SIxluE96zkEqYScO/cI+fBPRIUKc1d73F75rzXExMESQVr2x6uJo1XZP0gVUSFyLy+d1df/qvZrlRdBEJjbeiwmEiO9GnIoFSR0cWpG/3rPln1wNVJbjCKT8tI4lxxWoXN69+6NQqHg9OnT1RSV9gkMDMTd3b3Uzz0D+o1cLic3N5ctW7Zw9+5dYmNj2bp1K7dv38bExITMzEydxnfv3j3mz5/PpEmTaNdOt6agBp5M9P/TxIBeoy7hNzYungXp3bs3Z8+eJTc3l44dO2p2xmsTcrkchULBvXv3dB1KtSGKIidOnGDcuHG4urry5Zdf0q9fP86fP8+5c+eYOHEi5ubmmuOTkpKwtrbG1LTkGeoyiZR5bV/SJz8pDSIwp9UYrIzMdB2KXqPO7Nd2sf/7778TGBjI8uXLkcnK7ljLKCjfODhLj7q4ji1qZ1EVKEEi4DXrOSTG+tsVp0JkZ9QZLt2L0HUoGuqY2jCjxUi9yV0LgInUiPdbjdFp5Y9SVOEfd7VWGEVKBQnH4q5U6JwmTZrg7OyMv79/9QRVDQQGBhpK+Gsx6mTUW2+9xVtvvcXbb7/NRx99RHR0NIMGDdL5Z93HH3+MKIp89dVXOo3DwJOL/t6dGNB7QkNDuX79OosWLSrx+SZNmhAYGMjw4cPp1asXGzduZPTo0TUcZeWRy+UAxMfHP3E7+unp6WzcuJFVq1bxzz//4OXlxXfffceECRMe+8GnHrv3OFrYuTG2UU+23jqhN2WoEkFCL+dW9JS30nUoek9qaiqmpqaYmdXeTZHMzEw++OADxowZQ69evcp1zuPM+R4mNy7tv29UInlJGVh61K1YkDWMBIE1N/axptsMXYei4bn67QhI+ocT8cE6f68QgQ9bj2w5/o8AAQAASURBVKOOqW6NsWKyksnXhlHkivFEbzpLeuhd8pMyUOUXYlzHCsfu3tQb2Q6Z+X8b9JU1ilSKKv5Ji6rQzycIAj4+PrVG7Ofn53P58mVeeOEFXYdioJK88cYbRERE4Ofnx759+zSPN2rUiDlz5lCnTh2dxXbp0iV++eUXli5diqOjo87iMPBkY8jsG6g0fn5+WFtb079//1KPcXR05OjRo4wYMYLnn3+eb775BlEf074l8KDYf1K4cuUKb775JvXq1WPGjBk0bdqUI0eOcOPGDWbMmFHmDndSUhJ165Ytal73fg4Xc3u9mKctQcBSZsrMliN1HUqtIDU1VeeZjqqycOFC0tPT+e6778p9jlDOgvJ7ZyJIPn4DABOnImEY+dNRClL1uwdZhcg/adFEpN/VdSgaBEFgfpuXaOvgga73BWe1GEUvue5M+dSEpcc89nm1USRA9KZAsm8nAzxiFKnIyiNuz2Vyou9jUscKiakxeXFpxGwNIuzbfcXWTPK/TmFqNkZWJVdsPY6YrGTylQUVOsfHx4cLFy7UCk+fq1evkp+fb8js11JEUaRhw4b88MMPfPbZZ7z00ktMnjyZ77//np07d/LMM8/oNLZp06bRrFkz3n77bZ3FYeDJx5DZN1Bptm3bxrBhwzAxMXnscaampvzxxx94enry4YcfEhERwapVqx4p/dc3nJ2dgdov9tVj81atWsXZs2dxcXHh/fff5/XXXy/VaK80ypPZBzCRGvN1+0lMObOcXEW+zkz7BEAqkfJVu9ewNbbUSQy1jZSUlFptzhceHs6SJUuYN28eDRo0KPd5xpKyPw4LUrOJXHkUALt27nhO68ulqRtRZOQS+eMRms33rXTcNYFUkLAr6gzvtxqj61A0GEmkCDsiSLWJwr5NQ528U8xoPkJvxnGGpcciEySP9Y9wm9CN1MtR5MakEPbDATyn9XvEKLIgNRu3id1xfq4VMnNjVAUKQj7aRmZYPKkX76DIykNmWSTun1kxHhNHK8KXHCTp2D8VileFSGRGHM3t3Mp9jo+PDyqVilOnTjFkyJAKXa+mCQwMxNjY+LFjOw3oL+qWnHr16jF//nwdR1OcP/74g4CAAI4dO1auVjMDBiqL4dVloFJcv36d0NDQcvcYCYLAZ599hoeHB5MmTeL27dts375drzOIxsbGODg41Fqx//DYvL59+7J9+3aGDh1a6TEzSUlJmvF7ZeFu5cySTm8x/exKClSFqGq4okNAQCIIfNVuIq0dGtXotWsztT2zP3PmTM2G1oOoVCri4+O5ffs2d+7c4fbt25r/7ty5g8XEtti2aYggKT3DH7HiMIqMXGRWpnhO64uxvSUeb/fhxqJ9pJy7RcKhazj3b8Ht9ae4HxCBMve/cuzQT3cgyCS4DGmLy7CizGzwh34U3M+kMK1o7F5hRi4XJq8DwPu9gVh5y7X6b6MUVRyIvcCUpkOx1BPvioULF7Js8RKW/biCVBcbjsRdRqD6E/1SQYKAwAetx/Jcff0xxYrMiCu3UeTV2VtKNYo0trOg/sh2xc6x9KxLZlg8SAR4wPG7qkaRNzPiKyT2GzdujKurK8eOHasVYv+ZZ54pM6lhQL8pLCwkMDCQ0NBQYmJiiImJITY2lrCwMDp27MiOHTtqNJ7MzEzmzJnD888/j4+PT41e28DTh0HsG6gUfn5+WFlZPbaEvyTGjx9Pw4YNGTFiBJ07d2bfvn00bty4mqKsOnK5nLi4OF2HUW6USiV///03K1eu5ODBg9jY2DBx4kTeeustvLy8qrx+YmJiucr41TS1bcCPXaYyI3AVuYr8GjOdkiAgk0hZ1P512jlW/ed+mqitmX1RFNm8eTN///03s2bNYvny5cXEfFRUFPn5/42fc3R0xM3NDXd3dzp27EhaYwuuqe4XCaESSDgYQur520DRaD1j+6JKkTrdvHAMukny8RvcXnsC29auFKbmkBdfvEQ5P7nI8bkwK++/x5IyyE/K+O8glag5T1mgqPo/SgkUqBRcuBeuFyXry5Yt45NPPuHLL79k+jtTEUWRbs4tWBzsR46yoMJj3SqCt40r89q8iKulfvXJZhfmlus4tVFk9KbAchlFFqTlcD+gyKDRsbt3sZ79qiARBHKUFRvrWJv69oOCghg2bJiuwzBQBURRZNeuXUybNo2kpKRHng8ODq7xmBYuXEhaWhqLFy+u8WsbePowiH0DlcLPz4+hQ4eW6sr+OHr06EFgYCCDBw+mY8eO7Nq1i27dulVDlFVHLpfXisx+YmIia9eu5eeffyY6Opr27dvz66+/Mnbs2GJu+lVBFEWSkpIqbFbobVOfn7vO4LPLv5fZj6oNBARcLBxY0HY83rau1X69J43U1FQ8PT11HUaJpKenFxPwD2fn1bO7f/jhB6ytrXF3d8fd3Z3Bgwfj7u6uEfdubm5YWhZv69h66RChcQdKvbbzgJY4D2hZ4nPe7w3E+72Bmu+9Zg7Aa+YAzfcPmqpJjKSax9v9PLG4qdqP40k+EUay/3X++WwXqvwiwf/MygmYuxbfgEm7Gk3stvNk37mHIisfI2tTrJrIafBCZyzcSjeckgoSwtJjdS72169fz4wZM5gzZw4ffvghUCQC+7i05RkHDxaHbONkQghSQaK9TUIRUKqY2nI4oxv10Mvxdo8z53uY8hpF5sanEbpgJwUp2Vg3daHx2320EGkRAgIFyvLHrKZ379789ttv3L9/HwcHB63Fo02SkpK4desWHTt21HUoBqpAamoq7733HklJSbRq1YpGjRphZ2eHnZ0dVlZWuLi41Gg8YWFhLFmyhPnz51eo1cyAgcpiEPsGKsyNGze4du0aX3zxRaXX8PT0JDAwkJEjR9KnTx/+97//8eKLL2oxSu0gl8uJiNCfcVUPIooip06dYuXKlezYsQOpVMqLL77IlClTqmVWa1paGgqFokKZfTWulo6s6fYuW28d55cb+xERtZ7llwgSRFHkxcY+TPQagIm0cq0KTzspKSk6K+PPyckpJuIf/jo1NVVzrJmZmUa49+rVizt37rB//342b95Mv379KvwzJF+7A9VU0KA2VYvbc5noTYHYt3PHwt3xEVM1mbkJqRfvkHUrCSMb8+JZ/wfIvZtK6IJdiAolMksTzBs4kBN9j/sBkWSE3qXDhskI0pKFrFJUcT0tunp+0HKyfft2Jk2axOTJk/nmm28eGXVnZ2LFwmdf5UrKTXbcOcPJ+KLMW2W8PyQIqBApzMylp3Uzlr72EWa/9kbaWP+EPoBUkJZ9EI8aReYnZRD501Gsm7pgbGehOS7jRhz/fLEHRUYu9h0a4f3+IKSm2n1vLG/MD6IuXT5x4gQjR+qneap6ZLDBnK92Y2lpyd27d3F3d2fZsmW4urpibm6OiYkJxsbGNdqiIYoiM2bMoF69esyePbvGrmvg6cYg9g1UmG3btmFpacmAAQPKPvgx2Nvbc+jQISZPnsxLL71EREQEn3zyiU5nHD+Mi4sLJ0+e1HUYxcjIyNCMzQsNDcXLy4tvv/22zLF5VSUxMRGg0mMIpYKEFxv3pmvd5iwO3saVlJtaydqp12hsJWd2y9E0s2tYpfWedlJTU6utjL+goIDo6OhSs/MPllgaGRnRsGFD3NzcaNeuHc8//3yx7LyTk5PmvSI+Ph4vLy+mTp3KmDGVM5+7evoCql5GSKyr58avPKZq8G+LgK05Sf7XiVh2qMS1MsMTEBVKAJovGIGVt5yoPwKI2RJEYWYeyrxCZBal/xw30mIQRVEn77UHDx7khRdeYMyYMaxcubLUGARBoK2DB20dPLiXl8Ff0YEciD3P3Zz7Rc//68nx8PvHg+8pRoKUZnYN8cy2ZeaIV1kfco3zLXfy8ccfM2TIECQS/RP8puXYpCyvUeS9M+GE/3AAVYES+ZA2NHqj12M9KSqDShQxkVb8VrJBgwY0btwYf39/vRb7devWpWFDw2dKbcbY2BgfHx9SU1Pp2bOnTmP566+/OHDgADt37qzV420N1C4MYt9AhVGX8GvjjcrY2Jj//e9/eHp6Mm/ePCIjI1m7dq3emOGoy/h1dWP8IFeuXGHVqlX88ccf5OXlMXz4cJYtW0bv3r1rJDa1EKtMZv9BGlrWZUWXd7iVEc+uqAD+jjlXVLqqVEEp2ciHkQoSVKKIVJDQt15bhjfsSjPbBjr/HdV2RFGskkGfUqnk7t27pYr5u3fvakZvSiQS6tevj7u7O02aNGHgwIHFxLyLiwtSafkyhnPnzsXU1JQFCxZUKm6AswEBeHn14r61UC3TI8pjqgZg4lD21Agrb2cEmRRRoST0s12YOFqTE30PqYUJDcd3eazQB8hW5JFakIW9SdWM2SrKmTNnGDFiBP379+e3334r9++3jqk1r3r151Wv/mQX5hGeEUtYeiw3M+LIKswjT1mAVJBgKjXCwcQab1tXvG3q09CyLjKJlNjYWGYolERGRvLVV1/RuXNntmzZopfVZC7mDtxIj32sX0F5jCLtnnXjxqJ9IIIgk5IVkUDwnC2aNRq/1VtT8l8Vo0gRkbpmldsc9PHx4dixY5U6tyYIDAykY8eOhs+VJ4BXX32VN998kylTptC6dWtyc3O5d+8eqamp3Lx5k3Xr1lV4OlFFycvLY8aMGfTv3x9fX/2e3GLgycIg9g1UiPDwcIKDg/n000+1tqYgCHz88cc0btyYV199lTt37rBz507q1Cm977SmkMvl5Ofnk5aWppPS5ry8PLZt28bKlSurPDavqlQ1s/8wjazlzGo5ireaDmZP2Gnmr15E097tyDAuLDXbL6pE6kgtaV+vGc1sG+Dj0towUk+L5OTkUFBQUGpmXxRFEhMTH+mVV38dHR2NQvGfsZyzs7NGwHfv3l3TQ+/m5oarq6tWxm+ePXuW3377jTVr1lT6bzQtLY3Q0FDecZrBFq5XOabSqKipWmmYudjRYuFIbnz9F4XpuSgyi0z/TFwsMXctX/9znqIAanBP9fLlywwaNIiOHTvi5+dX6YkgFkammox/eXFxccHc3Jzw8HCGDBnCsGHD+OSTT3j++ecrHUd14W3jytG4K6U+XxGjSPWelahQFrWLPIAit0DzdVWNIr1t6pfnR3sEHx8f1q5dW2Hj15pAqVRy7tw5jZ+EgdrNvn37yM3NZc2aNUDRfacoikilUpRKJbdu3ar2e6offviB6Oho9u3bZ9hAMlCjGMS+gQqxbds2LCwsGDhwYNkHV5Bx48bRsGFDfH196dSpE/v27cPb21vr16kIcnlRRiM+Pr5Gxf6tW7dYs2YNv/76K/fv36dPnz5VHptXVZKSkjAyMsLW1lar65rLTMk6e4dbK48R8MkmbOztuJ0ZT1pBFvnKQkTARGqEhdSUTo1bs/jrRUwZ/IJWYzBQREpKCgD37t1j27ZtJfbN5+X95yZvb2+vEfBt27YtJubd3NyqvUxRpVIxffp02rZty6RJkyq9ztmzZwHo27kncRlGnEoIqbbJEeU1VXsc+feziFh2mML0XLznDMK+fSOiNp4hbs9l/vlsF+1+magRgaWuUQEjuKpy48YNBgwYgLe3N3v27Knx8lWJRIKHh4fGf+WLL76gTZs2/O9//2Py5Mk1GktZeNvUR3xMZUlFjCK77Z1Zrmu2/7XyfztWRuY4mtpU6lx1376/vz/jxo2rdAzVwY0bN8jMzDT06z8hKJVFbU8NGzZEKpVibGyMhYUFdnZ25ObmVvt9VUxMDF9++SXvvvsuTZo0qdZrGTDwMAaxb6BC+Pn5MWTIkGq7WevcuTOBgYEMGTKEzp07s2PHDnr16lUt1yoPD4r9Zs2aVeu1Shqb9+qrr/LWW2/pfNMDijL7D/ZJa5Pt27fTo0cPHB2LxmCV5qJ/Lz7R0OdWRTIzM0t0sr99+zaRkZEAvPvuu0CRsZFawPfv31/ztVrQW1tb6/JHYf369Vy4cIHTp0+XuyS8JAICAnB0dMTDw4MxqTKOx1/VYpT/UV5TtbKI33eVvPg0pObGOHYvem9w6t2MuD2XURUoyLgeR52ujx85aSSp/L9XRYiKiqJfv344OTmxf/9+rKxqtnVAjZeXF+Hh4QC0atWKF154gc8//5zx48fr1XuKp03NVmxVBQFoauta6c8EuVxOkyZN9FLsBwYGIghCtZjdGqh5Jk+eTJcuXahXrx62trbY2dlhY2ODtbU1FhYWj0xn0TZz5szBysqKTz75pFqvY8BASRjEvoFyExkZyZUrV5g3b161XqdRo0YEBAQwevRo+vfvz88//8yrr75ardcsjQfFfnWRmJjIr7/+ypo1a4iOjqZdu3ZaH5unDSozdq88pKWlcfToUZYvX17msfp0U66v5OXlcefOnVIF/f379zXHmpiYaHrku3TpQufOnVmzZg3btm2jZ8+eODg46G25YVpaGnPnzuWll16ia9euZZ/wGAICAujSpQuCINDS3p1hDTrzV3SgVnv3y2uqVh6UOUVzzZW5BeTeTcWsnh1ZkYma5yUmZWepjCXVXyGUkJBA3759MTY25tChQzodsebp6cnGjRs133/22Wc0adKEVatWMWvWLJ3F9TCWRmY0tpJzKzO+GpwjtI3AMxVopyiJ3r17c+hQyUaUuiQwMJAWLVrobHPKgHbp27cvffv2LfG57OxsMjIyqm3z+sSJE2zZsoX169frfIPcwNOJQewbKDd+fn6Ym5tXSwn/w9ja2rJ//37efvttJk6cSEREBF988UWNuyebm5tjbW2tdbGvHpu3atUqtm/fjlQq5YUXXmDKlCm0b99eq9fSFtXVV7lv3z4KCwt55ZVXtL52eUhMTOT06dPcvXuXcePGlbihoVKpNCaNunbwLiwsJCYmplQx/+BrVSqV0qBBA9zd3WndujW+vr7FsvN169Yt9vPs2rWLNWvW0KNHD73wzHgcn3/+OTk5OSxatKhK6ygUCoKCgoplXN5pNpSAxFBS8jO1JvjLY6rm3L8Ft9ef4n5ABMrc/8rsQz/dgSCT4DKkLS7D2uLQ2YP4v6+CCJdn/IGpsw050UWbOCZO1ti0LLkyRo2RRFbt5nypqan079+fnJwcTp8+XeOzrB/Gy8uL2NhYcnJyMDc3x8PDg0mTJvHVV1/x+uuv69VN+Ei3bnwX4qfrMMpEIggMcu1QpTV8fHxYuXIlsbGx1K9fud7/6iAoKMhQwv8EER8fz86dO8nJyeHu3bskJCSQkJDAvXv3CAsLY8SIEWzdulXr11UoFEyfPp1OnToxfvx4ra9vwEB5MIh9A+Vm27ZtDB48uMayzUZGRvz88894eXkxZ84cIiMjWb9+fY1nd+VyOXFxcVpZ6+GxeZ6enixatIgJEyZU27gzbZGUlISHR9WyOCWxY8cOZs2aVeNVDCqVColEws6dO3n77beBovJeJycnlEplsbLwmhT4KpWKuLi4Et3s79y5Q0xMDCpVUT+5IAi4uLjg7u5O48aN6du3ryZT7+7uTr169ZDJyv82r+7Z14UZZUW4fv06K1as4PPPP6+yqVJwcDDZ2dnFqgPMZaZ83OZFZgatrmqoQMVM1QpTczTmaGrykzMBKMwq8kuwbd2A5p+O4O6ui2TfuUfu3VRM6lhh26YBDcZ1Qmry+N+5h5UcWTWW8WdlZTFo0CDi4uI4efIk7u7u1Xat8uLlVdTWEBkZSatWrQCYP38+GzZsYOnSpXpVXtu33jOs+Gc3ecqCsg/WEVJBgo+8NXZV3DRSt+n5+/vrjRjKzMzk2rVrzJgxQ9ehGNAS165dY+rUqaU+f+vWrWq57po1awgJCSEoKEjniQIDTy8GsW+gXNy6dYtLly4xd+7cGr2uIAi8//77NG7cmFdeeYULFy7QrVu3Gi0tVo/fqwpXr15l1apV/P777+Tl5eHr68vSpUvp3bt3rfkASExMrHK59MNkZ2ezf/9+jhw5UqnzyzsSUZ2ZF0URiUSCRCLRnOfj48OGDRuQy+Wa/ky10M/OzkapVHLlyhXOnj2LiYkJQ4YMwcPDo9LjGEVRJDk5uVQxHxUVRUHBfzf5Tk5OGgHfuXPnYmK+QYMGWh1TmZqaipWVVYU2CGoaURSZMWMGDRs2ZObM8hmQPY6AgACMjIx49tlniz3eztGLCZ792BBxuMrXqIipmtfMAXjNHFDmmnbPumH3rFuFY5EKEpraVd/ccPVY0NDQUPz9/avd66S8eHp6AhAREaER+/Xr1+edd95h8eLFvPPOOzptM3gQc5kJg107sCsqoNqMIquKUlQxwq1bldepU6cOrVq14tixY3oj9s+fP48oinTs2FHXoRjQEp6enjRu3Bhvb2/s7OyoU6cOOTk57NmzB4VCUS2bfffu3WP+/Pm89tpreluxaeDpQH/v6AzoFX5+fpiZmTFo0CCdXH/kyJF06dKl2gziHodcLufu3bsVPk89Nm/VqlUEBATg4uLC7NmzeeONN2p8bJ42qI6e/YMHD5Kbm0vz5s3Lfc7hw4eZO3cuCQkJLF++nFGjRlFQUIBMJkMQBFQq1SPl9iVtqKhfR40bNyY3N5crV65w4cIFevXqxf79+xk8eDBeXl707duXDRs2kJ2drbn+//73v8f+W6SlpZU4mk79dU5OjuZYW1tbjYAfOnRosVnzbm5uWFiU37itqqSkpOh9Vn/Pnj0cOnSIPXv2YGpqWuX1AgICePbZZ0tca5LXc2QU5LAz6kyVr6MvKEUVTWweX+ZfWRQKBePGjePMmTMcPHjwkQ0UXVKnTh1sbW01Jn1q5s6dy88//8w333zDd999p6PoHmW0e3d2R53VdRglIhUkeNnUp6Wdm1bW8/HxYefOnZXeQNU2QUFBWFtb07RpU12HYkBLNGzYEH9/f8zMzDA2NkYmk6FQKHj99dfp3bs3GzduZOjQoVq95rx581CpVHz11VdaXdeAgYpiEPsGyoWfnx+DBg2qUeHxMM7OzhU6/uFS7Mri4uLChQsXyn28emzeunXruHfvHn369GHbtm0MGzZM72Y6l5fc3FwyMzO13rO/Y8cOWrVqhY3N40c3iaJIQUEBJiYm5OXlERoailKp1FRcPDiv/eHfeXx8PJGRkVy7do2bN2+iVCrp1asXvr5FhmjR0dGMGjWK27dv88orr9CrVy/NVIA7d+6wYcMGxo8fj0QiYeXKlZw8eZLdu3fzxhtvlBjr5MmT+eWXXzTfm5uba8S7j48Pr732WrHsvLZHGVaF1NRUvW4nycvLY+bMmQwYMIAhQ4ZoZc0zZ84wevToEp8TBIEZLUYgk0jxu31SK9fTB56po/12HJVKxWuvvca+ffvYvXs3PXr00Po1qoIgCHh6emrG76lxdHRk1qxZfPvtt8yYMUNvNmLrWzjyuvdzrL6xT9ehPIKAwMdtXtCaMO/duzfLli3j9u3bNGrUSCtrVoXAwEA6dOhQa6ruDJSNIAglekK0b9+ehg0bsm3bNgoKCordS1SFy5cv8/PPP7NkyZJqMTY2YKAiGMS+gTK5desWFy9e5P3336/0Grl5KiJiC4iMKSQzR0VBoYgggImRgJ21FE9XI9xdjDE2qvzNwz///ENSUhLJyck8//zzSKVSrQj+8pTxq8fmrVq1igMHDmBtbc3EiRP1ZmxeVUlKSgLQ6odWQUEBe/fuLZcTtiAImnJ1Dw8PHB0dSUxMJDY2FijK9hYUFODt7c327dvZv38/r7zyCq+88grdu3d/pB9vy5YtBAYG8vXXX+Pg4ECrVq2Ijo7WzJBX33CqVCpGjBjBypUrAdiwYQP5+flcvny5xDiVSiUvvfQSffr00Qh6R0dHvchWlQd9z+x///33xMTE8Pfff2vl3zQ2Npbo6OjHtqdIBAnTmvniZGrLj9d2FV1XUjt+nw8jFSR0cPSmrpl2f8eiKDJ9+nR+//13tmzZorMKsLJ4cPzeg8yaNYsff/yRhQsXsmrVKh1EVjJjG/XiWPxVbmbE6VU5/xtNBtLQUnsbvz169EAikeDv769zsS+KIoGBgaVu5hqo3ai9eh7k+eef5969e+Tk5GhF7IuiyLRp02jWrJnGD8iAAV1iEPsGymT79u2YmpoyePDgcp8jiiKXw/I5fC6bazfzuZusAEAQQCIpms8LIAJKZdHXUgk0lBvR0sOEQV0s8XQt35tuXl4ef/75J++++y55eXnk5+ezYsUK9u3bh5WVVZVLA+VyOVlZWWRlZT0yi1U9Nu/nn38mKiqKZ599lrVr1zJu3Di9GptXVdRiX5uZ/aNHj5KRkcHIkSPLPPbGjRtcuHABhUKBl5cXjo6O3L17l/v375OWlsbw4cMB6NixI0FBQVhaWhIZGYmxsTEKhYI333yTHj164OLiwoYNG1i/fj0//vgjX3zxBTY2Ntja2qJSqUhISEAURezt7TExMfk/e+cd19T59uHrJOwtOBiioKLirHsPwL1nW2u1rbXLOurWqq3W0TqqtnXVWlurr1oR3LMKooKgddWtuBUFZG9Ict4/8ksqFWQFEuBcnw+tJOc8zx2SnPN8n3uRkZFBixYttDv+NWrU4MqVK0RFRZGenv5K6LdcLqdTp046+xuVNIbs2X/y5AmLFi1iwoQJ1K1bVydjnjmjDpNu06bNa48TBIG3a3bGb9lGnje3gCql87utFFUM1kGe9X+ZPXs2q1ev5pdffuHNN9/U+fi6onbt2jm2ebO1tWXGjBl8+eWXTJkyhZo1a+rBulcxksmZ/cY7fHBymb5NAdSbRbVsXHirRmedjmtnZ0fTpk0JCAjgww8/1OnYBeXBgwdERUVJlfjLKDKZjAcPHhASEsKTJ0+oUKECo0ePxtnZWWeb8lu3biU4OJjjx4+X2mhOibKFJPYl8kQTwv9foZsTyakqjoQms+tEMhEvFMhloHzJISGK/4r7/6JUwb2nWTx8lsWeoGTqVDdhUGdrOjW1yNXjr1Kp2LJlCzNnziQhIQFnZ2dEUeT06dP83//9H8OHD9cKfqBQF3MnJydAHQ7u4eGhHX/NmjWlpm1eUYmMVPfw1qVn39/fn1q1atGgQYPXHnfr1i0GDRrEzZs3AXXuncYD//DhQ+zs7DAyMkImk3HhwgU2bdpEhw4dqFSpEqampgQEBGBqasrly5cJDQ3l8uXLGBsbk5KSwpUrV2jSpAmVKlVCLpfz4sULoqOjqVy5MlWrVuXu3bskJiaSlZWFiYkJVatW5cqVK8TGxhIfH1/g1BJDJy4ujmrVqunbjByZNm0a1tbWOi2kFBwcjLu7u/Y7nhceFapydsFWFv71KxtvHUYhqhBLQTd0DVXM7GhRSbeRRkuWLGHRokUsW7aM0aNH63RsXePh4UF0dDTx8fGvpM98/vnnrFixgrlz57J582b9GJgD7taOtIlz5LSdbjrCFBa5IMPG2JL5zd5DLug+vN3Ly4stW7boPW8/LCwMQCrOV0YJDQ1lyZIlnDlzhqSkJMzMzFi0aBHr1q2je/e8C6PmRVJSElOnTmXIkCF4e3vrwGIJiaIjJSRJvJYHDx5w7ty5XHNaNahUIruDkhg68ylrdsbz7IXak68sROSh5pw7jzL5dlMMb896SvA/qTkeGxkZyeLFi4mJiaFVq1Zs2LCBsLAw+vTpw/fff0+vXr04cuQIgiAUegGhEQLh4eGsXr2ahg0b0rFjR86fP8/ixYt5+vQpGzduLLNCH/717Gty2YuKUqlk9+7dDB48OM/3ZdKkSdy8eZNatWqxbt06Jk6cSGJiYja7nJycyMzMpGvXrgwfPjxbYbvdu3fTqFEj+vTpw8yZM/nnn3+0YXwPHjwA1PUgTExMSEhI0G5suLm5ARAdHU1aWhqAtoVYSkoKMTExOvlbGBKxsbEG6dk/deoU27Zt49tvv9VpP/SQkJACdZhwc3PjyaPHvFW9I7u6zmWMZ19tSHxxCCBdM9KjKzId2vnzzz8zffp05syZw+TJk3U2bnGhab/337x9UNfWmDNnDv/3f//H1atXS9q0HBFFkW+//ZbvRkzF+VqW3uyQCzLMjUz5oc1nOFkUz/XB29ubZ8+e5ZhmUZKEhoZSo0YNnd3rJAyH5ORk5syZw+7du4mMjCQzM5PY2FgePnzInDlzOHfuXJHnWLhwIfHx8SxbZhjROBISIIl9iTzYuXOntt1YbkS8UDBxRRQ//hlHRpbaz6ULX5fqf4MkpKiYs+4FC397QWJK9rCA//u//+Pu3bs4OjqyZMkSvLy8qFq1KqNHj+bRo0cEBwfTs2dP7W49oO1Rnl9evHgBwMCBA5kwYQK1a9fmr7/+4ubNm0ycONEgxZGuiYyMxN7eXmchaadOneLFixd5hvCnpqZy5coVAIYPH87HH3/M+PHjtTnBsbGxpKamahfxdevWJTk5WXv+hQsX+OGHH4iLi2PUqFFcvnyZFStWaBdyjx8/BtRi39ramvT0dJ4/fw78KwweP36sHVOTz3737l3tcZqokbJAXFycweXsK5VKxo0bR4sWLXjvvfd0Nm5qaioXL16kbdu2+T7H3d0dlUrFkydPsDWx5O2andnhPYtlLT+mq0szqlpU1Jl9ukQuyHjDoSZ9qunOW7lt2zY+++wzxo0bx7x583Q2bnHycvu9nPjwww9xc3Njzpw5JWlWjqhUKiZOnMiXX37J3Llz2T7tR6Y2HAr8mwZXEsgFGbbGlqxrNx536+KLZGrfvj1GRkYEBAQU2xz5ITQ0VArhL6McOnSI4OBgqlatynfffcfJkyfZu3cvnTp14u+//yY0NLRI49++fZvly5czY8YMqlcvvvamEhIFRRL7Eq9l586d9OzZE2tr6xyfPxSSzKj5z7h+P6PYbNBoqcC/U3lv3jMu3EzXPqep4u7q6kqDBg0wNTUlOTmZn376iaysLKytrRk+fDjNmjXTenFlMhkKhSKPOUXOnz9Pu3bt6NChAwCdO3fm4cOH+Pv706VLl3JVqVfXbff8/f1xcXHBysqKQ4cOsWbNGh4+fPjKcXFxcVSsqBZQjo6OZGSoP2ea0P/k5GSio6O1OdwxMTHaEH+A58+fawvu2Nvb8/DhQ44ePUpSUhKgFu2gFvHJycnExMRw69YtAG04u6Wlpfa9HjlyJHv37iUsLIzOnTsDhUsNMURUKpVBiv0NGzZw+fJlfvrpJ51+5zQ1IAoi9jXRHpprCagL+LWqXJdZbwxjm/eXbO08A1OZYeVpGglyvmw8TGde/f3792sLYK5cubLUfAdsbGyoUqVKrt5jExMTvvnmG3bv3s3Zs2dL2Lp/yczMZMSIEfz444+sXr2ar7/+GkEQ6Fe9Dd+1+BBrYwtkJfQ3r2dXnfUdvtBpQb6csLKyomXLlgQGBhbrPK9DU3xVEvtlk/T0dNLT0+nTpw/Tpk2jdevW9OnTh7FjxwIUKaJHFEVtN4+iFLOWkCgOyo9akSgwjx49IiwsjKFDh77ynCiKbD2cwNItsWRmiYUK1y8oKhESU1RMXxXFziMPCA8Pp1YtdQup8+fPs3v3buLj4xkzZgynT59GLpfTpk0bVq5cyR9//EHnzp2ZPn06gLbHam4IgkCzZs2YPn06fn5+1KhRg0aNGhlMW6aSJjIyssDF+bKysrh37x7Hjx9nw4YNzJo1i+HDh9O2bVtWr17N06dPqV+/Pr169WLChAlcvHjxlffE0tJSmxevEWegXgyD2uv76NEj6tevD6jFfkpKivb8Ro0aaYuvLVu2jH79+iGKIk2bNgUgIkKdB+vh4cGkSZP47rvv6NatGwCTJ09GpVLxxx9/UK1aNURRxMPDgz59+lCzZk2dtHU0JBITE7XFCQ2F2NhYZs2axfvvv6/zHNrg4GCsra3zrBnxMpoNoPv37+d6jKtVZSY1HFxk+3TJ2Pr9dRZ+feLECYYMGUK/fv3YsGFDqdv0zK0iv4Zhw4ZRv359Zs2aVYJW/UtKSgr9+/fH19eX7du3v1LNu12V+vyf1ww6OzYGisfLLxdkmMiMmFB/IKvafq7z7g254eXlRWBgYIGj73TFpUuXyMzMlPL1yygODg7AvxF6mog9TQeIl9cOBeXAgQMcOnSI5cuXY25uXkRLJSR0i1SgTyJXXhfCv+VwIr/tSyhxm0RRLfrX7BHIuPcTh3bMZ9OmTcycOZNJkyYxbdo0YmJiMDIyokmTJqxYsQIHBwfMzMxQKBQsXbqUkJAQdu/ejYODQ45tWF6mX79+AKxbty7P9ntlmZw8+0qlkoiICB48eMD9+/e1P5rfnzx5ol20CYKAi4sL7u7uVKhQAZVKxfTp0+nZsyfu7u44OztjZPTq5cjOzo5WrVpx+PBh9u3bh7W1NRYWFvz2228IgkBaWhr37t3T5tJfuXKFmJgYbbh11apVWbJkCdWrVyciIoIWLVrQo0cPLC0tUSqV2o2EWrVqvRKK/F97Sov3srDExcUBGJRn/+uvvyYzM5Nvv/1W52OHhITQunXrAm3amJqa4uzsnM2znxM9q7bgdsIT/B6cLqKVRadvtdb0r/b6bgP55ezZs/Tt25eOHTuydevWHL+zho6Hhwf//PNPrs/L5XIWLFjAwIEDCQgIKNEiWzExMfTu3Ztr165x8OBBunTpkuNxdiZWzGs2Eu9nb7Dyqj8vMhKRCQKqIqYUyQUZSlFFY/saTGv0Ji6WJZuW4uXlxcKFC7l27RoNGzYs0blBHcJvamrKG2+8UeJzSxQ/mnXCgQMHmDt3rrZjkiaaT5O6V1DS09P54osv6Nq1q7YzkISEIVH67tQSJYavry/du3d/pSDWnqAkvQh9DZrljLHbBEaNXca65eMZOnQoX331Fb///jsymYz69evz/vvvc/PmTXbu3EmnTp24c+cOY8aMYdOmTXTt2hV/f39tWG5ebNy4kWnTphXbazJERFEkKiqKBw8ecPv2bVxcXPj444+1Yv7hw4dkZf1bNKpy5cq4u7vj7u5OmzZttP92d3fH1dUVU1NTAKZPn865c+dYuHBhvoTWsGHDCAsL4/Dhw6xcuRIrKyt69uxJQEAAMTExREZG0qVLFzp27EifPn203lfNJo6joyPz588vhr9Q2SI2NhbAYDz7V65cYc2aNSxevFjnXQ9EUSQkJIRx48YV+Fw3N7c8xb4gCIyvP4BkRTpHnvxdSCuLhgB4Ob3B5IZDdLJRdfXqVXr27EmjRo3YtWuX9vtc2qhduzY7d+58bdX3/v3706JFC2bNmkVISEiJbPQ9fvyY7t27Ex0dTWBgIM2bN8/znE5OjWhXpT5nom7g9+AU51/cQSbIEEUx310i5IIMlajCRGZML9eWDKjelho2+etOoWvatm2LiYkJAQEBehH7YWFhNG3aVCe91iUMj+rVqzN//nxSU1NJT0/Xpqf269eP2NjYVzp05JcVK1bw8OFD9u3bV+adAhKlE0nsS+TI48ePCQ0NfaUF0d0nmazyjdOTVS8jIBNkPJcPol7DlrRp2ZB9+/YB4OzszPDhw4mIiNDmYgHMmzeP3377jWfPnnH06FF27tzJlClTtIs+hUKRq6fKycmJ1atXl8grK0ni4uJy9cw/ePCA1NR/uyBER0eTkZGBu7s7/fv3x83NTSvm3dzctLvkr0MURfz9/enfv3++Paq1a9dm8+bNrF69mvT0dFq3bk2HDh3IzMzEwcFB+56dOHGiUH8DCTWG5NkXRZEJEyZQq1Ytxo8fr/Pxb926RWxsbIHy9TXkR+yDOpf/y8ZvYyE3ZdfD4EJYWTR6ubZiaqOhOukScPfuXbp160a1atU4cOCAttNFacTDw4PExERti82cEASBRYsW0bVrV/bv30/fvn2L1aYbN27QrVs35HI5wcHBBfIwGsnkdHBsQAfHBjxOjuZ4xEVuxD/ievwj4jOTcz1PQMDVsiL1KrjRsIIbXVyaYGFkpouXU2jMzc1p06YNgYGBTJgwocTnDw0NlTyzZRgLCwttek5aWhqnT58mJSWFOnXq5Nvx81+ePHnCggULGD9+PJ6enjq0VkJCd0hiXyJH/Pz8MDExybbIUShFvv09xnC6SgsyTMztcG46jePHpwDq3rgffPAB/fr10+Zxd+vWjcuXL/P1118TFBSkFTMXL14E1NX2K1WqxJkzZ7hy5corOZKgDu3MrUihIZOSkpJNwP9X0Cck/BuhYWFhoRXvPj4+WjFfrVo1WrZsyQ8//MDHH39cJHuuXr1KeHg4P/30U4HOc3Bw0Gl/dYlX0Xj2DUHs+/n5ERgYyKFDh4rFy6bx1hamEJe7uzunTp3K17EyQcbEBoNws67C6ut7UYoqlGLx5SPLBRkCAp969uFN94468TI9ffqULl26YG1tzZEjRwrt/TIUNEL69u3bry066uPjg5eXF7NmzaJ3797FVpsgLCyMXr164eTkxJEjR4pUF8bVqhLv1+6m/T0mPZHwxAhSFOlkKLOQCQKmcmMcTG2oZeOMuZHhRWd4e3uzYsUKlEplidZFiYqK4v79+1K+fjng2LFjbNq0iUuXLmnb+DZt2pTff/9dW/Q5v0ybNg1ra2tpfSJh0EhiXyJHfH196datW7YL37YjidyPyDIcsQ+ADPvqvVi8ujG28rt06tQJV1dX7t+/j7m5OUlJSXzxxRf4+PgwYMAADh06pD2za9eupKamaiunPnz4kKCgIO7fv8/SpUtfmcnIyOi1oZ/6ICMjg4cPH+Yq5qOjo7XHmpiYUL16ddzd3WnVqhVvv/12Nu98xYoVc3xtUVFRqFQqnVTj9/f3x8bGpkTzYCXyR1xcHDKZTKd97AtDamoqkydPpk+fPvTo0aNY5ggJCaFhw4aFeq1ubm48efKEzMzMfG1ECILAILf2tKpUl0WXtvFPXO7F/YpKHVtXZr/xDq5WuukR/uLFC7p27YpKpeLYsWM67cihL2rWrAmo2++1b98+1+MEQWDhwoW0bduWP//8k2HDhuncliNHjjBo0CDeeOMN9u3bp/MUGgczGxzM9Pt9LiheXl58/fXXXLp0iWbNmpXYvJr2vFIl/rJNVFQU06ZN49KlS9kef/z4MVOnTmXZsmX5vi+cPHmSbdu28dtvvxV4k0BCoiSRxL7EKzx58oSQkBA2bdqkfexpdBZ/HEwwMKGvRhDgr6uu/LmwFaYmau+Lu7s7o0eP5ptvvmHo0KFMnjyZ6tWrI5PJUKlUvPPOO7z11ltERUVx69Yt7Y3e0tKSwYNzr6Rd0kJfoVDw5MmTV7zzmn9HRERo+7zLZDJcXV1xd3enfv369OnTJ5uYd3JyKpR3KioqCkAnC30/Pz/69u0r5UQaIJqcRX1XV1+yZAnPnz/n+PHjxTZHSEgInTp1KtS5bm5uiKLI48ePtcIxP7hYVuSntp+z+2EIv90+QnxmCgJCvnOrc0KGgAoRG2ML3vPoymD3DjoJ2wdISEigR48exMTEcOrUKVxdXXUyrr4xNzenWrVqr63Ir6FNmzb07duXr776iiFDhmBsrLuWitu2bWPkyJF0796dHTt25CsNqjzQqlUrzM3NCQwMLFGxHxoaiqOjo7bmi0TZ5LfffuPSpUt07dqVrKwsTpw4weLFi/H19eXvv/8mLi4uX2JfoVAwbtw4WrVqxciRI0vAcgmJwiOJfYlX8Pf3x9jYWFuJHmDvyWSDFPqgrtCfmKIi8HwqPdpYaSvsz507lwYNGhAWFsaWLVuIjIxEpVLh7e3Nl19+ibm5OY6OjtSsWZOwsDAEQaBy5cradn4l4cVXqVQ8f/4811D7R48eoVQqtcc7OztrBXznzp21+fLu7u5UrVpVp4tRDZGRkQAFbr33X+7cucOVK1eYO3euDqyS0DVxcXF6L8738OFDFi9ezKRJk7TfQ10TGxvLjRs3mDlzZqHO1+R2PnjwoEBiH9Rh/YPc2tOvWhtOPb/KjrsnuJrwEEQRmUyOKh8h/rL/NVtTIVK/QnUGu3ego2NDjGW6u52npqbSt29f7t69y4kTJwpdpdpQyav93sssWLCAxo0b89tvvxU5jUnDjz/+yIQJExg5ciQbNmwolut2acXExIT27dsTEBDAlClTSmze0NBQWrVqZVCRexK6Jzw8HFCH31+/fp0TJ07QunVrRowYUaBCsOvXr+fKlSuEhYXpfYNcQiIvJLEv8QqaEH5NbmZ6pooDwcnoqfVtvhAE2HUiiR5trLTee5lMxpAhQ7SV2+/du0fjxo2ZP38+9erVIzExkR9//JGtW7cC0Lx5c86dO0fjxo0JCgrSidgQRZGYmJhXPPKafz948ICMjAzt8RUrVtSK9xYtWmQT89WrV8fMrOQLKOnKs79r1y7Mzc2LLTRbomjExcXpPV9/ypQp2NvbF2uP8zNnzgDQrl27Qp3v6uqKIAj5KtKXG0YyOV7OjUm58JhNY76h8YAO9Hh/MNfiHvIsLTbX8xzNK1C/QnXq2LrSqlLdYqmanpmZyZAhQzh//jzHjh2jcePGOp9D33h4eHD6dP7aIjZq1Ihhw4bxzTffMGLEiCL10BZFka+++ooFCxYwZcoUFi9eLAmFHPDy8mLRokVkZWWVyEaIUqnk3LlzfPnll8U+l4R+sbKyAtQ1ilxcXLCwsKBx48bax/NDTEwMs2fPZtSoUbRo0aK4TJWQ0BmS2JfIRkREBMHBwWzcuFH7WOD5VFLTDdWvr0YU4c7jLG4+yKCum2m2BZSlpSUbNmzgk08+Yfr06drQQD8/PxYsWACoRca8efOYP38+p06d4tGjR9SqVUvr3X+dl18URZRKJYGBgVy7du0V73xy8r8VkW1sbLQCXtNjXvO7m5ubQRYBjIyMxNzcvEA3w5zw8/OjZ8+eOgtXValUqFSqUtnr2xCJjY3Vq2c/ICCAnTt3snnz5iJ/1l5HSEgIVapU0fZcLiimpqa4uLgUSexr8PPzwzrDiPPrDnL8u61YWFiQkpXO45RoMpRZZKkUGMnkmMqNcbWshJVx4YVmflAqlYwYMYLjx49z4MAB2rRpU6zz6YvatWvz22+/aTeF82LevHl4enqydu1aJk2aVKg5lUolY8aMYf369SxZskRbK0biVTTRd3///XeJfAZv3LhBUlKSlK9fDqhbty6gjjT08PBg7ty5WFpaFmjTbfbs2ahUKhYtWlRcZkpI6BRplSyRDT8/P4yMjOjfv7/2sX2nkhEEtaA2ZOQyOBiSQl237BWGlUolTZo0ITg4GKVSiYmJCeHh4UybNo3MzEwGDhzItGnTMDc3Z9GiRURGRlKlShWysrJISkrC3t4eQRByrQ6s2QwwNzfnyy+/1Ar3jh078t5772XzzleoUKHUhQlGRUVRuXLlItn9+PFjzp49q9M2amlpacydO5ehQ4fSsmVLnY1bXomLiytyqkZhUSgUTJgwgTZt2jB8+PBinSs4OJi2bdsW6fPs5ubG/ftFK7SXlZXFnj17GDx4MBs2bCAkJIQuXbpgaWxGXbuSz48XRZFPP/0UPz8/fH196dKlS4nbUFJ4eHiQnp7O06dP81WLwMPDg1GjRrFo0SJGjx5d4MKO6enpDB8+nD179rBx40Y++OCDwppeLmjWrBnW1tYEBgaWiNgPDQ1FJpPRvHnzYp9LQr80btwYIyMjtm3bxqxZs/jiiy8K1PUhIiKC33//ne+++65MFCyVKB9IYl8iGzt37qRLly7acN7MLJFtPwwkPiIUM5tqtBmeveVUWsJDQrd2BMC95WTcmo0n5tEJnlz5jaSoyygykzE2s8PWsTmujT/G1rGp9txnN325GajOyXuj33YquKhv6nFPz3Bp79sA1PVahpl1Ve3vr6P18NNcvvOqt04ulyOKIsbGxtqQwCNHjhATE4OHhwfr16/HwcFB/XozM3n06BGjRo0iIiICe3t7unbtyowZM5DL5bkKfmNjY9q3b09KSkqpE/N5ERUVVWQRuHv3boyNjenTp4+OrFKH4f3yyy/Y29tLYl8HxMbGar0eJc26deu4du0a586dK9bvT1ZWFmfPnmX+/PlFGkcXYv/EiRPExcXxySefsG/fPo4fP643gS2KIlOmTGHDhg1s2rSJgQMH6sWOkuLl9nv5LTw4Z84c/vjjD1auXFmgNluJiYn079+f0NBQ/P39s9XCkcgZIyMjOnbsSGBgYImE1oeGhtKgQYNijSiSMAzq1avH7NmziYuLw9PTs8DnOzo6cvfuXUnoS5QqpGQxCS3Pnj3j1KlTDB06VPvYg2dZONYZAkB64iPin53Lds7z27vU/xBkONYezIO/f+CfA+8R++gESkU65rZuZKUnEH3vEBd3D+HZTd8C22VkYoVN5SbaH0GmruQuN87+uExuwpMoBemZrxYX+K+A8PDwANShXDt27ADUC949e/YwYsQIDh06xP3797WLjYEDB6JQKPLcAS5rQh/UYfxFvbH5+/vTpUsXnbanEQSBevXqcf36dZ2NWZ7RV4G+Fy9eMGfOHEaPHl3s1bcvX75MWloabdu2LdI4bm5uRQ7j9/Pzw83NjWbNmuHt7V2s3QfyYsGCBSxfvpyffvqpXFSWdnNzw8jIKN9F+kBdq2HMmDEsW7aMmJiYfJ0TGRlJ586duXjxIkePHpWEfgHw8vLi9OnT2WraFBdhYWFSCH85wcbGhi+//JJvv/0WBweHAqcBymQynJycpPRBiVKFJPYltPj7+yOXy7OF8N9+lEmlmr2QG6nzrCM14v5/RN5R/17BuQ1Z6bHcP7ccAJsqTWg7MoxWbx+j9fAgzG3dEEUlt0/OIiMlskB2WVdqSLPBu7U/ppaV//d4g/88XgVRhLtPsvIcs1u3btq6BKtWreLGjRskJyezZs0abt++jUwm45133uHmzZv4+PiwZ88epk+fjiiK2lZ35YWievajo6M5efIkgwYN0qFVajw9Pblx44bOxy2P6KtA3+zZsxFFkYULFxb7XCEhIZiYmNC0adO8D34Nbm5uREREFFqIKJVKdu/ezaBBgxAEAW9vb86fP098fHyR7CoMP/74o7Zo3NixY0t8fn1gbGyMu7s7d+7cKdB5M2fORBRFFi9enOex9+7do127djx//pyTJ0/SoUOHwppbLvH29iY9PV3bFre4SExM5Nq1a7Rq1apY55EwHIyMjIpU7LgsOnUkyjaS2JfQ4uvri4+PTzbv3p1HmZiaWlKpZi8Aou7uR6VUL3ATnp8nLeEBAI51h/zr5QdqtJ6Bsanai2tm5Uz1pupFpEqZQdTdA8X2GgRBvUHxOkGu+l9bgffff5/AwEDGjBmDu7s7x44dIygoCCMjI+zt7Vm3bh0nT57kjz/+wNbWlr///vt/c5SvC31RPft79uwByLaJpCs8PT25efOm9j2VKBwv16coSS5evMj69euZN28elSpVKvb5goODad68Oaampnkf/Brc3d0RRZHHjx8X6vyQkBAiIyMZPHgwAD4+PqhUKoKCgopkV0H5/fffmTBhAlOnTi13lcgL0n5PQ6VKlZg0aRI//fQTERERuR53+fJl2rVrhyAIBAcH06hRo6KaW+5o3LgxFSpUICAgoFjnOXfuHKIoSp59CQmJMosk9iUAtaA7efJkthB+gJhEJUoV2lB+RUYCLx6ow001Xn65iTWV3HuSGn9Xe561Q71s41hV/Pf3l4/TNXIZxCaq+9LnJgBlMpnWQ9+pUyc++eQTzMzMtMf36NGDtWvXUqtWLT7++GO8vb1JSEjg2bNnKBSKYrPdEBFFUVugr7D4+/vTsWPHYhFz9erVIyUlpdCiS0KNxqNckp59URQZP348np6ejBkzpkTmDAkJKXTLvZdxc3MDKHQov5+fH05OTlqBoenKUZKh/P7+/nz44Yd8/PHHLF68uNxtYnp4eBTYsw8wadIkLCwstJ1c/svJkyfp2LEjzs7OBAcHF7rrQ3lHJpPRuXNnAgMDi3WesLAwbGxs9FavRMKwKW+RnBJlE0nsSwDqhZ9MJmPAgAHZHk/PVF/o7JxbY2atLmQUeXsXKmUWUXf3A1C5Ri/k/20J9Z+FoyDk9FHLz+Ky4AvQzCx1m7zXtVIRBEG7uNXkXtWoUQMnJydOnTpF48aNCQgIoGPHjty+fRtBEOjYUV2IsDxd/JOTk0lLSyt0GH9CQgLHjh0rlhB+QFtgRwrlLxqxsere7iUp9rdv387p06f54YcfSqSX9uPHj3ny5EmR8/UBqlatikwmK1SRPlEU8ff3Z+DAgdmuUd7e3sXuxdRw9OhR3n77bd58803WrFlT7oQ+qD379+7dIysr77Svl7G1tWXGjBn88ssv3Lt3L9tze/bsoVu3bjRv3pzAwECpiFcR8fLy4syZM6SmphbbHKGhobRq1apArdckygcKhQJBEEqkboSERHEiXd0kAHUIv7e3t7YqvQZRpRa2giDgWEcdchrzKJDnt/3ISo8DwLGuOhrAwq6m9rykF9eyjZMU/e/vmuNe3iBQZMRr/60ZV31MwXuyqwqpxZs0acJ7771HQkICPj4+3LlzB19fX/r370+dOnXo378/xsbG5WphHBUVBVDoRev+/fvJysp6ZRNJV1SvXh1zc3NJ7BeRuDj1d66kwviTk5OZOnUqAwcOLLEK9MHBwQA6aeVlYmKCi4tLoTz7586d4/Hjx9oQfg0+Pj5cu3aN58+fF9m+1xEcHMzAgQPp1q0bf/zxR4HaTpUlPDw8UCgUhXoPP//8cypVqsTcuXO1j23cuJFBgwbRt29fDh48WOD2fBKv4uXlRVZWFiEhIcUyviiKWrEvIaEhISGB//u//6NTp04MGTKEGTNmcPjwYX2bJSFRaCSxL0FUVBRBQUGvhPADmJr8K2zVYl9AVGURHvwNAOa2btg5tVA/X/vfdk33Qr8jKyMBgPTkCB5e+AkAmdyUyjV7A2D1Uqh/xPVtKDISUWQk8uzGdu3jL4f/5xdT44KLcU0I/6JFi5g/fz5PnjzBx8eHL774gokTJ7Jy5Ur69u1b4HFLO5GR6mKKhfXs+/v707Jly3y3tyooMpmMunXrSmK/iGjEfkl59r/99ltevHjB999/XyLzgTqEv1atWkVuI6mhsBX5/f39cXBw0EYKafD29gYo1rDlS5cu0bt3b1q0aIGvr2+JRFQYKpr2e4UJ5bewsGDOnDls2bKFq1evsnjxYj788EM++ugjtm/fXuSaEBJq6tevT6VKlYrtO/HgwQOio6OlfH2JbEyfPp0RI0Zw5swZ/P39WbduHb/++isPHjwod6mcEmUDSexLsGvXLgRByLG3srWFDPn/PiXmNtWwc1bvgCuzUgC03n5QV813azEJgMTIi4T80Yqz27sS+n+d1IX8BBm1Oy7E1FK92Lawc6fS/4R/7OMgTm1syKmNDYl9rC5SVblmHyxs3Qr0WlQqsLIo+MdaJpOhVKpz/WfNmsWhQ4cYOnQoSqUSe3t7unXrBvwbwl9eQvmL4tlPTU3l0KFDr3gwdY2np6fUfq+IaML4S8Kzf/fuXZYtW8a0adNKNJ85JCREJyH8Ggoj9kVRxM/PjwEDBrzSuqlKlSrUr1+/2PL2b926Rbdu3fDw8GDv3r2Ym5vnfVIZpmrVqpiZmRW4SJ+GDz/8kOrVqzNw4EBmzJjBV199xdq1a8ttpERxIAgCXl5exZbeEhoaCiB59iW0BAQEsH79emrUqMH+/fupUKECcrmczp07s3fvXjZu3KhdK0pIlBakRpES+Pr64uXlRcWKFV95rparCcfO/Zsv51hnCPER6hskggzH2tmFnHvzCdhUasSTK7+RGHWZ1IR7GJnaYefYHNc3PsbWMXsf7Xo+K3hoX4eo8L2kJ6qLrJnZuFKlVj+qNfmswK9FJUKtqoXzVsnlclQqFTKZjG7dutGmTRtUKlW23vCCIKBQKEhOTkYURb20KitJIiMjkclkr6R35IcjR46QlpaW4yaSLvH09OTw4cOIoliuUix0SVxcHCYmJiUiACdPnkzlypWZPn16sc+lISUlhUuXLvHRRx/pbMzCFNS7cuUK4eHh/Pjjjzk+7+Pjw969e3VhXjYePXpE165dqVSpEocPH5ZCzFFv8NaqVatQnn1Q3wucnZ0JCQlhypQpzJs3T8cWSoA64uXzzz8nKSkJa2trnY4dGhpKzZo1c1z7SJRP1q1bB6g7lWRkZBAXF8dbb73F559/TsWKFalduzYDBw4ske4xEhK6QhL75Zzo6GgCAwNZu3Ztjs/XdjXhZSe2U92hONV9Ndz/ZRyqe+FQ3Stf88vkprg3n4B78wn5trnNu8Gvfd7D1STfY71iz0tFenJaWKhUKlQqFUOGDOHhw4ccOHBAGw5aFomKiqJixYqF8lb5+fnRsGFDPDw8isGyf/H09CQ2Npbo6GipIFYhiY2Nxd7evtg3S44ePcqePXvYvn07lpaWxTrXy5w9exalUqlzz35ERATp6en57tns5+eHjY0NPj4+OT7v4+PDjz/+yP3793UW9RAZGUmXLl0wMjLir7/+KtTGXVmlMO33QL15NHToUM6dO4eLiwuXL18uBuskQJ23r1QqOXXqFL169dLp2GFhYVIIvwSgjrpKS0sjIyNDu+k9bNgwzMzM+Oabb9i7dy+xsbHa1BIJidKEFMZfztm1S90+L7cCarWKIJz1QUU7ObZWxRdGKQgCS5cuZf369RgZGdG6desS741dkkRFRRUqxzkzM5N9+/YVewg/qNvvAVIofxGIi4sr9iiVrKwsJkyYQMeOHXnzzTeLda7/EhISgo2NDfXr19fZmJr2e48ePcr3OX5+fvTt2xcTk5yvqx07dkQmk+kslD8uLo5u3bqRkpLCsWPHcHZ21sm4ZYXCtN+LjY2la9eunDx5kv379/PTTz/x119/FXuLuPKKh4cHLi4uOv/7ZmRkcPHiRUnsSwDqtZ2FhQVmZmakpaXRr18/Xrx4wdixY6lQoQKzZ88G0Gl0mIRESSGJ/XLOzp076dy5c64eUUtzGS6VSkcAiEwG9dyLd3PC19eX3bt3U6NGDc6cOUPTpk3p2rUrmzZtKtZ59UVkZGShvOUBAQEkJiYWW8u9l6lVqxZGRkZSkb4iEBsbW+xif9WqVdy+fZsff/yxxNMtQkJCaNOmjU7ba2nEfn7z9m/dusW1a9deuwFmZ2dH8+bNdSL2k5OT6dWrF0+fPuWvv/6iRo0aRR6zrFG7dm0ePXpEWlpavo5/8uQJHTp04Pbt2wQEBNCtWzcGDBhA8+bN+fLLL8tNLZeSpLjy9i9evEhmZqaUry+RjU8++YRq1aoRHx8PwPHjx+nRowdXr17lvffeo2XLlvo1UEKiEEhivxzz4sULAgICcqzC/zI92lhSGlKhVSro1qp4Q4OvXr3Ks2fPAPXC/NChQ4wcOZL333+f2bNna6v6lxWioqIKJfb9/PyoVasWDRo0KAarsmNsbEytWrUksV8E4uLiirU4X2RkJHPnzuWTTz6hcePGxTZPTqhUKp0X5wN1gTeZTJZvse/v74+FhQXdu3d/7XHe3t4EBAQUSTimp6czYMAArl27xuHDh7XRLxLZqV27NqIocvfu3TyPvXnzJm3btiU5OZnTp09rF/2CILBo0SJCQ0PZv39/cZtcLvHy8uLixYvariG6ICwsDFNT0xK/HkkYHg8ePGDVqlXExcXh7e3NwoUL8fLywtjYmIsXLxIeHs6AAQNYvny5vk2VkCgUpcNlK1Es7N69G1EU8yyg1rOtFb/vT0Bp4E4LB1s5rRoUb4ExJycnIiMjtYX8jI2N+eWXX6hduzbTp08nPDyc33//Pd85vIZOZGQkTZo0KdA5SqWS3bt3M2rUqBLz4NarV08K4y8CcXFxxVoZ/8svv0QulzN//vximyM3bt68SXx8PO3atdPpuMbGxri6uuZb7Pv5+dGrVy8sLCxee5yPjw/fffcd165dK9RmmUKhYNiwYQQHB3P48GGaN29e4DHKCx4eHiATCLtzGZWzJZmqLAQETGRG2JlY4WLpgEyQcfbsWXr16kWVKlU4cuQIVatWzTZOly5d6Ny5M7NmzaJ37946jSCRUG+AiaLIyZMn6d+/v07GDA0NpVmzZrmm1EiUH8aOHcvBgwe5du0aq1evZtiwYXh6evL48WP++ecf2rZtS5MmTcp8QWaJsosk9ssxvr6+dOzYMc+cbHsbOR2bWHDyYipKA3VcCwIM7GSFXFa84tLJyQmFQsGLFy+0Hm9BEJg2bRo1a9bk3Xffxdvbm927d5eJYnGF8eyfPn2aFy9elEi+vgZPT09+++23EpuvrBEbG0uzZs3yPrAQnDt3jt9++41Vq1bppThcSEgIMpmsWMIv89t+78GDB5w/f54pU6bkeWy7du0wMTHh+PHjBRb7KpWKUaNGsX//fvbs2UOnTp0KdH55IF2Zyenn17ge/5AbcY9ou2Msvxuf5/eQ868cayY3oZLKkr/3naB2v9b4L9mIY8VXr4eCILBw4ULatWvHn3/+ybBhw0rglZQf3NzccHNzIyAgQKdiv7g7xUgYPps3b+bgwYN069aN77//XrtR17RpU5o2baqzz5uEhD6Rtp/LKTExMRw/fjzPEH4NAztbG6zQB5DLoGc7q2Kfx8nJCUAbyv8ygwcPJigoiHv37tG6detS72nOysoiNja2wAX6/P39qVq1aol6FD09PYmIiCAhIaHE5ixLFFeBPpVKxfjx42nYsCEff/yxzsfPDyEhITRq1EjnbbtALULu37+f53H+/v6YmJjkq5q4ubk5bdu2LXCOsiiKjB8/ni1btrBlyxadVy4v7TxKjuLHa7vpf/Rr5l3czK4Hp7ka/wCZae4+j3RlJo9UsVTp2Qj5oNp88PdK1t7YR0RqzCvHtm3blj59+vDVV1+RlZVVnC+lXOLt7a2zIn2RkZE8ePBAKs5XzlEoFKxevRqA8ePHY2FhQWqqutX0qVOnGDlyJC9evNCniRISOkES++WUPXv2oFKp8l1ArUFNU7ybW1DMjvNC834fWypYF18Vfg2vE/sALVu2JCwsDEtLS9q2bcuxY8eK3abiIjo6GqBAnn2VSoW/vz8DBw4s0VBWTU6ylLdfOIqrQN+WLVsIDQ3lxx9/xMhIP4FkwcHBOs/X15Bfz76fnx/dunXLd397Hx8fTpw4gUKhyLctc+bMYfXq1fz888+89dZb+T6vrPMoOYqJoesYfuI7/B6cJlWZAYBCzN/utSAIIFff+JIV6Wy/d4K3AhYy7eyGV0T/ggULtKlcErrFy8uLK1euaO9LRSEsLAxAEvvlGFEUefHiBQqFAgsLC217YU3bvYCAALZs2cKff/6pTzMlJHSCJPbLKZoQfkdHx3yfM+7NClhZyAyqWJ9MBrVdjXmrS/4W0UVF8/fKTewDVK9eneDgYNq0aUOPHj345ZdfSsQ2XRMZGQlQIM/+33//zZMnT0o0hB+gTp06CIIgif1CoOktrOsCfUlJSUyfPp0333xTb+HkL1684Pbt2zrP19fg5ubG8+fPX1vN/dmzZ4SEhBToO+Hj40NiYiLnz78aWp4TS5cuZeHChSxbtkxqDfU/lKKK7XdP8F7QUi7GhAOgyqfAfx2q/xVOPBt9kxEnFrPrQbB23MaNGzNs2DDmzZtHenp6keeS+BcvLy8ATpw4UeSxQkNDcXJywtXVtchjSZROBEHA0dGR2NhYUlNTmThxIn/99ReiKBIcHMzatWsxMTGhX79++jZVQqLISGK/HBIbG8uxY8cYMmRIgc6ztZIz9V17DKm7kADMeL8icnnJ7ECYmJjg4ODwWrEPYGNjw759+/j444/5+OOPmTZtWqmr1B8VFQUUzLPv7+9PpUqVaN++fXGZlSMWFhZUr15dEvuFQFPhWtee/QULFpCQkMDSpUt1Om5BOHPmDECxevYBHj16lOsxu3btwsjIqECLxubNm2NlZZWvUP7169czbdo0Zs+ezeTJk/M9R1nmcXI0nwX/yOobe1GISpQ6EPn/RSmqyFQpWH7Vj/Fn1vA8NRaAefPm8fz5c9auXavzOcszLi4u1K5dWyct+EJDQ2nVqlWJtwCVMByOHDlCTEwMc+fOpVKlSty8eZPevXvTsGFDBg8eTFRUFNOmTZM2hCTKBJLYL4fs3bsXpVJZKO9ru8YW6lZ8xWBXYfh0kB1uTsYlOqeTkxMRERF5HmdkZMTq1atZsWIFy5YtY+jQodp8sNJAQcW+KIr4+fnRv39/bUhcSVKvXj1J7BeC2Fi1SNGlZ//27dusWLGCmTNnUq1aNZ2NW1CCg4NxcnKievXqxTK+poPB60L5/fz88PLyKtDf19jYmE6dOnH8+PHXHrd9+3Y+/fRTxo0bxzfffJPv8csyN+If8dHpFdxOeFJic16Ne8Do0yu4l/gMDw8PRo0axaJFi0hKSioxG8oDXl5eRc7bVyqVnDt3TgrhL8fs3r2bgQMH8v3339OhQweGDh2Ks7MzRkZG3LhxA6VSyZAhQ5g7d66+TZWQ0AmS2C+H+Pr60r59e23+eUGZ/I49rRua6z2cf1g3GwZ7l0z4/ss4OTnl6dnXIAgCX3zxBbt37+bw4cN06tQp3+fqm8jISKytrbU5bHlx9epVwsPD810HQtd4enqW+qKI+qA4PPsTJ07ExcUlX9Xni5OQkBDatWtXbB48FxcX5HJ5rkX6Xrx4QVBQUKE2Vn18fAgODs41HPzAgQOMGDGCESNGsHLlSslLCVyJvc+4kNWkKTKKxZufG0pRRVJmGp+F/MidhKfMmTOHpKQkVq5cWWI2lAe8vb25detWvjbbc+P69eskJydLYr8cs2/fPtLT02nbti3u7u6sWrWKNWvWMHv2bGbMmMH27dv5+eefpRaaEmUG6ZNczoiPj+evv/7KdxX+nJDLBb4eXZFW9c305uF/s4s1o/vb6mXugoh9Df369ePUqVNERETQqlUrrly5UkzW6Y6Ctt3z9/fHxsYGHx+fYrQqdzw9Pbl///5r86clXkXj2deV2D9w4AAHDx7k+++/z/dGUXGQmZnJuXPnii2EH9TRO66urrl69jWFUAvTvsnb25v09HRtKsLLnDhxgiFDhtC3b19+/fVXaVEKhCc+ZXLYz2SpFKgo+VwzFSrSlZlMCF2DWMGUMWPGsGzZMmJiXq3cL1E4OnfuDFAk735oaCgymazYWo1KGDZBQUFkZWVRp04d+vTpo328X79+fPnllyxatAgfH59iKVgrIaEvpBVCOWPPnj1kZWUV2ftqYizwzSeV6N7GEqBEvPwymXqe0f1t+WSgnd48Wc7OzoXyzjdt2pSwsDAcHBxo164dhw4dKgbrdEdkZGSBivP5+/vTt29fTExMitGq3PH09EQURW7fvq2X+UsruvTsZ2RkMHHiRHx8fPTew/rSpUta701x8rqK/H5+frRv375AhVA1NGzYkIoVK74Syn/u3Dn69u1Lhw4d2LZtm966HBgSqYoMpp3dQIYySy9CX4NKFElRZDDj3K9Mnj4VlUrFkiVL9GZPWaNy5co0aNCgSGI/LCyMhg0bYmVV/K16JQyL+/fv4+Xlxfbt23n+/Dn79u0jMzNT+7xoSAWpJCR0iCT2yxk7d+6kXbt2uLi4FHksI7nAtBEOzP2oItYWMorTuSQI4ORgxKopVXinu61eQ1Y1nv3C3BiqVq3KqVOn6Ny5M3369NH2eDVECuLZDw8P559//tFbCD+oxT4ghfIXkNjYWCwtLXWySfPDDz9w7949fvjhB72HlQcHB2NmZkaTJk2KdZ7cxH5CQgLHjh0rdGcKmUyGt7d3toJk165do0ePHjRs2JBdu3ZhampaWLPLFGuv7yMmPVGvQl+DSlTxJOUF+2LPM3HiRH766acihZ1LZMfLy6tIRfpCQ0OlEP5yyrVr1wBQKBQkJCSwYsUKDh48qN3w1vc9S0KiuJDEfjkiISGBo0ePFimEPyc6NrFg09dOdHzDAgC5Dj9V8v9589/qYs2vs53wdNf/4tbJyYmMjAzi4+MLdb6VlRW7du1i/PjxjB07li+++AKlUqlbI3VAQTz7/v7+mJub071792K2KncqVKiAo6OjVKSvgMTFxemkOF9ERATz58/n888/p379+jqwrGiEhITQokWLYo80cXd3z1Hs79+/v8hRVN7e3pw9e5bExETu3btH165dcXV15eDBg1haWhbB6rLD+Rd32P0oxCCEvgYRka13A+nz8duYmZmxcOFCfZtUZvD29ub+/fuvLYqZG4mJiVy/fp1WrVrp3jAJg6dPnz7cvXuXjz/+GFCnQ7399tvMmTOHM2fOSO0yJcosktgvR+zdu5fMzMxi6YFuayXnq9EVWfFFZdo1NkcmgKyQm6Sa00yMBXq1s2LDLEc+HlgBE2PD2HXVFDYsSqE9uVzOihUrWL16NT/99BMDBgwgOTlZVybqhIJ49v39/enZs6feBYinp6ck9gtIXFycTkL4Z8yYgZmZmUFUMBZFkZCQkGIP4Qe1Zz8yMvKVTht+fn60bNmySK2bfHx8UCqV7Nq1iy5dumBtbc2RI0ews7MrotVlgwxlJgsvbUVmMP1h/kUQYMWd3UybMZ3169dz7949fZtUJujUqROCIBQqlP/cuXOIoih59sshy5cv59KlS7i7u7Nu3ToCAwPx8fEhMzOTNWvW0KVLF2ntIFFmkcR+OcLX15c2bdpQtWrVYpujcW0z5n5Uie0LnRnZ25Yq9v+2YMttA0DjvQf1/6s7GTPuzQr4fefCxGH2uDvrJwc8N3Qh9jWMGTOG/fv3c+LECTp06MCTJyXXLup1iKJIVFRUvjz7T548ISwsTK8h/Brq1asnhfEXkNjY2CJ79s+cOcPmzZtZtGiRQRQ2evjwIRERESUm9jVzakhJSeHw4cNF3litWbMmLi4uTJo0CYVCwV9//VWgOhplnWMRl4hOTzAor74GlSjyJOUFTd70pmLFigaxCVYWqFChAk2aNCmU2A8NDcXW1pY6deoUg2UShsry5cuZMmUKkydPZvXq1URGRtKpUyeOHj3Kr7/+ip2dHebm5sWe8iUhoS+kyj7lhMTERI4cOcJ3331XIvNVtDNiZC9bRvayJTFFyZ3HWdx6mMHdJ1kkJCtJzxQRBDA3lVHBWkbtaibUrmZCraommJsZ9h6ULsU+QM+ePQkODqZPnz60atWK/fv36/2mEx8fT1ZWVr48+7t27cLY2JjevXuXgGWvx9PTk/Xr16NQKKTCZfmkqJ59lUrFuHHjaNq0KaNGjdKhZYUnJCQEoETF/oMHD7R1Iw4dOkRaWlqRN8CSkpJIT08nMTGRM2fOUK1ataKaW6bwu38KAQHRAMU+gAyB/RFnmTNnDmPHjmX69OkGkeJS2tEUWRNFsUB51qGhobRs2VLqXlGOUCgUhIWFYWxsTFBQENeuXSMoKIhhw4bRt29fPvjgA3r06CGF8EuUaaTVcDlBU3V0yJAhJT63jaWcZnXlNKtrVuJzFwcWFhbY2NjoTOwDNGrUiLCwMPr160f79u3Ztm0b/fr109n4BSUyMhIgX15Ef39/unTpYhChxZ6enmRlZXH37l3Je5NPYmNjadCgQaHP/+233zh//jynT59GLpfnfUIJEBISQu3atalYsWKxz+Xi4oKRkVG2HGJ/f38aNWpErVq1Cj1uamoqffv2JTU1FYVCYRDfL0PiRvwj7iQ+1bcZr0WFyKXYu4x/exLVly5lzpw5+Pv769usUo+Xlxfff/894eHheHh45OscURQJCwvj008/LWbrJAwJIyMjtmzZwpYtW/j55585f/48u3bt4vr165w+fZpBgwbRrl07fZspIVGsSNub5QRfX19at25dpPxRiX9xcnLSeYVlJycngoKC6NGjBwMGDGDFihV6awUTFRUFkKdnPzo6mpMnTxpECD+ow/gBKfeuABSlQF98fDwzZ85k+PDhBrVgKql8fVDX36hWrZpW7GdkZLB///4ihfBrNmb//vtvtm3bBqiLSUn8y+4HwcgFw1/CyAUZByPOMW/ePHbt2sW5c+f0bVKpp0OHDsjl8gKF8t+/f5/o6GgpX78ckZiYSHR0NMbGxnzwwQfs3LmTKVOmIIoi169f54cffmDKlCmv1FuRkChrGP6dUqLIJCYmcvjwYb149csqmvZ7usbCwgJfX1+mTp3KpEmT+Pzzz1EoFDqfJy/yK/b37t0LoNcohJepUqUKdnZ2Ut5+AShKGP8333xDamoqixcv1rFVhScpKYnLly+XmNiH7O33/vrrL5KSkgot9pVKJSNHjuT48ePs3r2b/v37U7duXY4fP65Di0s/odE3UYoqfZuRJ0pRRVj0TYYPH46npyezZs3St0mlHhsbG5o3b16gFnyhoaEAUiX+csTHH3/M8uXL+fvvv0lLS6Nq1ap8++23rFq1CplMhkqlol+/flhYWOjbVAmJYkUK4y8HHDhwgIyMDEns6xAnJyeePi2eEFKZTMbixYupVasWY8aM4d69e+zYsQMbG5timS8nIiMjMTIyylME+vn50aFDh3xX7S9uBEGQKvIXAFEUC+3Zv379Oj/99BPz58/HxcWlGKwrHGfPnkWlUpVopIGbmxtXrlwhS6Vgxx4/6jaqj0fd2gXOKRZFkU8//RRfX1927txJ165dAXVV/sOHDxeX+aWOuIwkYjOScn0+/p/HXJ29E0SoPrIdrkNbAiAqVfwz/U+Sbj3HtJI1TX4awaOtZ0i49pSMqERUGVmYVLSmUoc6uAxqjpGFujhsRkwy4auOkXI/mqyENGSmRphWsqaylycuA5oh5NF65knKCzJFBQsWLGDw4MEEBgbi5eWluz9IOcTb25tff/0139+x0NBQatWqhYODQwlYJ6FvNm/ezI4dOwA4f/48Q4cOpUOHDtStW5fKlStTqVIlZs2axdixY/VsqYRE8SN59ssBvr6+tGzZkurVq+vblDKDs7NzsXj2X+ajjz7i0KFDhIaG0q5du2zVvosbTdu91y2iEhISOHbsWLG0ciwK9erVk8R+PklKSkKpVBbYsy+KIhMmTKB69epMnDixmKwrHCEhIdjZ2VG3bt1inedpygv+enqeVdf3ENXVAePprfE+OI37/StQcWE3fA5Np9vhmXwe/BOrr+/l2NMLRKTE5DqeKIpMnTqVDRs2sHHjRgYOHKh9ztvbm7t375boNcCQuZXw+q4ldo1cce6rLnL6aGsoKfejAXiy8xxJt56DAB4Tu6NITidi70VSH8VgWtEamZkJ6RHxPP4zjFtLDmjHy0pIJeGfR8jNjLF0c0CQCaQ+eMGD307xxC/vsHwRkTuJEQwcOJDmzZsza9YsvaVolRW8vLyIiorKdxRXWFiYFMJfjhg0aJC2YOyxY8eYMmUKCxYsYP78+SxfvhyVSkXPnj31bKWERMkgefbLOMnJyRw6dIj58+fr25QyRXGF8f+XLl26EBISQu/evWnVqhX79u2jRYsWxT5vZGRknsX5Dhw4QFZWFgMGDCh2ewqCp6cn27ZtQ6VSSVWX8yA2NhagwGJ/z549HDt2jL1792JqalocphWa4OBg2rRpUyzvfZZKQdCzf9h5/xTX4tXC20iQobBSIcvhdpquzOSfuPtci3+oDTlvVMGdwe4d6ODYAGPZv+csXLiQ77//nh9//JH33nsv2zidO3dGEAQCAgL44IMPdP66Shu3Ep4gF2SvDeN3e689cRcfkvY4llvLD+MxriuPtqtDuZ37NcWuoSuZcSm4fdABxx6NMLIwQZWp4MqXO0m69Yy48w9QJKdjZGWGZfWKtNkxFkGu/kwpUjM5O/JnVBkKEm/kXbtFQOB2wmMa2buzaNEiunXrxoEDB+jTp49u/iDlkHbt2mFsbExgYGCeHQ7S09O5ePEiI0eOLCHrJPSFJtLD0tKSDRs28PnnnzNlyhQCAwPZunUrgiAgiiL9+vWjZs2a+ja3zJGaruLO40xuP8rkzqNMnscqyMgUUarA1FjA2kJGzaom2g5cjg7yAkW/SRQOSeyXcfbv3096errBeV9LO05OTiQnJ5OcnIyVlVWxzlWvXj3CwsLo378/nTp1YvPmzcX+fmo8+6/Dz8+Pli1bGlzRR09PT1JTU3n8+LEUzZIHcXFxAAUK409PT2fSpEn06NHD4MSKSqXizJkzTJs2Tafjpiky+L+7Aex6EExiVioy/l2cKPKRN/6yKL0a94B/4u5ja2LJYLf2DKvpxS9rfmbOnDnMnz+fcePGvXK+vb09TZs25fjx45LYRx1VkRcyEyPqTOrB5SnbSX3wgiszdyAqVFi42uM2Up3iYVLBkqqDmmc7x8qjCkm3noFMgP9tGGlE/rV5u8mKTyE9MhFVhrqWim29vFNY5IKMp/+L6ujSpQudO3dm1qxZ9OrVS9qQLCQWFha0bt2agICAPEOxL168SFZWlpSvXw4QRZHk5GQuXLiAu7s7TZo04fjx4+zYsYNly5ahUqmoUaMGy5cv17epZYa0dBXH/05lT1ASd59mASAI6kuoMofb4/mb6drHLc0FurSwpF9HK9ydTUrQ6vKFdJcp4+zcuZPmzZvj7u6ub1PKFE5OTgAl4t0HdaG8gIAA+vXrx5AhQ1iyZEmxhYGqRBWRSTE4uDnxNOUF0WnxJGelZTsmNTWVQ4cOGUwV/pfR9DqXQvnzRiP2C+LZ//7773n8+DErVqwwuB3569evk5iYqNPifJdi7jIiaAmb7xwjMUtdtVlVhL7umnMTMlP47fZRBu3/illrv2PKlCmvLd7m7e1NQECAFP4NZKoU+fo7WNWqgutb6nx9VaYSZAK1J/VAZpKznyMzPpWYkDsAVOpQR5uzryE5PJLk8CgUSeqe3C6Dm+MyuPkr4/wXEZFMlWYRLLBw4UL++ecfbU6xROHw8vIiKCgIler1G25hYWGYmZnRqFGjErJMQl+sW7eOrl270r17d9zc3Hjvvfe4ePEib775JqGhoezbt48dO3ZQtWpVfZta6nkSlcVPO2IZPOMpy7fGci8iS/ucKOYs9CH74ylpIvtPJ/PhgueMX/acwL9TUKqke5yukTz7ZZiUlBQOHjzI3Llz9W1KmeNlsZ/fPr9FxdzcnK1bt+Lh4cH06dO5ffs2a9euxdjYuEjjRqXFczn2Ljfjn3Aj/iF3Ep8im9CMR8DbgYu0x1UwsaJeherUtXUl5vpjMlRZBin2q1evjrm5OdevX6dHjx76Nseg0YTx59ez//jxYxYtWsSECROKPSe+MISEhCCXy3WS6pKmyGD9zYPsfHAKGUKRBH5uiIgkkk7jxW9SrUZ7MlRZmMlz9m74+PiwdOlSbt68qd3QKq8oVErEfL4faRHx//6iEkmPSsSq1qspSmnP4rk2dxeZsSnYeDpTc4zPK8e02vwJyvQsEq485tbSgzzddR5zJzscuzfM247MDG2Icdu2benTpw9z5sxh8ODBRb6Gl1e8vb355ptv+Oeff3jjjTdyPS40NJRmzZphYiJ5Dssye/fu1UZ52NnZkZmZyebNmzl06BDbtm3Dx8cnz/REibxRKkW2HU1k04EERECz11bYfWiN+L9+P5Or92LwDEhi5vsOVK0sXRd1hST2yzAHDhwgLS1NqsJfDJS0Z1+DTCZj/vz51KpVi48++oj79+/j5+eHnZ1dgcZRiSr+fnEH/wenCYm8joiozj1+TUhyXGYyIZHXCY26gdJIRZv/+4zDmdcxS7bD1apSEV+Z7pDJZNStW1fy7OeDuLg4BEHA1tY2X8dPmzYNa2trvvrqq2K2rHAEBwfTuHHjIqfWxGUk8UXoWh4kRQJF8+TnhSZE3Pf+SS7E3GFF60+xM3nV/vbt22NsbExAQEC5F/smMiMEhDwF/4vgO0SfuAmAaWUbMqISCV99HBtPZ0wqWGqPS7wZwfX5e1EkpmHfsgZ1pvZCbpbzQlNuZox9ixrYvVGdmDPhPNp6Jk+xr1Qq+WPj78xvMwpbW1tsbGwwMTEhPDycFi1a0KBBA+3jtra22f6d0/+NjKSlG0Dr1q0xMzMjICAgT7EvpTKWfaZMmQLAypUrqVKlCvfv32fdunU8evSIdevW0blzZ+Ryea7nF7R7SnnkfkQmi36P4e6TrLwPLiAah/7tR5mMmv+MjwbYMcjLGnke3U4k8ka6Y5RhfH19adq0KTVq1NC3KWUOGxsbzM3NS1zsa3jvvfdwc3Nj4MCBtGnThgMHDuTrfVaJKg48PsvmO8d4lhaLXJBpF8z5yT0WEVH+b/tWMDVi54NT7LgfRLOKHnxStzeedtWK9sJ0hNR+L3/ExsZiZ2eXr7zhU6dOsX37dn777bcSbQNZEEJCQopcYTk6LZ6xZ1YTmRZXrCL/v4iI3E96zmfBP7KqzVgczLL/jS0tLWndujXHjx/n888/LzG7DBEzuQmiSnxtImJmXArha44DUKG5Ox7junBh7GYUiWmErzpGvTn9AXgRfJvbyw+jylTi1OcNanzU+ZVWejFnwrGo5oC5izrdJTM+leQ76o0gZXrei165TE4Pn27UazCYxMREEhISSExMJD09nVu3bmFtbU1SUpL2uYSEBJRKZa7jWVhY5LgR8LpNgv8+ZmlpWeqFjampKe3atSMwMJBJkybleMzz5895+PChQVbi14jL8PBw1qxZg4mJCX379i3RtqFlBT8/P8LDw/Hx8WH8+PEAxMTEoFAo+Oqrr7h9+zZxcXFUrFgxx/OVSiUxMTEG00bYEDkUkszyrbHFPo/G07/WL57Tl9JYOKYSVuZS1nlRkMR+GUUTwj9nzhx9m1ImEQQBJycnIiLyrsRcXHTq1InQ0FB69+5N69at2b1792tzlZ+lxrLo8jYuxdzVlhd7XTXr/KD63/kXY+7yyekfeKemF6Nq98BErt9LS7169Th06JC0U58HcXFx+crXVyqVjBs3jpYtWxpsReuoqCjCw8OLlK8fn5nMhNC1RKbFFfm7URiUoopnqbF8EbqWNW3HYW1ike15Hx8fVq5ciVKpfK2HqiyjVCr5++hpVHVkCK9R+3d++gtFYhpG1mZ4jOuCib0Vtcb4cHPxAWLP3uP50atUaObGzcUHQATBSE7ynef8M227doyan3pjVasKMaF3ubFoHyb2lhjZmJMeEaeuAQBU9q6Xt82o6NmiM72rZS8QN2HCBOrVq8fgwYP54osvtI+LokhaWpp2UyCn/+f02NOnT7M9l5ycnKtNMpmsUJsE/31O3ykIXl5eLF68GIVCkWPEQ1hYGIDBiX2VSkVWVhampqbcvXuXlStXAmBra0u7du1IT0/H1NS0UPevyMhIDh8+jFKppEOHDiWWaqhPNNfDx48fc+HCBRo1aoSDgwNvv/02ixcvJisr67W1HeRyOatWreKbb74pKZNLFTuOJbLOP77E5712P4Mvvo9k2YTK2FmXz3ueLpDEfhnl0KFDpKamMnToUH2bUmYpqfZ7r6N27dqEhoYycOBAvL29+f3333n77bezHSOKIrsfhrDq+h6tgNG1v1Ij+rfeDeTk8yvMaTJcr15+T09P4uLiiIqKknL0XkNsbGy+xP4vv/zC5cuXCQ0NNdjq4SEhIQCFFvsqUcWX5zbyNDVG+3nWB0pRxaOUaGad/42VrT9DJvz79/b29mbu3LlcunSJZs2a6c1GfZGRkcHIkSM5ei2Eht/lfm97fuQKcefuA1DzM29M7NVpERXb16ZS2F2iT9zk/oYg7Bq7ai+GokJJ0q3n2cZRpGUCYPdGNdKexZH2JI7URzHITY2xql2Jyp3q4tTnjXzZXsfu1YJgtWvX5oMPPmDhwoV8+OGHWFtbA+rNZAsLCywsLLQpY4VBqVSSlJSU782CxMREnj17xs2bN7Mdl5WVe/SCmZlZgTcJ/nuMlZVVoa8r3t7ezJ49mwsXLtCyZctXng8NDcXJycngCrLJZDJt21KVSoWdnR1KpVJ7vzIzM3vt+aIoan8EQUAmk2WLFJg0aRJxcXEsWbKEKVOmoFAokMvLbpszFxcXLCwsePLkCStXrqRXr140bNiQVatWkZKSQvfu3V/rtb98+TIHDhyQxH4O+Acm6UXog7oewIPnWUz+IYofJlXBysIw1x+GjiT2yyi+vr40adJE6iNajBiC2AdwcHDgr7/+YvTo0QwbNozw8HBmzZqFIAgoRRVLLu/g4JOzJWKLiMjTlBd8FvwjXzcZgZdz4xKZ97+8XJFfEvu5ExcXl2dxvtjYWGbPns37779v0K2rQkJCqFq1KtWqFW6Tye/+aa7EPdCtUYVEJaq4GHOXvY9CGVD9382LVq1aYWFhwfHjx8ud2E9KSmLgwIGcPn2aTdu2sJqQXDctHbs3zDWPvs7kntSZ/G+qR/t9E/Ocu7KXJ5W9Cl8nwUiQ42blmONzX331FX/88QcrV67UeSSeXC7Hzs6uwDVd/kt6enqemwT/fS4yMjLb70lJSbl2UBAEAWtr60KlJNja2mJhYcGRI0dyFPthYWG0bt3aoETu4cOHWbFiBQkJCYwZM4b0dHV3h8zMTJycnHjw4AGHDx+mQ4cOODk5kZSUhLGxMZUqVdJGUgiCkOtratiwITt37iQyMlJ7ncitzkNpj357+vQpERER1KlTh549e+Ln58eWLVs4duwY8fHxpKen4+TkxPz58187TmBgIM+fP3/tMeWRExdSWeUbp1cbVCp4+DyLmWuiWDmxCnJ56f286gtJ7JdBUlNT2b9//2vbOEkUHWdnZ65fv65vMwB17uIff/xB7dq1mTNnDrdv32bdz+v49rovQc8ul6gtKkQEUeTrC3+QoRpGj6p5t6bSNbVq1cLIyIgbN27QuXPnEp+/tBAXF4eDg8Nrj/n666/JzMzk22+/LSGrCkdISEihvfqPk6NZe3O/ji0qOquu7aFVpbo4Wag3ZExMTOjYsSPHjx9n2rRperau5IiOjqZnz57cuXOHI0eO0KlTJ3YF3OZp6gt9m5Yvato4YSTLOQTV1dWVMWPGsGzZMsaMGZPn91EfmJmZYWZmVqR8ZpVKRXJycoGiDKKjo7l79262YzTC+L989dVXLFiwINtGgLW1NadPn6Zx48aMGzcuXxsI1tbWxZois3PnTmbMmMG9e/cAuHXrFpUrVyYrKwtBEKhatSo//fQTK1asoEmTJtSoUQN/f39sbW05ceIEERERzJ07V1vXoXLlyrRp04bPP/8cNzc3QL1BGxsbi62trXYz9/nz58THx+Pq6oq5ubk2kqI0C31QF+X7888/2bx5M76+vixdupS5c+fy4sULFAoFXbt2ZcKECXkWbTUzMyMyMhKVSmWw0WslTUyCkmVbYvRtBqAW/NfuZbLjeBLDuhlmzSBDRhL7ZZDDhw9LIfwlgKF49jUIgsCcOXOoVasW73/wPvc9gYY5F6MpbsT//XfRpW1YyE3o6FSy/Y2NjY3x8PAwmM0YQyU2Nva1+ZxXrlxhzZo1LF68GEfHnD2ThkBGRgZ///13oa55KlHFosvb9Bq6nxsKUcmiy9v4sfUY7aLc29tbuwFTHlqJPXjwgO7du5OQkEBQUJC26rqXc2O2hgeUaBHFwiAg0CmP69/MmTP55ZdfWLJkCYsXLy4hy0oWTY2Aohb3zMzMfGVj4Pfff2fbtm0sXryY1NRU7XMPHjxAqVSSlZVFUFBQtvNel79tZWVV5AKIFhYWOY79f//3f9y7d49mzZoxd+5cbGxs+Oyzz0hJSaFChQqYm5trbbt48SJxcXF0794da2trKleuzLZt2zh79ixVqlQhNTWV8PBwQkJCePjwId999x01atQgKCiIDz74AFBvLgwaNIjJkyezbds2evfuzRtvvMHOnTuJiopi0KBBzJ07FxcXl1Ln5V+9ejV//vknLVq0oE2bNpw9exYLCwsmTpyIIAj06NEDT0/PfLWWdXR0RKlU8uLFC6lIH+qIj+//L4b0TMO6vm7cG0+bhua4OUlt+QqCJPbLIL6+vjRu3LhcFGXRJ05OTsTFxZGenp5nfl1JMmzYMO5XTuNg6hX0f9sW+erCH2zsMJkaNoXPPS0MUkX+vHldgT5RFBk/fjy1atXSVjc2VC5cuEBGRkahPPvnom9x1UDC9/+LUlRxKeYuF2LCaVZRfT338fFh2rRphIaG0rFjRz1bWLxcvXqV7t27Y2ZmRnBwcLa0tP7V2rAl/LgercsfMkGgj+vr018qV67MxIkT+f7775kwYQLOzs4lZF3pw8TEhIoVK2arqm5lZcWmTZto3rw57du31z7+yy+/8Ndff3HmzBksLf9ttSiKIikpKQUqgBgXF8fDhw+zPZeampqjjZUrVyYyMvKVx589e8bjx48BGDRoEL169UIQBDp06MD169cxMjLCysqKFy/UESvu7u74+/vTuPG/6XAfffQRkydP1r7+P//8k8mTJ7Nz505GjhxJjRo1EEWRypUrIwiCVrhqujscOnSIv//+G5lMRkpKCr/++itubm7MnDmzVHm0ExISmDdvHlZWVmzfvp379+/z2WefcefOHSpWrMjIkSML1NVAs5n9/PlzSewDx8+lEno15ygafSIC3/7+gjXTHKVw/gIgif0yRlpaGvv27WPmzJn6NqXMoymc9Pz5c234nCFwP+k5R9OvG8QOvWZPeMGlraxv/0WuoazFQb169di4cWOJzVcaeV2BPj8/P06cOMGhQ4cM3oMcEhKCubn5a3tt54bfg9PIBZlequ/nB7kgw//Baa3Yf+ONN6hQoQLHjx8v02I/ODiYPn36UL16dQ4fPvxKZImjhT1tKntyNvqWQb933k5vUMHUOs9jJ0+ezOrVq1m4cCGrV68uAevKDk2aNMHW1pbAwMBsYj80NJSGDRtmE/qgjoKzsrLCysoKFxeXQs+blZX1SgHEhISEXGsTZGRkkJKSAkDVqlXJysrCxMQEMzMzBEFALpdjYWFBXJw6R7pXr17aGiSabgNXr15l3bp1hIeHY2xsTGZmJklJSQDasVNSUkhLS9MWeQSIj48HoFq1avj6+tKsWTO6du3K8ePHOX/+PJGRkUUqBlnS/Pnnn7x48YLPPvuM6tWr06VLF1JSUnj77bfZvn07Bw8eZNy4cVSvXj1f4728nmvUqGQjEQ2NzCyRVb5xCOi+mHNRUangzuMsjp5NoWeb16dmSPxL6dnGk8gXhw8fJiUlRQrhLwE0NwdDCuVXqJQsuLRV32ZkQymquJP4lK13A0t0Xk9PTyIiIkhISCjReUsLoijSvHnzHEMcU1NTmTx5Mn379qVHjx56sK5ghISE0LJlywK3AXuWGsuZqBsGKxZB/f05/fwq0WnxgDoc2svLi4CAAP0aVozs37+fLl260KhRI4KCgnJNIRns1t7g37uBbvnzLtrZ2TF9+nTWr1+vzeeWyB9yuZxOnTq98p0IDQ0t1pZ7xsbG2Nvb4+7uTuPGjenYsSN9+/alX79+OR5fpUoVFAoFAOfPn9duol64cAFRFDEzM8PU1FQr9itUqKCNGjQyMiIoKIgxY8Zw+PBh7t27R0REBDExMWRkZABox0tLS0OhUGBiYqLd6NDcB/v166cVwJruD7GxsVrP/3+JjIzkxYsXZGZmFu2PpWM0m9S//fYbdevWJTo6mt9//52lS5cik8mQyWT5Ct/XoCnka0jrOX1x6lIqiSmGmyAlCLArMEnfZpQqJM9+GWPnzp00bNiQ2rVr69uUMo8hiv0/7wVxO+GJvs3IkY23D9PBsQHu1iWT+/1yRX5D67FsKBw/fpynT5++8viSJUt4/vw5x48bfpi0KIoEBwczatSoAp+799EZZAgGn/cNsPdRKB/WUW+8+Pj4MGHCBJKTk/MsPFXa+OOPPxg1ahR9+/Zl27Ztr02RalGpDg0ruHM9/qHBiX65IKN5xdo0qOCW73PGjRvHypUrmTdvHps2bSo+48og3t7eTJ8+nbS0NMzNzUlISODGjRtMnTpV36ZpMTc3p3379ty9e5eNGzcSHR1NZGQkZ8+e1UYbmJiYaD31lpaW2YoFhoWFaZ+7fPky9evXZ+HChSxZsoTMzExtPYTU1FSUSiWmpqZaz77mPHt7e8zNzQG0xQ6NjIy0bQD/y4cffsiBAwcAdRG7wtQvePn/RWmz+DLe3t706tWLgwcPkpqaytKlS+nRowejR49GpVIxatQo7WZGfjAzM8POzk6qyI+61Z5MAJWB3hZFEcKfZHHzQQZ13XL+3EpkRxL7ZYj09HT27dtnUDe3soyDgwPGxsYGI/YzlJn8Ef6Xvs14LZvDj/FVk3dLZK46deogCIIk9nNBk+bx39DNhw8fsnjxYiZNmkStWrX0YVqBuH//PpGRkQXKz9QQ9OyfUiH0VYicfP5PNrGvUCg4deoUPXv2zOPs0sOyZcuYOnUqH374IevWrcu1XZgGmSBj1hvDGBm0xKDEvgCYyoyZ0fitAqVTWVhYMGfOHMaOHcu0adOoX79+8RlZxvDy8iIjI4MzZ87g7e3NuXPnEEXR4K79y5cvJyYmhv3797Nt2zb69eunbbcXExODIAjcvHkTQBvar8HT01ObIvDuu+9SuXJl7ty5o40W0Ij99PR05HI5VlZWWs9+cnIyoP6Mab5Xmg0ATURBTsybN48PP/ww19oGiYmJRW6zmNNmgZOTE/369aNSpUo5Fg50cHBg27ZtXLlyhQoVKuDp6cnKlSvZuHEjTZo0YdKkSQV+b5ycnMq92L/7JJMbDwwriiMn5DLYHZTEDEns5wtJ7Jchjhw5QlJSkhTCX0IIgoCjoyMRERH6NgWA4xGXSFVk6NuMXFGKKgIiLjGu3gAqmBa/N9LCwgI3NzepIn8e/NfLsnPnTuzt7UtN686QkBCAAi/q0xQZPEnJvXVb/D+PuTp7J4hQfWQ7XIeqe3iLShX/TP+TpFvPMa1kTZNVI4gOukV04A2S70WhylAvvJuueQ8L1+xhpJlxKTz4I5i4c/dQpGRi5mSLU6/GOPd5I097HyZHkalUYCI3onbt2jg7OxMQEFAmxL4oikyfPp2lS5fy5ZdfsmDBgnyLZBfLinzm2Zcfru0qZivzjwhMbDiIima2BT539OjRLF26lK+++go/Pz/dG1dGadCgARUrViQwMBBvb29CQ0Oxs7MzuCjHChUqsGXLFiIjI0lJScHV1ZWbN29y7do1bRTLxx9/TEREBA0aNMgm9vv27csXX3zBqlWruHz5Mp06dWLQoEEsX74c+DeM/8mTJ6SlpZGcnKwdU7NOMTU11Yp9TY6/paVlrmK/WbNmNGvWrECvUdNmMa/Wii///+U2i5rHPv74Y0aNGsXixYuxsbF5ZfPP2tqatm3bIooi165dY9GiRTg5OfHTTz+91r6YmBjkcvkrbRYdHR0NxnmjL46fS0EuA6Xh7J3miFIFgedTmfKuiJFUqC9PJLFfhvD19aVBgwbUrVtX36aUGwyp/Z7f/VMICIgG7KlUiSIHH4cxvJZPicwnVeQvGKIoMnnyZEaMGFFqwsNDQkKoW7dugfuThydGvPa7YtfIFee+TYjYe5FHW0Oxb+6OpXslnuw8R9Kt5yCAx8TuGFmYEnf+Acn3ojC2tSAjKjHH8ZTpWVyZ6Uva0zhkJkaYVrYm7XEs934OJCs+lervvr6TgFJUcS/pGXXtXBEEAR8fn1KRZpEXCoWCjz76iN9//50VK1bwxRdfFHiMQW7t2Hr+EFEmaQgy/S78ZAi0qlyX7i7NC3W+iYkJ8+bN47333uPcuXO0aNFCxxaWTWQyGZ07dyYwUF0bJjQ0lJYtWxpkhfn/tiBs165dtsikVatW5XruN998w+zZs0lJSUEmk2FkZMSAAQOIj4/XRmINHjwYBwcHKlWqpA3jb9iwITExMTg4OGgFrqbqf3p6eoHrnbyOl9ssVq1atdDjvNxmUaFQaL38/31PBUGgfv36hIaGEh0dTatWOXe/UCgUXL16lWbNmmnbG1pZWWkjCqKiolCpVLz55psFSlEwNzc3iILI+UGlUnH79m1t5ON/uX4/s1iFftzTM1za+zYArYefxtzGVfvc48u/8uyWLxlJT1Eq0jExt8emSlPcmo/HysHzlbGyFPDwWRY1qxp2AWFDQBL7ZYSMjAz27t3L5MmT9W1KucJQxP6t+MfcTnw199rQEBHxe3Cat2t6IReKfxHm6enJrl2G4/EzdDQ3/0qVKunZkvwTHBxcqBD+WwlP8twcc3uvPXEXH5L2OJZbyw/jMa4rj7aHAuDcryl2DdULlZqfeWNiZ0FU4A3u/HA0x7GeH/6HtKdxIEDjZW9j6V6Je78GEbH7Ak/8zuHUuzEmFSxzPPdfmx9T1049p4+PD1u2bNEu4EsjaWlpvPXWWxw6dIgtW7YwfPjwAo+hVCqZOnUq+35Zg9evY8i01F9nBZkgo5a1M3ObjijS4n/48OF89913zJ49myNHjujQwrKNl5cXEyZMICkpibCwMMaMGaNvk4oFExOTbB1SXu5AANC/f3/69++f7bHz58+/Ms7NmzdJTEzUFrQzNHJqs6j5XimVymxeeYAaNWpQo0aNXMczMjLC2NiYQ4cO5Rh18Ndff/Hw4UPi4+N5+PBhtmNya7OoGTe3zYGC1DPIK21JFxw8eJC+ffvi4+PDDz/8kC1VSKUSuf1IfyH88c/CyEqLwczGFZUyg9T4e0TfO0jc0xDajjiD3NjilXNuPcyUxH4+kMR+GeHo0aNSCL8ecHZ21oYR65OQqOsG3T7sZaLTE3iYFEkNm+Jv81OvXj2WL1+uLdokkT9Ki5ciMTGRK1euMGHChAKf+yA5ErkgoMgltxRAZmJEnUk9uDxlO6kPXnBl5g5EhQoLV3vcRv67wWDqkHcURNz5BwCYO1fA0l29mVKxrQcRuy8gKlTEX35M5c65R2UZCXIeJP3bu9vb2xtRFDlx4gSDBw/Oc35DIy4ujn79+nHhwgX27t1bqHSE1NRU3n33Xfbs2cMPP/zA2/1GMu7MKp6lxpb4tVCGgLtVFZa3/gQLo9yLCuYHuVzOggULGDx4MCdOnKBz5866MbKM4+3tjUKhYOfOnbx48cLg8vUNjZdb85UWkpOTmTJlCt9++22ubWNfR/369XOthbF06VIWLFjA0aOvbtgqFAoSExNfST94XWrC48ePX3lMU18hJywsLIq0WWBra4ulpeVr79+adI4TJ07QqFEjPv30U7755hscHByIeKEgPTPn++GZLe1IT3pCtTc+RalIJfLOXgRBThWPftRsOxuZzAiVMoOH51cTGb6H9KSnGJnY4ODmTc3WX2Jibs/9cyt48PdK7Zih/6fepHKsMwRP7++p1+VH5C9dO++dXcbD8z+hyIgnNf4u1pUaZrNJLofbjzLpVfC9/nKHJPbLCL6+vtSrV4969erp25RyhaF49m/GP0b1GtHyXwqSj6xISufR1lASrjwmMz4Vs8o2VOlaH5eBzQsdMnsr4UmJiH1NQaNbt24Vqge7hGETFhaGKIq0bfv6EPicSFdkkh85aFWrCq5vteTR1lBUmUqQCdSe1AOZScFunxnR6mJYxrb/bjoZ21m89HzO4f8aRETSlf96XVxdXfHw8OD48eOlTuxHRETQo0cPnj59yvHjxwslyiIjI+nXrx9Xr15l9+7d9O3bF4C17cYzKfTnPNM0dIkAeFaoxrKWH2NlrJtNxYEDB9KsWTNmzZrF6dOnS80GnD6pU6cOjo6O2loHLVu21LNFErrm22+/ZdOmTcycObNQYv91ODo6kpiYSGpq6iubIEZGRtjb2xeond9/EUWR9PT0fG8WaP4dERGR7TlNYcWceDmFIqdNglu3biEIgrbV4rp16/j9998ZO3Ys3YfkXafn8T+/Ije2RG5kRkbKc55c+Q1L+zo41xvGlcOfEPsoEEGQY2Ffm/SkJzy/6Uti5CWaD9mPqaUjFhVqkRoXDoBVxXrIZKaY21QDQG5kRvS9wzy6uA5FVhKp8eoWpMZmDpjbur9ii1IJt/QYiVCakMR+GSAjI4M9e/YwceJEfZtS7nByciI6OhqFQlEiIVi5cT3+UYEWtvnNRxazlFyevI2shDTk5sZYVLUn5eELHvx+mszYFGp81LnAthoJMm4lPKana/Hnor7cfk8S+6+iqXKcU7Xj0kBwcDD29vaFKsKVpVLkWjH6v6RFxP/7i0okPSoRq1pVCjznKxRAi4qiSKYqu1fI29v7ld7ihs6dO3fo1q2btptAYTaob9y4Qa9evUhPT+fkyZPZCojZmVixtt04Ntw6zPZ7J5AJQoE2QguCTJCBKDLSoysjPbpgLNPdPUAQBBYtWkT37t05cOAAffr00dnYZRVBEPD29ubYsWN4eHiU2vQWiZwJDw9n2bJlzJgxg+rVq+t8fE1nmsjISNzdXxWXRUUQBMzNzTE3N8fRsfAtiJVKJcnJyfneLEhISOD58+fcunWL+/fvZ7vvqVQqUlNTWbJkCbHKBkCn185taulIi6EHEeQmhG7tSGZKJHFPgzG3cyf2kbpexhv9tmHn3IqMlEhCt3YkNe4OkXd241xvGOa2btqc/Qbd12fL2QfITHtBYtRF7e9m1q406rURI5Oco+eSUw0/mtUQkMR+GeDYsWMkJiYyZMgQfZtS7nByckIURSIjI3FxcdGLDTHpicRnJhf4vPzkIz87cJmshDQAGi19G8vqFXl+5Arhq44Rsf8SLgOaYVop/71sARSiihvxjwpsb2Gws7PDyclJKtKXC5mZmZiampZKoQ/q4nxt27YtVL6pkUyOQN56+0XwHaJPqFthmVa2ISMqkfDVx7HxdM4zx/5lTCtZk/Y0Tvt9AshKSH3peZucTtMiCALGsuw5qj4+Pvz88888ffpUb9efgnDhwgV69OiBg4MDR44coVq1agUeIzAwkEGDBuHi4kJQUFCOY5jKTfi8Xj86OTVi/sX/41lqrM69/AJQzbISc5oMp7Zt4YuQvY6uXbvSqVMnZs2aRa9evQwyr9rQ8PLyYuvWrXh5eenbFAkdM2nSJBwdHZk+fXqxjK8R4M+ePSsWsa8r5HK51ltfUCZMmMCaNWu0DiqFQoGHhwcjRozAs20f1von8bq90YpuXTEyVd+rzK1dyUyJJDM1mqTIS9pjLu5585XzEiMv4uz5dp72udR/F+d6w8lIjuBu6LdEhe/j2tHPaTpoV46CPyPLcAtSGxLSnaMM4OvrS926daWevHpAsxOsz1D+RylRhTpPk48syGW55iO/vAOsDdnXCEOVSPyVx4Wa+2Fy4WwuDJ6enlL7PdCG7d29e5d169bRunVr3n//fSZPnqzt61yaUCqVhIaGFiqEH8BUbpznJkdmXArha9QV7ys0d6fx0rcwsjZDkZhG+KpjBZrPrqkbAGkRcaTcjwbgRcgdAAQjGXaNXXM7VX0MAqay7BWzNYKmNFTlDwgIoHPnzri7u3Pq1KlCCf0//viD7t2707x5c4KDg/Mco0EFN/7oNJXRdXpib6relJRR+I0tTVHRSma2fObZl40dJxeb0Af1Bs/ChQv5559/2LFjR7HNU5bQFOvUdYi3hH45dOgQ+/btY/ny5cVWZ0Aj9p8/f14s4xsCiYmJKBQKBEGgb9++nDx5klu3bjFnzhyMjYzy3P3WCH0AIZdIJpvKTV75MbHIf9FfQRAws3ahetPPAUiJu01U+N4cj5VLKjZfSJ79Uk5mZiZ79uxh3LhxpdY7V5oxBLGfocwq9Ll55SPbN3fj4R/GKNOyuDx5O2aOtqQ+itGenxlT8IgC4JVw5OLE09NT246pvCKKorZy8ahRozh9+jSiKHL27FksLS1JT09n9uzZVKpUSa/pKAXh2rVrJCUlFVrsu1hUzDOM/85Pf6FITMPI2gyPcV0wsbei1hgfbi4+QOzZezw/ehXHbg24//spYkLuoEz797t47Wt/BCMZzn2a4NyvCU49GvL88D+kR8Rzecp2racfwGVg8zyjBJSiChfLitkeq1ixIo0bNyYgIICRI0cW6u9QEuzcuZPhw4fTuXNn/Pz8CtzWURRFvvnmG+bOncuoUaNYt25dvluFmcpNGOnRhXdqehESeQ2/B6e5EKPOGZULMlSiKtf1rYA6VF9T7K9ZxdoMdmtPq8p1S6SbCKjFa+/evZkzZw6DBw/WaYu0skhcnPo7lZj4+hoYEqWHzMxMJkyYgLe3N4MGDSq2eezt7TE2Ni7TYv+dd97B1dWVDz/88JVUCBNjodDxT9aVG2v/Xa3pGCq5dwNApVIQ9+Q0FnY1AZAb/VvTRKV4KcotPY6Yh4FUrtUHmVxdXT/m4b/rNmVWzt0QTIwk3ZMfSseqTiJXjh07Rnx8vFSFX09UrlwZmUymV7GfpVIW6fzX5SObOdpR/5tBPNwcQvLdKDJjk6nsU4/Iv66CCEIht1UVRbS5INSrV4/169eTlZVVbhfKmpz8pUuXcurUKfr06YOXlxdTp07Fzs6Onj17smHDBho2bEj//v1LxcZhcHAwRkZGhe5DXseuKrnLPHh+5Apx5+4D/2utZ68WqBXb16ZS2F2iT9zk/oYg7Bq7khWXSvqzhGznawryZSWnAyA3N6HRt0N5sCmY2L/vkx6ZgHlVexx7NsSlX9M87RURqWP7qvffx8eHHTt2GGzdhXXr1jFmzBjeeustNm3alK1lWH7IzMzko48+4o8//mDBggV8+eWXhXqdRjI5HZ0a0dGpEVFp8dyMf8SthCfciH/EzYQnpGSlaT8PMgSsjS2oa+eq/rF1pa5dNSqavT7VorhYsGABTZo0YdOmTYwePVovNpQWwsLCkMvlXL16Vd+mSOiIlStXcu/ePXbt2lWs1ziZTEaVKlUMouhycdG1a1e6du2a43MOtvIcH88PFVzaYO/aidjHQVw9/JFa3AsyMpKeolSk8ka/7ZjbuGJuWx1BZoyoyuLSvncws6qK6xsfYV2pETcCJnLr5EzMbaqjyEwiI1ndOUBubEWlGj1ynLdShcLbXJ6QxH4pZ+fOndSuXZsGDRro25RyiVwup3Llytp2Jvrgv3m8BSE/+cg2dZ1puPDfehCJNyOIPKpeSJlXLVyopFERbC4onp6eZGVlcffuXerWzb21WVlGJpORlJTExo0bMTY2ZsuWLaxatQqVSsXYsWNp3rw5/fr1Y/z48fTs2RNTU1N9m5wnISEhNGnSpNAhnXVsXh9+7di9IY7dG+b4XJ3JPakz+d9WcbUndqf2xO55zmlib5Wv43JCADxsX83L9/HxYfny5dy5c6dQhQqLC1EUmT9/Pl9//TXjxo1j5cqVBc45j4uLY/DgwQQHB7N161aGDRumE9sqm9tR2dyOjk6Nsj2u2YQsyetTfnjjjTd46623mDdvHu+++y5mZkVr7VeWCQ0NpWbNmvzzzz/ExMRIRfpKOREREcyfP5+xY8eWSKqqo6Njmfbsvw6PakXrV9+gx3oeXVhDZPhe0hIfITe2xKJCLeyrdcLSvg4AxmYV8Gg/l4cXVpOR/IzM1GgyU6MxMrWhcq1+JEZdIi3xIaJKgamVM3bOraje9HPMrF+9X8tlUKe64a9VDAFJ7JdisrKy2L17N2PGjDFIj055Qd/t9/6bx5tf/puP7DGuCxfGbtbmI9eb0x+AhGtPsanrhCCXoUhO5/7GkwAY2Zhj16jgebcAJjqsWp0XL1fkL69iHyA6OhqlUknNmjUJCAhg9uzZ1K9fn4kTJ7Jw4UIAPDw8SoXQB7XY17RbKwzWJhZUMbMjMj1ed0YVI04WDlgYvfredOjQASMjIwICAgxG7KtUKsaPH8/q1asL7Y2/f/8+vXr1IioqimPHjtGhQ4disvZfDE3kv8w333xDvXr1WLduHV988YW+zTFYwsLC6N69O7dv3+bEiROlri2lRHamT5+Oubk5c+fOLZH5nJycyq3Yr2Atx95GRmziqxXu27wb/MpjTfr/me13uZEZ7i0n4d5y0mvncan/Li71333l8fpdfyqQvUoV1KletA2K8oJU2qAUc/z4ceLi4qQQfj2jb7HvapX/wicvk1s+MqDNRwa4u+Y4ocPXcWHcZs6+/wtJN56BTKDWGB/kZoXbaKhmWTibC0OVKlWws7MrlxX5X85Jd3Nzw9bWlps3b/LJJ58gk8n47LPPuHPnDsuWLaNixYqMGDHilfMMkefPn3Pv3r1C5+traF2lXonlXhcFuSCjTWXPHJ+ztramZcuWBlOkLzMzk3feeYe1a9fy888/M2vWrAIL/bNnz9K6dWuysrI4c+ZMiQh9Q6d27dq8//77LFq06LV9tsszz5494+HDh3Tt2pVatWqV+1otpZ3g4GC2bNnCt99+i52dXYnM6ejoWKbD+PPC080UWSnyHdYuYjRCecHwVzkSueLr64uHhweNGjXK+2CJYkPfYr+imS12JvlvAQZ55CN3Vnu/728IIj0yAbsm1TGyMCHtSRyCXIZdk+o0XDiEiu08CmWvXJDhWUH3PXJzQxAE6tWrVy4r8mtEVnBwMDKZjFGjRgFqL78gCOzfv58ePXqQlpbG119/jY2NDUql0uAjhUJCQgCKLPYHVG+jLb5myChFFQOqt8v1eR8fHwIDA1Gp9PtakpOT6dOnD7t27WLHjh18/PHHBR5j165ddO7cmZo1a3LmzBmDiVYwBL7++msSEhL44Ycf9G2KQRIWFgZA69at8fLyIiAgQM8WSRQWpVLJuHHjaN68OR988EGJzVuew/gBGtYy1XGT0uLDzlpGFXvDjcYyJKQw/lKKJoT/k08+MfiFeVnH2dmZw4cP69UGT7tqhEbdzHcv6YLkI9cY3YkaozvpxE5QC5c6xdiuKic8PT25ePFiic6pbxITE7GxseGXX35h3rx5rFixgs8++wxRFNmwYQOXLl3i8OHDVKxYkc8//5zPP1e3uSkNvbxDQkKoVq0aVasW7XNUy8aFenbVuRn/6LXF+vSJDIGG9u64WVfJ9Rhvb2/mz5/PP//8wxtvvFFyxr1EdHQ0vXv35ubNmxw+fLjAfc5FUeSHH35g0qRJDBkyhE2bNmFubp73ieUIV1dXxowZw9KlSxkzZgz29vb6NsmgCA0NxdnZmapVq+Lt7c0vv/zC8+fPtS3VJEoPGzZs4OLFi4SGhpboPcnJyYnIyEhUKlWpuBcWhrVr1zJ58mQqVqyo/b44OTlhZGREVbd6yITuKA3zdqhFJkC/DlaS/sknZfOTXA4IDAwkNjZWCuE3AF6+OeiLurauyErRRU8fYv/mzZt693yWFDt27KBly5b4+fkxceJEEhMTtT3J33nnHTZt2sS2bdtYtGgRhw8fZtGiRQClwqsParFfVK++hiHu7Q1W6AOoEBns9vow9jZt2mBubq63UP6HDx/SoUMHHj58SFBQUIGFvlKpZPz48UycOJGpU6eyfft2SejnwsyZM1EqlSxZskTfphgcYWFhtG7dGoDOnTsDcOLECf0ZJFEoYmNjmTVrFu+//z6tWrUq0bkdHR1RKBTExMTkfXApxd7enrS0NB4/fkxYWBj+/v6sXr2alStXMnvGeDo3szD4/vUi0Lt9wVq4lmcM/O2UyA1fX19q1qypNy+OxL84OTmhUCh48eKF3mxoXdmzVIQjAziY2uBmXbKelnr16pGamsqjR49KdF598e2333L79m2GDh1KamoqQ4cO1S6a7OzsaNiwIQMGDGDGjBk0bdpU2/dcLjf8kLj09HTOnz9Pu3a5h7UXhM5OjXG2cDDIzTIZAq6Wlejg+PpuK6amprRv314vYcvXrl2jXbt2ZGZmEhwcTJMmTQp0fnJyMgMGDGDt2rWsW7eOxYsXl1mPmi6oXLkyEydO5McffyzXucX/RaFQcO7cOa3Yd3R0pF69elIofynkq6++IjMzk2+//bbE53ZycgIo06H8/fr1y9bFRhRFRFHE1NSUoKAg+ne0RmnAy0m5DNo3NqeSnRScnl+kO2opJCsri127djF06NBS4YUr62huDvpceHnaVaOmtTMChv15EBAY5Na+xIuivVyRv6yTlpbGTz/9RM+ePbXXh23btvHtt9/y5MkTAO7evcvYsWP5/fffS403X8P58+fJzMzUmWffWGbE7DfeQWWARQlFYE6T4fmqEu/t7c3JkyfJysoqfsP+h6Z4noODA8HBwdSqVatA5z979oxOnTpx4sQJ9u3bxyeffFJMlpYtJk+ejJmZmbaLhoR60yklJSWbJ9jLy0sq0lfK+Oeff1i7di1z587VS/qFZs6yKPYjIyNZunQpTZs2JTU1Vfu4IAgYGxtz9OhRWrZsSf0aJni4GmOoe65KFQzxtta3GaUKA30rJV5HUFAQMTExDBkyJO+DJYodQxD7giAwxL19vnP29YVMEOhTrWTD8gCqVauGhYVFuRD75ubmtG/fHjMzM0RRpFq1aqSnpzNr1iy6du3Kli1bmDp1Kr/++isRERGlwpv/MiEhIVhYWOi0MGlDe3dqJ9ggGlCah4DA8FreeNrlr72lj48PycnJnD17tpgtU3Pw4EF8fHxo0KABQUFB2utgfrly5QqtWrUiMjKS06dP07Nnz7xPkgDU0TnTp09n/fr13L9/X9/mGARhYWHI5XKaNWumfczLy4vw8HAeP36sR8sk8osoiowbN446deowbtw4vdigEftlJWpGoVCwb98+BgwYQNWqVZkzZw5NmjRh7dq12Y7bsWMHHTt2BNTryWkjHDDE5aRMgN7tLGlYy0zfppQqJLFfCvH19cXd3Z2mTZvq2xQJDOfm0MWlKeZyw21DIhdkdHZqjL1pye/IymQy6tatWy7EviiKpKen061bN7788kv279/PokWLcHFx4datW4wcOZLdu3fj6urKzJkzteeUFoKDg2nVqhVGRroL4fvjjz/4fdQCzDJkBtGKTy7IcLWsyAce3fN9TtOmTbG1tS2RsOXNmzfTr18/unbtypEjRwrcFuvYsWO0b98ee3t7QkNDady4cfEYWoYZO3YsDg4OzJs3T9+mGAShoaE0atQIS8t/O9No8vYl737p4M8//+TkyZP88MMPGBsXrq1vUTEzM8POzq7Ue/Zv377NjBkzcHV1pV+/fjx69IgVK1YQERHB1q1b+fTTT7Ub5uvXr2fAgAHZzq9Z1YSRvW0NKlZUJkAFGzmfDqqgb1NKHfpf1UgUCIVCgb+/vxTCb0CYmJjg4OCgd7FvJjdhhEcXvdrwOkRR5N1aPnqb39PTs1y03xMEATMzMz755BMWLFhAgwYNGD9+PDt27GDMmDHI5XKaNm3KmjVrEAQBhUJRaq4loigSEhKis3x9ULd6++CDDxg18gM29JiGhZGpXvP3ZciwMjZnccvRmMjzv6Ehl8vp3LlzsRfpW7FiBSNHjmTkyJH4+fkVuJDexo0b6dmzJ23btuXUqVNF7qhQXrG0tGT27Nls3ry5XFzX8iI0NFSbr6/BwcGBxo0bS3n7pYCUlBSmTJnCwIED6dq1q15tKa3t95KTk/n999/p0KEDderUYf369QwZMoQLFy5w4cIFxo4dm62Dxy+//MKff/7J6NGjcxzvne42uDsbTji/SoTpI+2xNDcQg0oR0l+slBEUFMSLFy+kKvwGhpOTExEREfo2g2E1vKhl42wQ3smXEYD3a3ejlo2z3mzw9PTkxo0bpcqLXRCUSiWg9mJNnjyZhg0bMm/ePK5cuYKxsTFt2rRh1apVPH36lF27dtG7d28AnXrIi5u7d+8SHR2ts3z9v/76i7fffpshQ4awbt063KwdWdn6M8zkJsj0cHuUCTIsjEz4ofVnVLWsVODzfXx8OHPmTLZ8TF0hiiIzZsxg0qRJTJ8+nV9//bVAnx1RFJk9ezYffvghH374Ifv27cPaWsq7LAofffQR1apVY86cOfo2Ra/Ex8dz48aNHCu3e3t7ExgYWGav+2WFRYsWERMTw/fff69vU3B0dNS78ya/iKLImTNn+Oijj3BycuKDDz7AzMyMbdu2ERERwU8//ZRr0dSWLVvy5ptv5jq2kVzgq9EVMTcVkBmAP2B4dxuae0pdWgqDYSkCiTzZuXMnbm5u2fLSJPSPk5OTQdwcjGRyZr/xjr7NyIZckFHD2okRtfQbdVCvXj3i4uKIiorSqx3FgVKpRC6X8/z5c0aPHs2KFSu4du0a8+bNY+DAgaxatYqHDx+SlZVF5cqVcXV11bfJhSI4OBjgFQ9eYThz5gwDBgzAx8eHzZs3a2sX1Latypq247A2MVe7EkoIQQRbY0vWtBtPzUJuinl7e2ur4usShULB6NGjWbx4Md9//z3fffddgaJBMjIyGD58OAsXLmTJkiWsXbu2VG0yGSomJibMnTsXf39/zp07p29z9Ibmted0XfDy8uLRo0dSbQMD5u7duyxbtoxp06bh7u6ub3NwcnIyeM9+VFQU33//PfXr16dt27YcPXqUyZMnc//+fe0mtplZ0fPaqzkas2x8ZUyM9Sv4+3WwZFQ/W/0ZUMqRxH4pQqlU4u/vz5AhQ0pN2G15wVDEPkBNG2dG1e6hbzMAtPles/NZUbw40VTkL4shrxqhOnHiRO7fv8+bb77JW2+9hUwm4969e0yePJnRo0fz559/kpKSomdrC09ISAj169enQoWi5exdvnyZXr160bx5c3bu3ImJSfZaFzVtnNnQfiLpd6KLNE9BiL30kL6xNXAvQlvKevXq4ejoqNNQ/rS0NAYPHsymTZv4448/mDRpUoHOj4mJoWvXrvj7+7Njxw6mTp0q3b90yLvvvounpyezZ8/Wtyl6IzQ0lAoVKuDh4fHKcx07dkQmk0mh/AbMxIkTcXR0ZPr06fo2BTDcMH6FQsH+/fsZNGgQLi4ufPnllzRq1IijR49y79495s6di5ubm87nrVPdlBUTK2NuJuglpH9QZyvGv2Uv3TeKgCT2SxEnT54kKipKCuE3QJydnQ1G7AO8W8ubLs5N9N6KTwS+avKuXsP3NdSsWRMjI6MyV6RP9b8K8mFhYfz555+0bNmS7du38/jxY1QqFU2aNMHIyIjjx4/z+eefl2qPakhISJFD+G/fvk23bt2oWbMm+/bty9Zv+GUeX7vL31P+jz7GDTGVGRdLaoxckGEmN2FawzdpfMucSR+N5datW4UeTxAEvL29dSb24+Pj6d69O3/99Rd79uxhxIgRBTo/PDycNm3acOPGDQICAqR7VzEgl8uZP38+R48e5cSJE/o2Ry+EhYXRsmVLZDkoEVtbW5o1ayYV6TNQDh06xL59+/j+++9zvRaXNIYWxn/nzh1mzpxJtWrV6Nu3L/fu3WP58uU8e/aM7du307Vr12LvqlOnuimrpjhStbJRiawq5TL1zycD7fh8aAVkhpBHUIqRxH4pwtfXl2rVqtGiRQt9myLxHzSefUPJC5QJMma98Q7tqtTXm9wXRRHP+2Z4O7+hJwuyY2xsjIeHR5kT+5oF7m+//QbAV199RVBQECEhIQwcOJBly5Zhb29P1apVmT17Nqamptr8/tJEfHw8165dK5LYf/ToEV26dMHBwYHDhw9jY2OT67F+fn44ODgw2WcEmztPp23leggIyHTwjZL9b5z2VRqwpfN0+lZvzc/r1uHi4sKbb75JWlpaocf29vbmwoULxMXFFcnGZ8+e0alTJ65evcqxY8e0NR7yy5kzZ2jTpg2CIBAaGqqzOgsSrzJo0CCaNWvGrFmzDOYeVFKIophjcb6X8fLyIiAgoNz9bQydzMxMvvjiC7y8vBg8eLC+zdHi5OREQkJCka7DRSUlJYVNmzbRsWNHateuzbp16xg0aBDnz5/n0qVLjBs3LluxvZKgupMx62c6MbynDYJAsXr53Z2NWf+lI291tZE8+jpAEvulBCmE37BxcnIiIyOD+Ph4fZuixUgmZ36z9+jqUrL1HWSCWsg0fWLLL+O/ZdmyZSU6/+uoV69emQrjf3nxWr16derWrUuHDh2YNWsWAPPmzSMzMxMzMzP8/PyYOnUqQI4eMEMnNDQUURQLLRojIyPp2rUrRkZG/PXXX1SsWDHXY0VRxM/PjwEDBmBkZISThT2LWozC12c2Izy6YGOs9kDJhfxJf+F/xwLYmlgy0qMrvj5zWND8faqYq1MSrKys8PX15c6dO0yYMKFQrxHURfpUKhVBQUGFHiM8PJx27doRExPDqVOnCvw39/X1xcvLC09PT0JCQqhZs2ahbZHIG0EQWLhwISEhIRw8eFDf5pQod+/eJSYm5rVi39vbm+fPnxcpakZC9/zwww/cvXuXH3/80aDWtZp2ypGRkSU6ryiKhIWF8fHHH+Pk5MT777+PiYkJW7duJSIiglWrVum95baJscCovnasne6IaxV1lKBcR8sJQQAjOYzuZ8va6Y64OxtuK+nSRumN5yxnnD59msjISCkM0kBxcnIC1N6wouYT6xIjmZxZbwzD086VNTf2oxJVKEVVsc0nIOBobs/sN96hob071k+ymDp1KlZWVnz66afFNm9+8fT05Ndff9W3GTpBpVIhk8lITU1l69atTJ8+nY8++ojExEQSExMB+Pbbbzl27BhxcXFYWVlpzzWkhVV+CQkJoWLFijnm5eZFXFwc3bt3JykpidOnT+Pi4vLa469cuUJ4eDg//vhjtsermFdgdJ2evOfRlbPRt7ge95Ab8Y+4Ef+YZEXOXiBrY3M87appf1pVqptr/YqGDRuyatUqPvzwQzp16sTw4cML/Frd3NyoUaMGx48ff6V3cn64ePEiPXr0wM7OjsDAQKpXr57vc0VRZOnSpUyfPp1hw4bx22+/YWpqWmAbJApOt27d6NSpE7NmzaJnz56lckOvMISFhQHqyuK50a5dO4yMjAgICKBu3bolZZrEa4iIiOCbb77h888/p0GDBvo2Jxsasf/s2bNiyYH/L1FRUWzZsoVff/2V69ev4+rqysSJE3n//fcNomBhTtSuZsKvs5y4cCud3UHJnLmShkDBa9rKZaBUQeUKcgZ2tqZHG0tsrfRb36ksIon9UoKvry+urq45tpaR0D8vi/169erp2ZrsyAQZQ9w70rqyJ/P+3szNpCeIoqhTwScTBFSiyFs1OjG6Tg9M5eod2QULFpCcnMyYMWOwsrLi3Xff1dmchcHT05Nnz56RkJCArW3pruyqef8mT57Mzz//jL+/P5999hl9+/ala9euXL16lW3btgHw9ttvawsUllY0+foF/dympKTQu3dvHj9+zMmTJ6lRo0ae5/j5+WFjY4OPj0+OzxvLjGhXpT7tqtQH1CJ37JeTCTobzDbf7QiCgInMCDsTKyqZ2RbI5g8++ICgoCA++eQTmjVrVihx4u3tXaiCZCdOnKBfv37UqVOHgwcPUqlS/tv/KRQKxo4dy88//8ysWbP45ptvyo3gNAQ03v327dvj6+vLW2+9pW+TSoTQ0FBq16792pBmKysrWrVqRWBgIGPGjClB6yRyY8aMGZibmzNv3jx9m/IKmvVccRbpUygUHDlyhI0bN7J3715kMhkDBgxgxYoV+Pj4FHsOvi6QyQSae5rT3NOcqFgFB0OSuXQngzuPMknLEP93zP8KNQuACCqVupaTIIBLJSPq1zDFq5kFzT3NpLz8YkQS+6UApVKJn58fw4YNK5UeufJASdwcikpVy0rMchtM28/74zq0JSYOVqiUKmRFiMGSCzKUoooGdm586tmHhvbZd6EFQWDFihUkJyfz/vvvY2FhwaBBg4r6UgqNZiPmxo0bOmnfpi80mzXR0dFaURcQEMDFixfp2bMnHTt2ZN68eZw9exZ3d3dtH25Ni77ShkKhIDQ0tMD9xDMyMhg4cCBXrlwhICCA+vXr5+s8Pz8/+vbt+0qV/twQBIHEJ9HYZ5m+8h0oKIIgsGbNGs6dO8fQoUMJCwsrcOEqHx8fNmzYwLNnz7TXprzw9/dn2LBhdOzYEX9/f6ytrfM9X1JSEm+++SbHjh3j119/ZdSoUQWyV0I3tGvXjt69ezNnzhwGDx5cqotx5pe88vU1eHl5sXbtWm1ElIT+CAkJYfPmzWzYsAE7Ozt9m/MK9vb2GBkZFct6Ljw8nI0bN7Jp0yYiIiJo1KgR33//PcOHD8fBwUHn85UUle2NeL+PHQAqlcizFwpuP8okOl5JRpaIUiliaiLDwkygposJNasaY24qfQ9LirJ/JygDhISE8Pz5c4YMGaJvUyRywcLCgtjYWIO8cb1M5UqVOPrdFoJOneSr1d9Tb4QXuP2vSJkoklcjVQF1pIBSVGEmN6ZX1ZYMcGv32nZhMpmM9evXk5KSwttvv83evXvp0UM/rQHr1KmDIAhcv369VIt9zabfuXPnEAQBW1tbEv6fvbMOiypt4/A9MzRIGmAHitioaysCKnbHWti61hprd++qa+faurZityKCYnejIioiKd0wc74/+GZ2XYMaGNBz77W7FzPnfd9n6pzze5+KjCQoKIjdu3dz9+5dHB0dWbt2LcWKFQNSw/7zotCH1LD62NhY6tevn+4xKSkpdO/eHU9PT86cOZPuwqbe3t48efKEuXPnZsjGkJCQDHnCv4WhoSEHDhygVq1ajBw5MsOpJw4ODkDqBlB6UgE2bNjA0KFD6dKlC9u3b89Q6P379+9p3bo1vr6+nD59miZNmmTIVhH1Mm/ePOzs7Ni+fTsDBgzQtDnZSnx8PPfv36dfv35pHuvo6Mi8efN4/PgxVapUyQHrRL6EXC5nxIgR1KxZM12fmyaQSqUUKlRIbRX54+LiOHjwIFu2bMHDwwMTExN69OjBgAEDqF69+nfnxJNKJRQpqE2RgtqaNkXk/4hiPw9w4MABihQpkqfFyY9AbsrV/xoGBgZUqlQJLS0t7t25S6uirajt1IjbQd68iPLHO+o9PlEfSBY+r9b+79zjciZFqZm/LAZaeulaVyaT8ffffxMXF0eHDh04e/YsjRo1UvfLSxN9fX1KliyZpyvyK73z+/fv5+eff6ZatWrcuXOHe/fusXHjRs6dO8fDhw95+fIljx49YubMmTRo0CBP31BcvXoVbW1tatRIX7FJhULBgAEDOH78OIcPH6Zx48bpXuvQoUMYGBjg7OycIRtDQ0MzlN+eFhUrVmTt2rX07dsXe3t7XFxc0j22UKFCVKpUKU2xLwgCCxYsYNq0aQwfPpwVK1ZkaEPo/v37tGrVCplMhpeXV67Lvf0RqVatGt26dWP27Nn07NkTPb30naPzIvfu3SMlJSVd90Z169ZFV1cXd3d3UexrkM2bN3Pv3j2uXbuWqyMsrKyssuTZFwSBW7dusXnzZvbs2UN0dDSOjo7s3LmTjh07oq+vr0ZrRUTSQBDJ1cjlcqFw4cLCqFGjNG2KyHdKTEyMEBoaKkRHRwuxsbFCVHSUEBDzUfCLCRZ8owIF/9hQISwhWlAoFFleKz4+XnBychLy5csn3LhxQw3WZ5xWrVoJrVq10sja6qROnTqCRCIRlixZonosPj5e6Nixo6CrqysYGhoKurq6wuDBgzVopXro0aOHULt27XQdq1AohJEjRwoSiUTYvXt3hteqUaOG0Llz5wyPK168uDB16tQMj0uLfv36CQYGBsKTJ08yNG7UqFFCiRIlvvq7lcvlwq+//ioAwuzZszP8+z516pRgZGQkVK9eXfjw4UOGxopkL97e3oJMJhOWL1+uaVOylSVLlgj6+vpCUlJSuo53cHAQ2rZtm81WiXyNjx8/ChYWFkKfPn00bUqatG7dWmjdunWGxwUHBwtLly4VKlasKABC0aJFhenTpws+Pj7ZYKWISPrIvdtqIkCqR+vDhw9iFX4RtbN9+3Zq1KhBgwYN6NixI3369OG3335j8qTJ+Nx/RlHDApTMV4jCBhaY6RqpxTOsp6fHkSNHqFy5Ms2bN+fhw4dqeCUZw9bWNk+33xMEAblcTtGiRYHUc8T79+9VLfaKFy+OtbU1Xbp0ISkpiY0bN+Ln56dhq7OGl5dXutu/zZw5k1WrVrF+/Xq6d++eoXXevHnDnTt3MtXzOTQ09Jvt/DLL6tWrKVWqFF26dCE2Njbd45ycnHj79i2+vr6fPZeUlESvXr1YtWoV69atY8aMGRn6ff/111+0adMGBwcHPDw80l0XQCRnKFeuHH379mX+/PnExMRo2pxs4/r169SsWRNt7fSFCyu/r3L555FrItnPzJkzSUpK4o8//tC0KWliaWmZbs++XC7n1KlTdO7cmSJFijBx4kQqVKjAmTNnePPmDXPmzElXYVgRkWxD07sNIt9m1KhRQuHChQW5XK5pU0S+A5Tfo3379gklS5YUJBLJF/9duHChIAiCkJKSki12hIeHC3Z2dkLBggUFb2/vbFnja2zevFmQSCRCXFxcjq6rbubOnav6vJo2bSps3rxZWLNmjVCkSBGhcePGQmJiomBnZycULlxYuHXr1idj89L55P379wIgHDx4MM1j//zzTwEQFi1alKm1lixZIujo6AiRkZEZGhcbGysAws6dOzO1blo8ffpUMDQ0zJBHLCIiQpBKpcKGDRs+eTw6Olpo1qyZoKOjIxw4cCBDdsjlcmHChAkCIIwYMSLbzg8iWeft27eCjo6OMG/ePE2bkm0UL15cGDduXLqPv3z5sgB8dj4UyX4ePHggSKVS4c8//9S0Keli+vTpQtGiRb95zKtXr4SpU6cKRYoUEQChcuXKwvLly4WQkJAcslJEJH2IYj8XI5fLhSJFiggjR47UtCki3wnKm/N+/foJEolEGDx4sGBrayvo6ekJjRs3FgoWLCgULVpUuHz5siAI2SsKg4ODBVtbW6Fo0aKCr69vtq3zX65duyYAwr1793JszewgJSVFGDlypKCrq6sS/dra2oJEIhGmTZsmhIWFCfny5RNKly6dYfGamzhw4IAACP7+/t88bsOGDQIgTJkyJdNr1a9fP1Ohm2/evBEA4ezZs5leOy3+/vtvARC2bNmS7jG1a9cWunXrpvo7JCREqFWrlmBkZCRcuHAhQ+vHxcUJXbp0ESQSibBs2TK1pPWIZC+jRo0STExMhI8fP2raFLXj7++f7k1AJYmJiYKBgUGmNwNFModCoRDs7e2F8uXLC4mJiZo2J12sWbNG0NLS+uweKDY2VtixY4fQuHFjARCMjY2FX375Rbh165Z4ThTJtYhiPxfj5eUlAIKnp6emTRHJAG/evBEePXokBAYG5joPqlLs//TTT4JEIhECAwOFunXrCvny5RNu3bolODg4COPGjRPi4+NzxB5/f3+hdOnSQpkyZXIs7zciIkIAhF27duXIetlJZGSksHHjRqFp06aCRCIRbGxshK5duwpyuVyYOXOmIJFIPruxTUlJEV6/fq0hizPO6NGjhZIlS37zmL179woSiUQYPnx4pm+4Pnz4IEgkEmHr1q0ZHnv79m0BEO7cuZOptdPLgAEDBH19feHRo0fpOn7y5MlCgQIFBIVCIbx9+1YoX768UKBAAeH27dsZWjc4OFioW7euoK+vLxw6dCgzpotogMDAQMHQ0FCYOHGipk1RO4cOHRIA4f379xka16xZM6F58+bZZJXIl9i7d2+2b4aqG1dXVwEQQkJCBIVCIdy8eVMYMmSIYGxsLACCg4OD8PfffwuxsbGaNlVEJE1EsZ9DKBQK4UPsR8H9w31h3dPjwrjrG4Qhl5cLfT0WC/09lwjDvFYJc+7uFPb5XBIefPQRYpMThNGjRwtWVla5TjCKpCKXy4WIiAghJiZGEARBOHbsmNC+fXuhQoUKQuHChQUDAwPBwcEhw4W1shOlEKpQoYKQP39+QRAEoXLlyoJUKhUEQRDatGkj5M+fXwgICMgxm3x9fYWiRYsKFSpUyLHwNysrK2HatGk5slZ2o1AohJSUFOHZs2eCv7+/EB8fL+zYsUOQSCRCjRo1vjgmL732WrVqCT179vzq8ydPnhS0tLSE3r17Z+lcqfTkZMYLevr0aQEQ3r17l+n100NcXJxQuXJloXz58kJ0dHSax1+4cEEAhMOHDwtFixYVSpYsKbx48SJDaz5//lwoXbq0ULBgQY0V1RTJPFOnThX09fW/uyKKEydOFIoUKZLhcX/88YdgaGiY7qJ+IlkjJiZGKFq0qNC+fXtNm5Ihrl69KgDChAkThMqVKwuAUKRIEWHatGnCq1evNG2eiEiGEFvvZTO+0YEceePFOf+7xKTEAyD7f5/y//JEIuW8/10EBCRAYrlIGo/qTKIiGX1p+vsei+QMFy9eZN++fYwaNYqEhASmTJnCkydPPjnm0qVLdO3aldOnT6v6nWsSZREufX194uLiVI9LpVJGjBjBzZs3+fjxI0ZGRjlmU8mSJblw4QKNGjXC2dmZixcvYmJikq1r2tra5un2e4IgqD5LiUSCTCajfPnyAERFRSEIAiNGjKBv376fjT179izBwcE5aW6miY+P5+7du/Tp0+eLz3t4eNCpUydat27Nli1bstTKydXVFQcHB8zNzTM8NiQkBCBbCvT9G319fQ4cOECNGjUYOnQoO3bs+GZhvXr16qGtrU3Pnj0pXbo0Z8+epXDhwule7/Lly7Rr1w5LS0suXLhAqVKl1PEyRHKQcePGsWbNGubPn8/q1as1bY7auH79eqbaETs4ODBp0iRu375N3bp1s8EykX/z+++/ExISwtKlSzVtSrqQy+WcP3+elStXArB06VLat2/PwoULadasWYZak4qI5BbEavzZgFxQcPHDfYZ7rcLFYxFH311TCX3l818bJyAAIAA6RU3xq6hFu/MzWfH4MH4xITlhvkg62b17N5s3b8bQ0JDt27fz5MkTKlasyMKFCzlx4gR//PEHJUqU4OnTp7x48QJI7f+taQRBoG7duhQqVIjnz5/TvHlz5HI5a9euJTg4mDp16uSo2AewsbHh/Pnz+Pr60qpVqwxVHc8MFSpUyNMV+e/fv49CoUAQhM+eMzY2xsXFhfnz51O9evXPnp8zZw5mZmY5YWaWuX37NikpKV+sxH/79m3atGlD/fr12bNnD1pamd+7Dg0NVW0cZHa8oaFhjvROtrGxYcOGDezcuZPNmzd/81hl5XFdXV08PT0zJPR3795NkyZNqFatGl5eXqLQz6OYmpoyceJENmzY8MXODHmRlJQUbt26lSmxX716dYyNjbl48WI2WCbyb3x8fFi8eDETJkzI9eeP169fM336dEqWLEmLFi149+4dAMuXL+fAgQO0aNFCFPoieRZR7KuZdzHBDPNaxcy7O3gc/gb4urhPk/87bOLlSRx+60Vvj4XseHmBFIXYNiY3kJiYiImJCfny5SMxMRGAUaNGMX78eJycnJgwYYLKs6ps9aOO9nVZRSKRsGrVKp49e0b58uWZO3cuM2bMoFOnTvTv358NGzZoxK4qVapw5swZHjx4QPv27UlISMi2tWxtbXn58iXJycnZtkZ24efnR4MGDVi5cuU3v0/58uX74uNPnz7NlPdaE3h5eWFkZESlSpU+efzp06c0b96cihUrcuTIEfT09LK0ztGjR1EoFLRr1y5T40NCQihQoECWbMgIPXr0YPDgwYwcOfKr7St37dpFmzZtKFu2LCkpKV/9PvwXQRCYP38+PXv25Oeff+bMmTN5ZnNI5MuMHDkSc3NzZs+erWlT1MKTJ0+Ii4ujdu3aGR6rpaVFo0aNcHd3zwbLRP7N2LFjKVSoEJMmTdK0KV8kPj6enTt34ujoSJkyZVi5ciWtWrXi5s2bPHr0CBMTk08iIEVE8iqi2FcTckHBvtce9PFYjHdkak9rBZ973bIyv1xQsNH7FIOvLMc3On39P0WyD0tLSyIjI3n+/Dl9+vQhf/78Ko+0rm5q2sWbN2+oVasWZcqU0aSpACovsI+PDw0aNGDo0KH8+uuvLF68GB0dHWxsbGjevDm6urqEh4drxMZatWpx4sQJrly5QteuXbNNjNva2pKSkoKPj0+2zJ+dTJgwgXz58tG/f/8Mj5XL5URGRuYZ8Xb16lXq1Knzidf+9evXNGnShMKFC3Pq1Cm1RKEcOnSIBg0aYGlpmanxISEh2R7C/1+WL1+OjY0NXbp0ITo6+pPnVqxYQa9evejVqxebNm0iOjqa27dvpzlncnIyAwcOZNq0acyaNYtt27aho6OTXS9BJIcwNDRk2rRp/P3333k6oknJ9evXkclk1KhRI1PjHRwc8PLyUm3Si6ifM2fOcOzYMZYsWYKBgYGmzVEhCAK3b99m6NChWFlZ0bt3bwRBYMeOHQQEBLB+/Xp++uknJBIJlpaWBAQEaNpkEZEsI+bsq4GY5Hgm3drMg7DXObKeT3QA/Tz/ZHyVrrQqVitH1hT5HGWI9Lx58+jevTsVKlRg4cKFKm/k/fv3efDgAYaGhuzatYsZM2agUCg0FgqmzPP29fXl6tWr3LlzB0EQkMvlGBgYYGhoSGJiIqamprRu3ZrffvuN4sWL57id9vb2HDp0iHbt2uHi4sLOnTvV/p5VqFABQBXdkFe4fPkye/fuZevWrRgbG2d4fGRkJIIg5AmxLwgCV69eZfjw4arHPnz4QNOmTTE0NOTcuXNqeR2RkZGcP3+exYsXZ3qO0NDQHPXswz/5+9WrV2fIkCHs2rULgGnTprFgwQLGjx/PwoULkcvl5MuXj4sXL34z7DkyMpLOnTvj4eHB9u3bcXFxyamXIpIDDB48mCVLljBjxgwOHjyoaXOyxPXr16latWqmRaSjoyMJCQlcv34de3t7NVsnkpSUxKhRo3BwcKBz5845tu6/a9n8l/DwcHbs2MGWLVt4+PAhhQsXZvjw4fTr1w9ra+svjrG0tCQwUHSsieR9RLGfRcITYxhzfR2+MUE5tqbi/2kBfzzYS0xyPN1KixcrTVCrVi2cnZ05e/Ys586dw9jYmKioqE9upLS0tIiJicHLywvgiznWOYXyIiiTyShQoMAnRcVCQ0OJjo5GX18fX19fVq1axcuXLzl+/LhGNidatGjBnj176Nq1K4aGhmzYsCFLxdf+S8GCBTEzM+Pp06d06NBBbfNmJ3K5nJEjR1KrVq1MCzFlxEZeCOOPiooiIiJCla//8eNHmjZtSlJSEleuXMm0F/6/nDhxguTkZDp27JjpOUJCQjQSvVO2bFk2bdrEzz//TIMGDbh37x6bNm1i8eLFjBs3Dkg9B9nb2+Pm5saUKVO+OM/bt29p1aoV/v7+nDt3jsaNG+fgqxDJCXR0dJg1axZ9+/bl9u3b1KxZU9MmZZobN25k6TtapUoVzM3NuXjxoij2s4EVK1bg4+ODq6trtqYu3rp1i5MnT1KoUCHq1q1LtWrVvnicsibR7Nmzadu2Lb///jvOzs5p3ttYWVmJYl/ku0AU+1kgOjme0dfX8jYmWCXAc5rVT4+iJZHSqVRDjaz/I1O2bFnmzJlDZGQk/v7+hIWFYWVlhZGREYIgYGhoiJmZGYaGhqrcwqwUEVMXpUqVwtramtq1azNv3jySk5N59eoVv//+O5Bawfvw4cPcuHGDw4cP5+jO/L/p1KkTW7dupU+fPhgZGbFs2TK13ThIJJI8V5F/48aNPHjwgOvXr2d64yMsLAwgT3j2jY2NcXV1pU6dOkRFRdG8eXNCQkK4fPkyJUqUUNs6rq6u1KpVK0vdMkJDQzOVP6wOunXrhpubGyNHjkQikbBt27bPuhc4OTkxadIk4uPjPysieOfOHVq3bo2enh5Xr17F1tY2J80XyUF69erFwoULmTZtGmfOnNG0OZkiIiKCZ8+eZSkPXCqV0rhxY9zd3b+bOga5hYCAAObMmcPs2bM/q7WiLi5fvsz06dPx9PQEUh0YCoWCnTt30q5du88iPmQyGaNGjWLw4MEZisCytLTk/v376jRdREQjaF555FFSFHIm3tzIm5ggFBr01gIsf3IYc11jHApX1agdPyI//fQTly5d4ty5c0gkEoKDgwkPD6dBgwZUrVoVXV1d5HJ5rqjiKpfL0dLSYvv27Vy7do0DBw5QpUoVAGrUqIGPjw+bNm1ixowZlC1blt9++00lDjWFi4sLsbGxDBs2jHz58jF37ly1zV2hQgXu3r2rtvmyk7CwMKZOnUrfvn2zJCrzkmdfIpHQunVrAFq3bs3Lly9xd3fHxsZGbWvExsZy5swZZs2alaV5crpA379R1g0RBIFChQp9MVLF0dGRxMRErl27hqOjo+rx48eP8/PPP1OpUiWOHTtGoUKFctJ0kRxGJpMxd+5cVbpGXvRq37x5EyBTlfj/jYODA2PHjiUuLi5X5ZTndU6ePIm7u3u2RY4kJiayZMkSPD09ad68OYMHD2b//v3s3buX+fPno6+vT/v27T8bZ2RklOH6LmIYv8j3gligL5Pse32JR+FvNC70lSx8uI+PCVGaNuOHREdHh9atW2Nra8vx48fZuXMnAwcOxMPDg0ePHlGuXDkGDBigaTNVvHr1CoBjx47x4sULYmNjefv2Lc+ePePNmzc8fPhQFZKcE63E0mLo0KEsWrSIefPmsXDhQrXNq/Ts54Z2iGkxc+ZMkpOTVdEXmUUp9vOCZx9QbZLNmTOHM2fOYGdnp9b5z5w5Q3x8fJZC+FNSUggLC9OI2A8MDMTe3p5Hjx6xe/duYmJiGDRo0GfpQpUqVaJAgQK4ubmpHlu9ejXt27fH2dkZd3d3Uej/IHTs2JEaNWowdepUjaaVZZbr169jZmZG2bJlszSPo6MjycnJqhQ7kawjl8sZMGDAF1u+ZgYfHx9mz55Nly5dVB72HTt2cOzYMRwcHFQFRJUdSQICAlSbQerAysqKiIiIbO0MJCKSE4ie/UzgGx3IRu/TmjbjExLkSSx+dIDfa/bPFe3dfkR+++03jh49qvp74sSJ3L17F5lMxvHjx4mJicnx/vX/RimcKlasiLa2Nvv27eP27dsULlyYuLg4bt26BaSG+e/btw8gS6HN6mT8+PHExMQwadIkjIyMPinalllsbW2Jj4/n3bt3lCxZMutGZhOPHj1i7dq1LFq0KMt56mFhYchksnS3YcsNKKtuq7NmgxJXV1eqVKny1QJN6UEZ/ZLT1fh9fHxo1qwZCQkJeHp6UrlyZbS0tOjSpQuNGzdm6NChqmOlUimOjo5cvHgRuVzOuHHjWL58OWPHjmXRokW5IvJIJGeQSCTMnz+f5s2bc/r0aVq2bKlpkzLEjRs3qF27dpbvc2xtbSlUqBDu7u40bdpUTdb9uAiCoDqPZPWzeffuHbNnz2br1q2qx6ysrFi5cqUqFfL69esULlxYtVnfvHlzHBwcqFevHikpKWpJmVRebwMDA3P1PYKISFqInv0MkqKQM+/eLk2b8RlyQYFX0BPcPtzTtCk/HMqLzePHj4HU3OoqVarw4MEDoqKiqFOnDqGhoRoPB1NegCdMmICLiwtJSUk8e/YMNzc3rl27hkQiYdKkSRQpUoSrV69SpkwZSpcurVGb/82sWbMYM2YMI0aMYPv27Vme798V+XMrgiDw66+/UrZsWUaOHJnl+cLDwzEzM8tzG4LZIfQTExM5ceIEnTp1ytI8ykKXOenZv3//PvXr10cmk+Hl5UXlypUB6Ny5MyNGjGD06NGfpag4Ojpy8+ZN2rdvz8qVK1m9ejVLliwRhf4PSLNmzWjUqBFTp07NE5FNSgRB4Pr161kO4YfU66GDgwMXL15Ug2UiWb2mPHr0SBV1uG3bNnbu3ImxsTELFy7k4cOHqoKjenp6WFhYEB8fT/HixZk9ezavXr3i1KlTWFhYsGLFCrW1y/u32BcRycuIYj+DnPW/w4sof+QaKsj3LSTA8seHSZKnaNqUHwplKKQyxLh79+60atUKgKCgIFV4rPICpOmbK6lUytq1a/H09OT3339n7NixTJ06lS1btjB//nxSUlIYNmwY27Zto0iRIhq19d9IJBKWLFnCoEGD6N+/PwcOHMjSfMWKFcPAwCBX950+ePAgly5dYvny5Wrpdx4WFparQvi/9lvIifDi8+fPEx0drTaxn1OefWWuddGiRbly5cpnHqc///yTypUr06VLFyIjI1WPV61aFYVCwfnz5zl69KhaomNE8iZK7/79+/fzVBu+V69eERYWphaxD6l5+7dv3yYqSkyB1AQxMTG8ffuW1q1bU7VqVXbt2kVUVBQLFy4kOTmZmTNnMn78eCpVqqSKMrS1tVXVA7CwsKBevXpcvnyZevXqMXDgQN68eaO2QshWVlaAKPZF8j5iGH8GEASBA689kSBBIPfluglAZHIsnoEPaVJEPTlTImmj9DqOHj2a58+fs3r1auLj4wHYvn27ysMWExOjMRv/i7a2Ng0aNKBevXqfhN9BahV0ZWG03IZEImHdunXExsbSo0cPDAwMVBsrGUUqlVK+fPlc69mPi4tj3LhxtGnThubNm6tlzvDw8FxTnE8ZaimXy/Hx8eHVq1dUqlQJIyMjzM3Nv9kzWR24urpiY2OjivDILKGhoUDOePaPHDmiarN3+PDhL6Zj6Orqsn//fqpXr86AAQM4cOAAz58/5+eff0Ymk9GpU6dc+/sWyTkaNGhAy5YtmT59Oh07dswVnWLS4saNG0Bq21t14ODggFwu5/Lly5m+johknIiICDp37szFixfp3LkzZ8+epX79+tSsWZM7d+5gaWmJr6+v6t4qKioKY2NjIHXTcvTo0Xh5eXHnzp1PUjC6du3KuHHjVCI9q1hYWCCTydQWKSAioilEz34GeBbxDp/oD7lS6CuRIuGg72VNm/FDEh4eTlBQECtWrGDXrl1IpVKWLFmCu7s71apVU12AsiMkObNIpdI8F8Yrk8nYtm0brVq1olOnTri7u2d6rtzcfm/RokUEBgaydOlStc2pDOPXNMrOEAA9e/akcePGtG7dGicnJ4YMGcKTJ0+yVegnJydz9OhROnbsmOV1QkJCkMlkmJqaqse4r7Bp0yY6depE27ZtOXny5DfrLpQuXZqtW7fi6urKqFGjqFevHkZGRnTs2JFHjx5lq50ieYd58+bx4sULtaRF5QTXr1/HxsZGbecwa2trihYtmqVriEj68PHxYefOnURHR2Nqasq7d++A1Oi1ESNGqDZcLC0t0dbWBlDVQFIK/XXr1vH69WucnZ05ePAgCxcupFu3bkydOpVnz56xd+9etXYBkEqlFCpUSPTsi+R5co/qyAMcfuuFTJK73zIFAk8i3uIT9UHTpvwwyOVyAK5du0ZISAgBAQGEhISgUChISkrCzMyM4cOHU61aNdWxuYWUlJRcZ1N6UBYYbNSoEW3atOH69euZmqdChQo8ffo011WlfvPmDQsXLmTs2LFZKh73X8LCwnKFZ1+5wdShQwf279+PhYUFNjY2+Pj4cPr0adauXftJCLq68fDwIDw8PMsh/JAq9vPnz59tmxOCIPD7778zaNAghgwZwp49e9DV1U1zXIcOHWjWrBmrVq3CxsaGK1eu0K5dOx49ekRwcHC22CqSt7Czs6Nr167Mnj07T1QcV1e+vhKJREKXLl3yVMHSvMiGDRsoW7Ysw4cPV3U/UKYRmZiYqAS6QqHA1taWunXroq+vz6VLlxgyZAiLFi2iTZs2DB8+XLUx1axZM8aPH8+ePXuYO3euWluy/hsrKytR7IvkeXK3cs1FpCjkuH24nytz9f+LTCLlvH/e6B/+PaD01Ldu3Zru3bszc+ZMVqxYwc6dO3F3d8fX15cBAwYQGRmZ67zobm5ueHh4aNqMTKGrq8vhw4exs7OjRYsWqtY8GcHW1paIiAiCgoLUb2AWGDduHObm5kydOlWt8+YWzz6kFmE6evQoDg4OPHr0SNX/vVq1arRu3ZqbN2+qKt2rG1dXV0qWLKmWFlGhoaHZFsKvUCgYO3YsU6ZMYebMmaxZsyZd5xBBEJg1axbnzp0jf/78BAUFIQgCDg4OAKInU0TFnDlz8Pf356+//tK0Kd8kPj6eBw8eULt2bbXOu3TpUmbMmJHrNnzzIsr38MqVK6xZs0ZVcK9ixYqq+j+XL6dGnrZr1w4DAwMiIyNJSEhALper7qWGDh1KixYtgNSCx5MmTeLkyZPUrVtXdZ3IKSwtLcUwfpE8T+5P0sol+EYHkqz4euG7iId+PJ52EAQo4VKfYl1Sc8oEuYKHE/cR7R2IboF82K3uTYiHNyHuz4h5HYwiMXXO6mv7YFDsH4/bi2VnCb749cJhDY6P+epzckHBk4i3GX2JIplEeYGqVasW69evR0dH5xPPW1hYGGPGjEFfX58FCxYQFxeHgYGBpsz9hD///BNTU9Mcv4CqC0NDQ06cOIGTkxPNmjXD09OT8uXLp3u8ra0tkFqRP6tt7dTFxYsXcXV1ZefOnWpv1ajJAn3KHHzl/318fADo378/CxcuZN26dVSvXp3Dhw+zbds2/vzzT06fPq32SAS5XM7hw4fp2bOnWrzxISEh2SL2k5OT6devH7t372bNmjUMGzYsXeOSkpIYOHAgf//9N/Pnz6d79+5Ur16d/v374+rqiq2tLW5ubnTr1k3tNovkPWxsbOjbty/z589nwIABGm0P+y3u3r1LSkqKWj37SvJad5LcikQi4erVqzRq1AipVMrBgwextrZW5eMfPXoULy8vXr9+TenSpWnfvj27d+/m9OnTtG/fHgsLCyD1XmrTpk20bduWGzduYGBgQIcOHahXr16OvyZLS0sePnyY4+uKiKgTUeynE+9Iv28+b1qlGIXb2PHh2D3e7b6Oec1SGJYqwPuDt4j2DgQJlB3jjJaBLuF33hDzOhhtEwMSg79cBVbPyoR8Np+Kj9i3H1EkJKNtlrZQ9I7wy/YCVyKfIpVKVeGAQUFBhIWFkZCQgK+vL1u3biUxMRFTU1MiIyOZP3++hq1NJSgoiHLlymnajCxhYmLC2bNnsbe3p0mTJly+fJlSpUqla2yZMmXQ1tbm2bNnKq+nJklJSeHXX3+lXr169OjRQ+3za7JAn/Jc9P79e4oVK6aqYj9v3jy8vb2xtbXl2LFj+Pn5MXXqVMqWLavK1VQnV69eJSgoSC0h/JDq2Vd3Jf7Y2Fg6d+6Mm5sbe/fupWvXrukaFx4eTseOHbl69Sq7d++me/fuQGoUhbLlnpOTE6dOnVKrvSJ5mxkzZrBz505WrFih9mgidXH9+nUMzU1IKazPHh93XkcHEp+SQJIiBZlEhq5MG0t9M2xMimFjWhQrfXPx/icHePDgAfr6+qr7iHr16lG4cGE+fPjAzZs3adiwIRYWFrRq1YozZ87w/PlzPD09KV26NN27d2f37t1cunSJ58+fU79+fdW8JiYmuLi40Lt3b41+jlZWVpw7d05j64uIqANR7KeT55Hv0ZJISflGGH/JPg0Iv/eWeL8wvJeeoezIprzbm5pLXLhtdUwrp7YOKTPUER1TA4Ldn/FyxZdPIsV/rkPxn//ZwU78GMPtgVtS52ptl6a98fIk/ONCKWqYc72fReDOnTvMmTOHt2/fEhoaSkREBHFxcUBqnvKkSZMAco3YDw4OVrUGzMtYWFhw/vx5GjVqhJOTE5cvX05X20BtbW3Kli2ba9rvrVu3jqdPn3L79m213+AkJSURGxub4559d3d39PX1qVOnDnPmzMHT05OtW7fStWtXNmzYgLe3N8bGxvTu3ZsXL17g4uJCSkoKEyZMUGu9AiWurq5YWVmpzUMYEhKi1g2zjx8/0qpVKx4/fsypU6do0qRJusb5+vrSsmVLgoODuXDhAg0bNlQ9165dO8aOHcv48eOZN28er1+/5s2bN5+17RP5MSlRogS//PILixcvZujQobmiroeSgLgwjr69yvHCb7Hb3p+xtzYgRYJEIkEhKFTlkpWPKVMtDbX0qG5hTYeS9amRvyzSXF5vKS8RGBjIhg0b2LRpE8HBwVhZWWFvb8+vv/5K9erVcXFx4Y8//sDDw4OOHTtiYWGBs7MzxsbGhIWFcenSJXr06IGTkxM2NjZ4e3tz5MgRatasqYqKVF7/NL1hY2lpSWBgoOg8E8nTiGe/dPIiwu+bQh9AqqOFzdjmSGRS4t6E8mjyfoQUBQbFzCnp8s+Opa6FERJZxt76gOP3EFLkSPW0sWpZJV1jXolF+nKcP/74g+PHj/Pw4UM+fPhAXFwc2tra6OrqIpfLcXBwoGvXriQmJmraVBQKBSEhIRQsWFDTpqgFKysrLly4QEpKCk2aNEl3EbLcUpE/JCSEGTNmMHDgQLXkkv+X8PBwgBy9kb99+zZOTk44Ozvzyy+/MGvWLD5+/EhsbCz29vbMmDEDQ0NDoqKiWLp0KY6Ojrx//56ZM2fSp08fALXm0gqCwKFDh+jQoYPaumIoC/SpAz8/Pxo2bIiPjw/u7u7pFvo3b96kTp06JCcnc+3atU+EvpLff/+d6tWrs2rVKqRSKRcvXlSLzSLfB1OmTCElJYXFixdr2hQEQeB68DPG39hI14vz2PPaHXm+f3xTCgTk/xL6/35MSWxKAleDnzL2xl90d1/AvtceRCfH5+Cr+D4JDAxkwIABzJo1i/fv31O2bFnevn3Ljh07GD16NACDBw8GUs//d+7cAaBYsWIYGxuTkpLCo0ePuHnzJnp6enTo0IHy5cvTqlWrdBUezWksLS1JTk7OtvoxIiI5gSj200lUcly6jjOyLkSxbqn5+ookOUgllBvbHKlO5oMo5PFJBJxJbZdUqGlFtIz00jUuRryw5RhKQXL37l1kMhkrV67k8uXL3L9/n+DgYFUP340bN7J3795ccVH7+PEjCoXiu/DsKylRogRubm6Eh4fj7OysErjfokKFCrlC7E+fPh1BELIt6kP5XuSUZ1+hUBAVFUXFihWJjo5mw4YNWFlZsXLlSsqXL49MJqN///6sWbMGGxsb9PT0cHJyYtWqVcycOVM1hzq9Kbdv38bPz09tIfyCIKitQN+zZ8+oX78+cXFxXLlyhZ9++ild4w4fPkzjxo2xtrbm2rVrX40y0NHRYd++fcTGxmJsbIybm1uWbRb5fihUqBCjR49mxYoVGq0+HhAXxq/X1jL+5kZuhXoDoMjkhp9S/AfEhbHm6TG6XZzHpYAHXz5WLufy5cts2rSJxYsXs2HDBpKSkjL3Ir4jHj9+zMqVK1Vt8Hbu3Mnp06extbXl3bt33LlzhwkTJgCphfkOHjxIyZIlsbe3Jzk5mT179rB161aGDRuGn19qOuy9e/d48CD1c5g7dy5Pnz6lcePGGnl9aaFsmSxW5BfJy4hh/Okk6RvF+f5L/IeIf/5QCCQER2FknXlBFXj2MfLYRJBKKNIufR4/CRIS5cmZXlMkYygUCmQyGTo6Osjlcpo3b461tTUpKSloaWlRvHhxIDVsvnTp0rkiJEzp+f5ePPtKypYty4ULF7C3t6dly5acO3fum62VbG1tCQgIICIiItt7pX+Ne/fusWHDBpYvX55tld2Vnomc8uxLpVIcHR3p2LEjT548AVLz26Ojo4HU+gTFixfHxcWFTp06ERsbi56enipPXy6Xq717haurKxYWFjRq1Egt80VHR5OUlJTlz+zGjRu0bNkSKysrzp49m64UFEEQWL58Ob/99htdunRh+/bt6Ol9eyO4RIkSbN++nbZt23L8+PFccR4SyT2MGzeONWvWMH/+fFatWpWjaysEBUffXmP106Mqka6u7kfC//8bkxzP9DvbaWxVlbGVOmGmm1qM8O7du8yfP59Lly59skF89OhRli1bRrly5VAoFGqLBsrtJCUlsXPnTlavXq3qclOkSBHq1avH2bNnAShVqhSFCxdGKpUyYMAArly5wtWrV/Hw8KBz586MGjWKW7du4enpiaenJ0ZGRixYsICUlBTq1q2rij7KbR2K/ouycG9AQAAVK1bUsDUiIpnjxzhzqQEJ6bshCvV6Scil5wDoFky9aX21xo2k8NhMrSvIFXw4ltpGL3+DcugVMknvSDFHTQN07tyZTp06qS5gWlqp+2nt2rVjypQpqmqzueEGW9lu7nvy7CupVKkSZ8+e5cmTJ7Rr1474+K9Hufy7Ir8mEASBkSNHYmtry9ChQ7NtnZz27CvX/PDhA3v27OHly5e8fv0aAwMD7t27h5aWFqGhoaxZswZvb28KFiyoEvqCIKj9JlAQBFxdXWnfvr3qd5lVlEUGsxLGf/bsWRwdHSlfvjyenp7pEvopKSmMHDmSsWPHMmHCBPbs2ZOm0FfSpk0bOnfuTHR0NHv37s203SLfH6ampkycOJG//vqLN2/e5Ni6McnxjL3xF0sfu5KkSMm2FsfK+ADPwEd0uzCPQ7fOk5SUxIIFCzh8+DDh4eGYmppiZ2eHmZkZp0+fVv1GFIrc33ZZXezatYsRI0Zw//59WrRowZo1a1ixYgUFChRQRSVqaWnx/HnqvW7+/PlV5+73798Dqfc827Ztw9nZmcaNG7N8+XJGjRrFhAkTvphmlFtRin3Rsy+SlxHVYDrRkWmneUxSeCyv1qaGRprVLEXVxd3QyqdHSlQ8r1ZfyNS6IZdfkBiS6gkr2qFGuscJ6bRZRD0ohcnw4cNZv349pUqV4uXLlxw9epSrV69SsWJF5s2bR9myZXPNTcP36tlXUrNmTU6ePMn169fp0qXLV0MybWxskEgkGhP7e/fuxcvLixUrVqCtnX2/WaVnP7vF/r9z7M3MzPjrr7/o0qULZcqUoUiRIjRq1IhKlSoBqTeJzZo1++x1Z8dm2KNHj3j16pXaQvghNVIByLRnf8+ePbRp0wYHBwfOnz+frqiLmJgYOnTowPr16/nrr7/4448/Muxx3LRpExKJhGHDhom5qCKfMHLkSMzNzZk9e3aOrBeeGMOIq2u49/FVjqwHqVEEcfJEVgSeZue1Exw6dAgTExPmzp3L3bt3OXz4MEuXLgVSw9gh93ug1cnq1atJSEhg48aNnDx5EgcHByQSCU+fPqVz584AeHl5sXPnTiC1OOijR6mppu3bt1fN07lzZw4ePMjFixfp379/nnwPDQwMMDY2FsW+SJ5GFPvppJCeaZrHvFx1npSoeLTy6VF2ZBN0zI2wHuYEQNjN1wSeS71o+G67zO3BW3iz/Ypq7JOZh7g9eAsfjt37ZE7/I6nFTUyqFMtwKkB+3a+HLouoH0EQVLvAQ4YMwd7enj59+tCgQQNsbGzYuHEjQK4JBQwKCkJPT++bIe55nYYNG3LkyBHOnz9Pr169SEn5PB1HX1+fUqVKaaQif0xMDOPHj6djx47pLsaWWcLDw9HT00NfXz/b1pDL5UgkEl6/fs3WrVt59eoVEonkk++8VCr9RNyXLVuWypUrZ5tNSlxdXTE2NsbJyUltcyo9+5kR+ytXrqRHjx50796dw4cPY2CQdkvVDx8+0KhRIy5dusSJEydUhbAyiomJCbVq1SI2NpY+ffrkmg1IEc1jaGjItGnT2LFjR7ZvgEYnxzPq+lrexARmOi8/s0ikEhTA9mgvTKsVx9bWlkmTJlGiRAmKFy9Onz59MDMzU7VkzQ3ReDmF8jXPnj2bIkWKULNmTbp160blypUJCgrCysqKjx8/8scff1CxYkVq1qyJv78/Xbt2pU2bNsA/75ehoaHGXoe6sLS0JCAgQNNmiIhkmtyhOvIA5U2LIftGWHzg2UeE3/IF/t9azzw1Fyx/g3IUaFweAN9NHiQERZIcHkdCQCTJEf8U/UsMiU59LCZB9VjEg3fE+qR6X4tkwKuvpJxJsQyPEck8EomE5ORk1q9fz8aNGwkMDCQqKgqZTEZ4eDhTp07l4MGDQO4ICQwODqZgwYLf/U1Ms2bN2LdvH4cOHWLQoEFffO81VZH/999/5+PHjyxZsiTb1woPD89Wr74yx97b25tWrVoxd+5crK2tc83369ChQ7Rp0wYdHR21zakU+8r0nPQgCALTp09n1KhR/Pbbb2zdujVdER2PHj2iTp06BAcHc+XKFZo3b55puwFatmyJjo4OJ06cyJHvn0jeYdCgQRQrVowZM2Zk2xopCjnjbmzgbUxwtoXtp4kkNQqy4oz2vE8JJygoCIlEwosXL5gxYwbJycksXbqUmzdvArnjup0TjBkzhiZNmmBra0vNmjUZP3483bt3RxAELl68yKxZs+jduzdFixbFx8cHa2trFi5cyLp163JV20Z1oWy/JyKSVxEL9KUTG5Ni37wgWTpXxtL5y94pm99aYPNbC9Xf5cY4U26Mc5prmlYtToPjYzJuLGCum09VfEYk5/Dz82PLli2YmZnRt29fNm/eTPHixRk9ejQDBw5k9+7ddO7cWa3txDJLUFDQd5mv/yXat2/P9u3b6d27N0ZGRqxcufITEWpra4urq2uO2uTj48Off/7JxIkTc6TfeVhYWLbdiCkLVPr7+9O0aVPev3/P4sWLc00BuBcvXvD48WPmzJmj1nlDQ0MxMTFJ9waCXC5n2LBhbNiwgUWLFjF+/Ph0jTt//jydO3emdOnSnDhxIl15/Wnh6OjIzJkzcXFxYfLkydSrV4/69eunPVDku0dXV5dZs2bRr18/7ty5Q40aGXc2pMXfry7wLOItmr4SCghItKQU/qUhdRrUw0BHj4SEBN69ewekRl8dOHCAWrVq5Yrrdk5QpEgRzp07pyowLAgCU6dOBVKL93Xv3p2+ffvy9u1bEhMTv/vCdVZWVqLYF8nTiJ79dGJjWlTTJqQbKRIqmpbQtBk/JBKJBF9fX6pVq8a0adPQ0dEhOTmZ/v37Y2RkpMpryw0CSOnZ/1Ho2bMn69evZ/Xq1UyZMuWT5ypUqMCbN2+Ii0tfi0118Ntvv1GoUCEmTZqUI+tlp2dfKpUSExND3759ef/+PfPnz2fkyJFfTJvQBK6urhgYGODsnPYma0YICQlJdwh/QkICXbt2ZdOmTWzZsiXdQn/z5s20bNmS+vXrp7uAX3qoVasWhoaGlC9fnrp16/Lzzz+rahCIiPTq1Yvy5curRJ46eRXlz7YX5zQu9JUIgFZ+Q2T2xXnx4gV+fn7o6+tTtGhRypcvr0p1y4s5518jMTGR/fv3c+TIEZKTP+/c5Ovry6hRo2jXrh2FChXijz/+wMzMDBcXF4yMjNDW1sba2vq7F/oghvGL5H1Ez346sdI3x0zHiPCkGE2bkiYCUMW8tKbN+CFRek4lEglmZmZYWFgQEBBAYGAgiYmJKpGfG/L2g4ODqVChgqbNyFEGDx5MbGwsY8eOJV++fCrRb2triyAIeHt7Y2dnl+12nD17lqNHj7Jv37505Wqrg7CwMLWL/X+3x/Py8sLNzY2uXbsyefJkAgMDVTUsNI2rqystW7ZU+3sdGhqarkr8UVFRtGvXjuvXr3P48GHatm2b5hiFQsH06dNZsGABv/zyC6tWrVJbFwEAHR0dGjVqhLu7O3v27MHOzg4XFxdOnDiRK85PIppFS0uLuXPn0qVLFzw8PLC3t1fLvCkKOXPv7Uq9FuYiT7lEKqFIhxpYRulS1tCK+vXrU7NmTapXr54rNufVxcOHD9m8eTM7d+4kLCwMFxeXT4rqKTEwMODQoUMEBQVRokQJevXqxS+//EK5cuVy3mgNI4bxi+R1xCt6OpFIJLQrUQ9pOlvwaRKpRIJz0ZqaNuOHxMTEhJIlS6qKvRUqVIioqCgqVqxIcnIy7dq1yzWhgD9SGP+/GTNmDLNnz2bq1KmsWLECyNn2e0lJSYwaNQp7e3u6dOmS7espCQ8PV2sYv1LoKxQKDhw4gLOzMzNnzmTGjBksXrw4XUL/37+F7PpdvHnzhjt37qi1Cr+S9Hj2g4KCaNy4Mffu3ePcuXPpEvoJCQn07NmTBQsWsGjRItauXatWoa/E0dGRK1euUKBAAf7++29Onz7NokWL1L6OSN6kY8eOVK9enalTp6rt93n07VV8owM1l6f/DaQSCRY9qtOufTs6depE1apVGTp0KA0bNlRd0/Ni3n5ERATr1q2jZs2aVK1alb179zJgwACePn3K9u3bvzimUKFCHD16lOvXr+Pr68vSpUt/SKEPqWH84eHhJCYmatoUEZFMIYr9DNCmeB1Nm5AmMokUR6tqYr6+BmnatCmBgYF4enpiamqKRCIhJiYGGxsbRo4cmWu8BD9aGP+/mT59OuPGjWP06NFs2bIFExMTChcunCNif/Xq1bx8+fKzugHZjTrD+AVBUHn0nZ2d6datG0uXLmXmzJmUKFEi3SGPEolEFTqeXe/FoUOH0NHRoWXLlmqfOyQk5Jue/devX1O/fn0CAgLw9PRMV3/pjx8/0rRpU44cOcKBAwcYP358tr03Tk5OxMfHc/36dZo3b86UKVOYNm0aly9fzpb1RPIWUqmUBQsWULly5a+2Ls0IgiBwwNdTDZZlD4IEInWT6Td1JA4ODty6dYsKFSrg5eXFkSNHgLwj9hUKBe7u7vTq1QsrKytGjhxJ4cKFOXLkCO/fv2fRokWqTe6vUatWLWrVqpVDFudelBvXondfJK8ihvFngIL6ptQvVJGrwU9z5a40gFxQ0KGkWGRJk/zyyy8qL1y5cuVo0KABtWrVYuLEiekK+c0JYmJiiIuL+yE9+5AqLBctWkRMTAwDBw7EwMAAW1vbbG+/FxQUxOzZs/nll1+oUqVKtq71X9RVoO/fofvHjh3j6tWryGQyFi5cSGhoKJMnT6Z27dokJyd/s8r8xYsXOXbsGI8ePUJHR4f+/fvj4OCAnp4eRkbq26w8dOgQzZo1w9jYWG1zKgkNDf2qZ//Bgwc0b94cIyMjrl69SqlSpdKc79WrV7Rs2ZLw8HAuXrxI3bp11W3yJ1StWhVzc3Pc3Nywt7dn9uzZXLlyhZ9//pn79+9nqqWgyPdFs2bNaNasmVo8+3c+vsQ/7qMarMo+FClyiratzpPFp9i8eTMLFy5k/PjxuLq6MmXKlFyf4uLn58f27dvZunUrr1+/ply5csyaNQsXFxesrKw0bV6e5N9iv0QJsR6WSN5DFPsZpFvpxlwOeqxpM76ITCKlTD4rKpmV1LQpPzR2dnb88ccf6OrqUrNmTXR1dXNdYZ/g4NSWjj+qZx9SBf+aNWuIjY2ld+/eODs7Z7tnf8qUKWhpaam9KnxaCIKgFs++suo+wMyZM7lx4wZSqRS5XE5ISAirV68mMjKSadOmfTHsXKFQIJVK2bVrF9OmTePt27dAavpL586dWbduHfr6+gwbNkwt+fUBAQFcvXqVLVu2ZHmuL/G1MH5PT0/atGmDtbU1p0+fTtfv7OrVq7Rr1w5zc3OuX79OmTJlssPkT5BKpTg4OHDx4kXmzJmDlpYWe/bsoVq1avTu3ZtTp07lenEjkr0oo0rUEV1yyPcKMok01zpLAKRaMgo2Kk/wntvs37+fTZs2UaFCBe7du0dUVFS2bBpmlcTERI4dO8aWLVs4e/Ys+vr6dO3ale3bt1O/fv1cE02YV1FukoiefZG8ingVzyBVLUrTqlitXJu7P7lad/HEngvIly8fOjo6GBgY5DqhD6keZuCH9ewrkUqlbNmyhbZt23L27FlevHjxxcrE6uDmzZts2bKFuXPnZqgvuzqIi4sjKSkpy2JfKfymTp3K3LlzCQwM5Ny5c2zatIly5coRExPDsWPHyJ8//xfPQ8rxf/zxB2/fvlVFVRgYGNCiRQv27dvHhg0bCA8Pz5KdSg4fPoxMJktXnnxGSUxMJCoq6rNonaNHj9KsWTNq1KiBu7t7uoT+gQMHcHR0xNbWlmvXruWI0Ffi5OTEjRs3iIlJLT5buHBhdu3axblz5/j9999zzA6R75uY5Hi8gp7kaqGvRCEI2A/poGq7p9y4fPw41dGTW+ruPHr0iNGjR1OkSBG6du1KZGQkGzZsIDAwkK1bt9KgQQPxflANWFhYIJPJxIr8InkW0bOfCUZUaMe14GdEJMagyCXNYyRA37LNsDYurGlTRPIAomf/H7S0tNi9ezcNGzbk1q1b7N+/n549e6p1DYVCwa+//kqVKlUYPHiwWudOD0rxnNUwfkEQiImJwc3NDYCuXbtSt25d6tatS5EiRWjfvj2WlpbfDN/39/fnyZMnODo6smHDBjZt2kSNGjUoXLgwcrmchIQEtW2GuLq64uDgoNbChEo+fkwNR/63Z3/Lli0MGjSIDh06sHPnTvT09L45hyAILF68mIkTJ9KjRw+2bNmCrq6u2m39Fk5OTqSkpODp6amqa9C0aVOmTZvGjBkzaNCggdoqsYv8uHhHvv/m/VLEQz8eTzsIApRwqU+xLqm54oJcwcOJ+4j2DkS3QD7sVvcmxMObEPdnxLwORpGY2t6z+to+GBT753ee+DGGV6svEOsbQnJkPFJdLXQL5KOggy1F2tdAIv26CBYUCiIMUucdO3Ys/v7+VKpUCVNTU0CzrXMjIyPZs2cPW7Zs4datWxQoUIC+ffvSv39/tXTXEQRB3CD4DzKZjIIFC4qefZE8i+jZzwRG2vpMqdo91wh9qURK6XxW9LJ20rQpInmEoKAgJBJJrqkhoGl0dXXZt28fAIMGDeLu3btqnX/nzp3cuHGDlStXZktV9bQICwsDyLJnXyKRoK2trfLQv3z5koiICORyOc7OzrRv3x5HR0fkcvlnY5WFrZ4/fw6AtbW1qhBc/fr1iYuL4927d5iZmaGnp5dl71loaCgeHh7ZUoUfUkP4IVXsC4LAwoULGTBgAIMGDWLfvn1pCv2UlBR++eUXJk6cyLRp09i5c2eOC32AsmXLUqRIES5evPjJ4zNnzqRRo0Z0795dFQkkIqIkLi6O1atX4+LiwpkzZ9I83jvS75sRkaZVilG4TWrb03e7rxPrm/r7en/wFtHegSCBsmOc0TLQJfzOG2JeB6Nt8vVUn+TIOCIfvkOmp41hSQskUglxb0J5s/Uy711vfdtYqYTI/4t9f39/AFq1akWFChU0UqBPoVBw6dIlevfujaWlJcOHD6dQoUIcOnQIf39//vzzT7UI/eDgYFHofwUrKytR7IvkWUTPfiapXbA8vayd2PnKTbOGCKCDlNk1XNCS5r5wcZHcSXBwMPnz58+VKQaaomTJkpiZmWFoaEizZs3w9PRUyw1UVFQUEydOpFu3bhrzkKrLsw+gp6dHkyZNuH79Otu3b1eFkCYnJ+Ph4cGRI0e+KNSVGwT58uWjUKFCuLu74+PjA4CRkRGrV68mPj6eBg0aAKmFALOyMXLs2DEUCgXt2rXL9BzfQin2zc3NGTduHEuXLmXGjBnMmjUrzRvmqKgounbtipubG5s3b6Z///7ZYmN6kEgkODk5qaI1lMhkMnbv3o2dnR29evXizJkz4vlCRLWR17t3bw4fPgykpq5s3bqVjh07fnWcd8T7NOcu2acB4ffeEu8XhvfSM5Qd2ZR3e68DULhtdUwrFwOgzFBHdEwNCHZ/xssV5744l2GJ/NTdPwKJLPW8kxKXxE2Xv1AkphD17EOatuhZmeLUvCl1atSibdu2/PTTT7x69YrSpUunOVZdvH//nu3bt7NlyxZev35N2bJlmTlzJi4uLhQurP4ozsGDB9O5c2d69eql9rnzOpaWlmIYv0ieRfTsZ4HBNi1pWzx7qyV/CykSSFFwZ+IeHrrf1JgdIl8mPa1tNEVwcPAPn6//XyQSCRUqVKBOnToUKVKEJk2aqMRoVpg3bx6RkZEsXrxYDVZmDqXYV1frvTFjxtC9e3cAFixYQNeuXWnSpAmBgYHY2dl9VaQLgkCtWrVo2bIlL1++VAnM1atXM3XqVAoUKECXLl2ArIfKurq60qBBA1UlZXWjbBk4ffp0li1bxqpVq5g9e3aadr9//56GDRty7do1Tp8+rVGhr8TJyYn79++rXpMSKysrdu3ahZubG/Pnz9eQdSK5hSNHjnDy5ElkMhkfP35ER0eHyZMnEx0dzdSpU7859lnEuzSjIaU6WtiMbY5EJiXuTSiPJu9HSFFgUMycki7/dBnStTBSifivIZFJkcikPJl9hPtjdnF74GZVyL9JhSJpvlaJVMLsdYuZOXMmP/30E0ePHqVnz564urry7t07Xr9+neYcmSEpKYmDBw/SsmVLSpQowYIFC2jYsCGenp54e3szadKkbBH6Z8+e5ejRo+jo6Kh97u8B0bMvkpcRxX4WkEgk/Fa5E51KNsjxtaUSKQZauqypP5LGNj/RsWNHVRiySO5AT08PX1/fXFPM598EBQWJ+fpfwNbWFh8fH86dO0e+fPlwcnLCz88v0/O9ePGC5cuXM3nyZIoVK6ZGSzOGusL4lZiZmTFz5kyGDx8OpLaMi4yMZPr06d/M11cK4Xnz5jF48GCKFy+OTCYjMDAQS0tLVqxYQb169QCy5EWOjIzk/Pnz2RbCD6nhvRKJBFdXV3bv3s2IESPSHHP//n1q165NREQEXl5eNGnSJNvsywiOjo4AXLp06bPnnJycmDlzJrNmzfos1F/kx+HWrVt07tyZNWvWAKn1XvT19Zk/fz4DBw7E29ubvXv3fnV8VHJcutYxsi5EsW6p+fqKJDlIJZQb2xypTuaifGJeBRHzKpiU6AQAinSqSZFONdM1VtCVEhUVRWBgIDdv3uTWrVuMGTOGqlWrMnLkyEzZ8zUeP37M2LFjKVKkCF26dCEsLIz169cTEBDAtm3baNiwYbaF2CclJTFq1CgaN26s2mwV+RRLS0tR7IvkWcQw/iwilUgZVbEDBfRM2eh9CiDbq81KgGKG+Zlboy+l8lmyf/9++vfvT/fu3YmJiWHAgAHZur5I+rCysiIxMZGIiAi1iSx1ERwcnG0ez7yMra0tu3btokCBAly4cIGGDRvSpEkTPD09MxUJMWbMGIoUKcK4ceOywdr0Ex8fj4mJSZbC4v9buKlcuXKsWrWKjh07Eh0djYGBgUo0/hdly70nT56wZs0afvnlF9avX4+XlxehoaHo6+tTrFgxtUXCnDhxguTk5G+GFWeFsLAwli9frlqrWbNmaY45ffo0Xbt2xcbGhuPHj+eqntdFixalXLlyuLm50blz58+enzZtGpcvX6ZHjx7cv39fPHf8gJQrVw5ra2vu3LlDaGgoLVu25ODBg7i6ujJixAg2bdrEwYMH+fnnn784PlmRku614j9E/POHQiAhOAoj68xFotX+ewjyhGQiH/nhvfgU/ofvoG9liqVz5TTHuh49zJuz93j48KHKk//hQ2oKwJ07dzJlz7+JjIxk7969bNmyhZs3b1KgQAFcXFzo378/FStWzPL86WXVqlW8fPmSAwcOiDn7X0Ep9sUChiJ5EdGzrwYkEgk9rR3Z3HAsJY0ss60pnxQpEiT0tm7ClobjKJUv9YZLS0uLbdu2MWTIEAYOHMiKFSuyyQKRjKC8mc+NeV5BQUFiGP8XqFChAvHx8bx7945ixYrh5uZGdHQ0TZs2VXnH08vJkyc5deoUS5cuRV9fP5ssTh/Dhw8nIiIi0+MTEhKIi4sjJeXzG3YHBwfatm2LjY0N586dIykp6bNjlDdH+/fvZ/369Tx48ABILczXrl07GjVqhL6+fpZs/Deurq7UqlUrW6IplGH4oaGhWFtbp0vor1+/njZt2uDg4ICHh0euEvpKHB0dv+q5l8lk7Nq1C4lEQo8ePb5YgFHk+8bExITOnTsTFhbGpk2bqFSpEnp6ely4cAETExPq1KlDkyZNvlrATpLOO6NQr5eEXEot4qlbMLWn/as1biSFx2badpmeNuY/lca0WglQCLzbfS1d4/7e8TdHjhzh9evXyGQyVTX+bdu2cf/+/UxF7QmCgIeHBy4uLlhZWTFs2DAKFCiAq6sr79+/Z8mSJZkS+nJBQXxKIrHJCaQo5Om2LSAggNmzZzNs2DAqV057A+RHxcrKiqSkJLW1hRURyUlEsa9GyhgXZlPDMQy0aYGWRJbui1tayCSpH1NxowJsaDCaQeVboiP71EMnlUpZu3Yt48ePZ/To0cyfPz9Xho//SORmsR8cHCyG8X8BpWf56dOnAJQpU4YLFy7w4cMHWrRoQXR0dLrmSUxMZPTo0Tg5OdG+ffvsMjdHSE5OpkuXLjg4OHzznGJgYEDNmjW/mPO5ZMkSTp8+zenTp5FKpaqbSuXmwYEDB+jUqRM3b2a99khsbCxnzpzJlhB+b29v6tevT3R0NI0aNaJEiRLfPF6hUDBhwgSGDh3KsGHDOHz4MIaGhmq3Sx04OTnx4sUL3r//ciG1QoUKsWfPHjw8PJg7d24OWyeSG5gwYQLm5uZMmTIFFxcXEhISSElJoUSJEpw6dYo+ffqoCnH+F+10FBBOCo/l1drUOh5mNUtRdXE3tPLpkRIVz6vVFzJk68drr4j3/0eYJUXEEfMytauEPCE5XXMUsSzMmDFj2Lt3LyEhIfzyyy9AqoPF0tIyQ5X5/f39WbBgAWXLlqVx48Zcu3aN6dOn8+7dO06cOEHHjh3TnS8fnhjNlcDHbPY+w/gbG2l9djqNT46j2ZnJND87BYdT43E6PZGBl5ey9JErJ/1u4hP14Yvn78mTJ6Orq8ucOXPS/Vp+RJTRTGIov0heRAzjVzNaUhkuZZvSrkQ9TvndxNX3MkEJEcgk0gyH90uRIAB1CtrSqWQDauQvi1Ty9f0ZiUTCwoULyZcvH9OmTSM6Oprff/9dDDnSELlV7CcnJ/Px40fRs/8FihUrhoGBAc+ePVP1HK9QoQLnzp3DwcGB1q1bc/r0aQwMvt7yCWDFihX4+vpy5MiRPP37k8vluLi4cPbsWY4fP/7NfHwLC4sv3kzK5XImTJgApJ6jdHR0WLhwIY0bN6Zy5cpUrlyZPXv2cO/ePfLlywf8E/afGc6cOUN8fLzaQ/hv3bpFy5YtKViwIGfPnqV3797f9NDHx8fj4uKCq6sry5cvZ9SoUWq1R904ODgA4ObmRp8+fb54TOPGjZk9ezYzZsygQYMGuabmgEjOYGxszKJFi5g5cybPnz+nYcOGtGzZkmXLlrF+/XoKFiyIg4MD3bt3/ywlx1THiJiUhG/O/3LVeVKi4tHKp0fZkU3QMTfCepgTzxeeJOzmawLPPcayWSV8t13m49WXyOP/Ee1PZh5CoiWlcGs7Cre14+N1H54tOI6OuSFaxvokfAhPrQEAFHRMX5eV7m07M7HPCORyOTKZjIYNG7JhwwZV+9C0zu1JSUmcOHGCzZs3c+bMGXR1denSpQubN2+mUaNGGbo2CILA3Y+vOPTmClcCH6NAQCaRohAEhC8UPkxWpOAd+Z5XUR+Qv/UCoLhhQTqXakizIjUw1Nbj2rVrbN++nQ0bNuS6VMPchlLsBwQEqKVLj4hITiKK/WzCRMeQ7mUc6Fbanlsh3lz4cJ8n4W94HxuKgICE1Hx/CRKE//+j+P+Nsr5MBxuTYthZlKFV8doU0k//SVgikTB9+nSMjIwYO3YsMTExrFy5MtM3ziKZx8DAAGNj41wn9pUVt0XP/udIpVJsbW159uzZJ49Xr16d06dP07RpUzp16sSRI0e+2hP9w4cPzJ07lxEjRuRo3qW6EQSBYcOGsX//fvbv34+zs3OaY7508xoYGIizszMvX77E19eXxMRE9u3bpyooamFhQXx8PLq6utSqlVqYKyvnK1dXV6pUqYK1tXWm5/gv58+fp0OHDlSpUoUTJ05gbm5OSEgIVapU+eLxISEhtG3blgcPHnDo0KE8Ed1hYWFBtWrVuHjx4lfFPqR6Aj09PenZsyf379/PlSkJItlHv379sLOz4/nz59y6dYvhw4ervJ0vX77Ey8uLEydO4O7ujomJCe9igjn69hqB8d8Ofw48+4jwW77A/1vrmRsBkL9BOQrc8CHk0nN8N3lgWrUYyeFxJAREfjI+MSQ16io5JnVDwbRaceIDwol/H07cu4/IdLUxKleAgvblsWpdLc3XKcgVJAdEAf8UC3VwcGD//v2qavhfO089efKELVu28PfffxMSEkKtWrVYt24d3bp1w8TEJM21/41CUHDi3Q12+7jjHxeaKvD/L+7T40D69zF+scEsfezKmqfHaFH0J/ZMWkL16tVzRUeQ3I7o2RfJy4hiP5uRSqTULmhL7YKpu9zxKYm8jPqAT9QH4lISSJQnI5PK0JFqUVDfFBuTohQxyJ9lb+CYMWMwMjJiyJAhxMTEsGnTpiwV5xLJHFZWVqqCPrmFoKDUUEbRs/9lbG1tVWH8/6ZevXocO3aMVq1a0aNHD/bt2/fF39SkSZPQ09Nj1qxZOWBt9iAIAhMnTmTDhg1s2bIlSyHxBQsW5PTp0yxatIhJkybRokULrK2tuXbtGi9fvuTjx48A/Pbbb8hksix59RMTEzlx4oRaCyLu27eP3r1706RJEw4cOKAKww8JCSF//vyfHe/t7U3Lli2JiYnBw8ODn376SW22ZDdOTk7s3bv3m0WoZDIZO3fuxM7Oju7du3PhwgXx2vIDIZFIsLOzo0KFCpw4cYLAwEAKFixIs2bN0NXV5fXr17i7u/PburkY2ZfhzseX6YpstHSu/NWieTa/tcDmtxaqv8uNcabcmG9vPhZ0sKWgQ+YLfholatGkcWrB0RcvXvD27Vv09fWxsrKifPnyXx2XnJxMjRo1yJcvH71796Z///5UqlQpUzb4x4Yy//4eHoX7qh7LSgFopf8/UZHM0XfX0B5qh0she9EZlA4MDQ3Jly+fKPZF8iTiFTqH0dfSpYp5KaqYl8r2tQYNGoSRkRG9e/cmJiaG3bt3iz1UcxgrK6tc59kPDg4GRM/+17C1teXEiRNfFDxOTk4cOHCAjh070r9/f7Zt2/bJjdK1a9f4+++/2bBhg6qYk6ZRhtZnZAPR19eXxYsXs3z5cvr165el9ZWh/zVr1uS3337j559/pkaNGvj5+REcHEx4eDgKhYKaNWtm2M7/cv78eaKjo9WWr79mzRpGjhxJz5492bJli+q1KBQKPn78SIECBT453tPTk/bt22NpaYmbmxslS5ZUix05hZOTE0uWLOHFixfY2Nh89biCBQuyZ88eHBwcmD17tpjD/wPy4cMHTp48CcDAgQPp27cv1tbWvI8MpvWq4XhXUiD9+ArI/g5F6kYmkdLIujq17Wqzfft2Nm3axLNnzwgLC0NPT4/p06czYMAAChYs+Nl1Qltbm7Nnz1K3bt1M328pBAWH3nix7tnxbHvvBAS0jPTYHXsDv9uxjKvSBXPdfNmy1veCpaVlrrufExFJDxJBrOL23XP06FG6du2Kk5MTrq6uGq8M/iPRo0cP/P398fDw0LQpKnbu3Env3r2JjY1NM/f8R+TIkSN06NCBgICAr7YYCwkJ4dSpU0gkEnr37o1EIkGhUFCrVi0EQeDmzZtZ6hOvDjLbIkihUHDgwAG8vb2ZMWNGttiiUCiQSCRqr2fQr18/rl27xrNnz7I0tyAIzJo1izlz5jBmzBj+/PPPTzZ1wsLCsLCw4MCBA6pWdbt376Zfv340aNAAV1fXXLPZkxFiYmIwMzNj5cqVDB06NM3jFyxYwLRp0zhz5ky6uhKIfD/cu3cPJycnChYsyPPnzxEEgbP+d1jy8ADxyYlIZHnXWywBJlTpStSV1/Tq1Uv1uL6+PkZGRoSEhDB37lymTp2qyudXF8mKFGbf3YlH4EO1zZkWUokUY20DVtYdpuryJPI59vb2FCtWjJ07d2raFBGRDJF3z8Yi6aZdu3acOHECDw+PDFUUF8k6udGzHxQUhJGRkSj0v0KdOnX4888/v1mMrkCBAvTu3RsXFxfVje7WrVu5c+cOK1eu1LjQh1QP+cuXL3F1deX06dMEBwcTHR39xfZ5/yYlJYVixYoxffp0tdpz9+5dnJyccHJyYujQoaxdu5ZLly7h4+OT4baGXyI5OZljx44xatSoLAl9uVzOsGHDmDNnDn/88QdLliz5LMw1JCQESP0eCILAvHnz6NmzJ927d+f06dN5UugDGBkZUbt2bdzc3NJ1/KRJk3B2dqZnz574+/tns3UiuQk7OzuKFCnCixcvuOhxiWk3tzL//m4S5El5WugDaEu1qG5QikOHDgHQunVrzM3NsbS05ODBg2hra7Np0yYAtZ7rE+XJTLy5Cc/AR2qbMz0oBAVRyXEM9VpYzj6pAAEAAElEQVSJd+SXu3GIpHr2xTB+kbxI3j4ji6Sbpk2bcu7cOe7du0eTJk3UcnMtkjaFCxfOdWJfbLv3bQoVKsTIkSMxNzf/5nFKAWhra4urqyuTJ0+mV69e1K9fPyfMTJP58+fTs2dPhgwZwpgxY7h9+zaLFy/myJEj3xT8UqmUunXrqsXrrmxNdefOHXr37o27uzvu7u5s3LiRkSNH0qxZMxwdHZkyZUqW1/Lw8KB27doMGTIk03MkJiby888/s2HDBjZt2sTEiRO/+D4oi1yampoyYMAApk+fzpw5c9i6dWueT5VycnLC3d09XW3FpFIpf//9N7q6unTv3j3NjSSR74upU6ci1ZEx7tp6PIL+L1DzcPcRSA3hb1GsFsZ6hty5cwdTU1OWLFlCxYoV8fX1pWHDhjRu3Ji3b9/y9u1bALW0OU5RyJl5dwe3Q19+sbp+dqMQFMTLExl9fR1vY4JyfP28gBjGL5JXEcX+D0T9+vVxd3fHx8cHBwcHVaE2kezDysqKmJgYYmJiNG2KiqCgILE43zdQtodLr9gVBIFKlSoRGRnJwoULs9m6tG0B2LRpEwsWLOD27duEhYURFxdHqVKl2LRpE4sWLSIqKuqrc8hkMrWF1ysF4/Hjx3n27Bnt27enYcOGSCQSTE1NUSgU+Pn58eTJE4AsiUU/Pz+OHz+eadsFQeDp06ecPXsWV1dXBgwY8NVjlZ79X3/9lZ07d7Jjxw6mT5+ep9ssKnF0dCQsLIwHDx6k6/j8+fOzd+9erl69qra0D5G8QeeuXWiyZigGFSyRSPP+dx9S6wu0L14XIyMjjIyMiIqKwsrKisaNGwOwfft2FAoFenp6KrGvjt/9umcnuBr0RCNCX4lCEIhLSWTM9fXEJn+7TeKPiJWVlejZF8mTiGL/B6N69ep4eHgQEhJCo0aN8PPz07RJ3zXKtlS5aTdY9OyrF4lEQvny5dHT0+PEiROaNgeA9evXEx8fr+qfrKWlha2tLaVLl+bFixff9ESpU7Aqox/Onj0LwMqVKzEyMkIikTB37lyqVKlCs2bNWLx4cZbWVigU9OvXD6lUmuk5JBIJVapU4dWrV2m2yvP29gbg4cOHnDt3jt69e2dqzdxInTp10NfXT3coP0CDBg2YP38+v//+O6dPn85G60RyE4sfHSCukBaS76Sau0wipYp5KUoapm6GN2vWDIVCwcWLF3FyckIqldK/f3/c3NyoVq0adevWVcu6Dz6+Zr+vhwZl/j8oBAUfE6JY8/SYpk3JFYQnRnM9+BnbX57nUdkESi5oS4fzs2h7bgadLsyh56U/mHFnO7teXeR26Auik+I0bbKIyGeIBfp+UHx8fHBycgLgwoULau1JLfIPz58/x9bWFg8PDxo1aqRpcwCoUaMGNWvW5K+//tK0Kd8VytZyf//9Nz179tSoLSYmJpibm+Pr64uxsTHFixfn8ePH2Nvbc+XKFWJiYnKsUKdCocDKygozMzOeP3+OlZUVCoWCoKAgnJ2dsbS0ZP369dlqz5eKFWa2gOGdO3dwcHAgNjaWx48fY2ub+fZeuRVnZ2ekUmmGhLtCoaBNmzbcuHGDe/fuUaxYsWy0UETTXAl8zOTbWzRthlrRksjY2mgcxQ0LIJVKuXr1Kvb29tSoUYN169bRoUMH/P39qVSpEgsWLKBFixZpT5oGCfIkel9aSHB8BIpcIff/YUntIdQq8PWuHN8rcSmJXPC/y8E3l/GNTvXkSyVSBEH4YuSFlNTriPLzq2Bags6lGmBvWRUdmdj0TETzfB/bsSIZpkyZMly+fBldXV0aNWqkCqMVUS+iZ//HQBAExo0bR58+fejTpw9HjhzRmC0KhQJ9fX3i4+N5/vw5MTExmJub8+HDB7y9vTEyMsrRjhxv374lPj4eKysrEhMTCQ4OxtDQkAcPHnDlyhWuXLmSrfbI5XKVqA8MDOTDhw8kJCSoUgzSk5uu5Pjx4zRq1AhDQ0NKlSr1XQp9SA3lv3z5MklJSekeI5VK2bFjB/r6+vz8888kJydno4UimiQqKZY/Hu5DwvcRuq9koE0LSuYrpIpI+umnnxg/fjwAcXFxNGrUiO7duzNv3jy1CH2ADc9PEZQLhb4UCQvu7/mhwvkD4sJY/vgQ7c7PZPGjA7yJ/idkXyEovppioUD45PN7HvGOOfd20f7CTP56fpLwRLEotohmEcX+D0yxYsXw9PSkQIEC2Nvbc+fOHU2b9N1hbGyMvr5+rhH7giAQHBws5uynE0EQ0p1HLpVK2bRpEx07dqRbt26cO3cum637MikpKTRv3pzg4GCGDRuGRCIhMDCQX3/9leDgYFXuaU5hbGxMz549qVSpEm/evMHW1pY3b95gZ2dHfHw8ZcqUAVJFubpRKBSqatnLly/HyckJGxsbateuzeTJk/H390cqlaarwNaqVato3749zZs3x8HBQbWR9z3i5OREbGwsN2/ezNA4CwsL9u3bx82bN5k2bVo2WSeiaZY/OUx0cpxG88vViUwixcakGD+XafzJ49ra2kyePJmtW7dStWpV1q1bx44dO2jVqpVa1g1NiMLV93KufB8VCIQlRnPs3TVNm5LtKAQFrr6X6XXpD468vUqCPHWTM7OfilL4RyfHs9vnIj3cf+eC/z21FHIUEckMotj/wSlUqBDu7u6UKVMGR0dHvLy8NG3Sd4VEIslV7fciIyNJSkoSPfvpwNvbm5UrVzJhwgSGDBnCH3/8QVzcl/PxlJ5jmUzGzp07adq0Ke3bt+fy5cs5aTIAOjo6jBkzhmLFinHp0iUEQeDVq1ccOnSIsmXL8ttvv+WIHUqPeVhYGMuWLWPVqlXY2NgwefJkypUrB4C1tTUjRozINhuUHrqJEycyduxYnj9/Tv78+Xn06BFr165lypQpxMbGfjOcXy6XM2bMGH799VfGjBnDgQMHCA8Pp0CBAtlmt6axs7PD1NSUixcvZnhsvXr1+P3331m0aFGuqWEhoj6eRbzjvP9dFN+JcJEiQV+mywy7nsgkn98S58uXD1tbW4yMjDA0NATUU30f4HguF9ICAq6+l1EI6Y9+ymt8iP3IyKtrWP7kMEmKFORqfq0KQSA2JYHZ9/5m6u2thIlefhENIObsiwAQHR1N27ZtuXnzJkeOHKFp06aaNum7oUGDBpQqVYq///5b06bg7e1N+fLluXTpEvb29po2J9eQnJxMQEAAurq6FCpUiNmzZzNnzpzPburat2/PihUrKFas2DdzvuPj42nVqhW3b9/m4sWL1KxZMydexifcv3+fXbt28fz5cxITEylUqBB9+vShSZMmmc5XzwylSpVCS0uLSpUqUa1aNWxsbAgJCcHKygonJyfMzMyyZV3lazx69CgdOnSgVKlS3Lp1i+PHj9O/f3/MzMwYPHgwAwYMoHTp0l98PwRBQC6XU6dOHfr168fw4cMBqFmzJtWrV2fDhg3ZYntuoEOHDoSFheHh4ZHhsYIg0K5dO7y8vLh37x7FixfPBgtFNMGC+3s4539H7aJIE0iRoCPTYnXdEdiY5myNiRSFnI4XZhOelHs69XyNP2sNonbB7y9l6VrQU6bd2YZcUOTI91kqkWKgpcuSWoOpYFYi29cTEVEiVo4QAVJ3r0+dOkWnTp1o3bo1+/fvp127dpo267sgN3n2g4ODAUTP/n+4fPkyS5YsYdKkSTx+/Ji//voLQRAoWrQo5cuXR0tLi2vXrnHkyBE6d+5Mjx49PgkR/y/6+vocO3aMpk2b4uzsjIeHB5UqVcqR1/LmzRsOHTpE69atWbx4MW/fvsXAwIACBQqQmJhITEwMRkZGOWKLv78/b9++RSqV8ubNG06cOIGxsTGFCxfGwsKCGzdu0Lx5c1WxUHUgl8s/aR/49OlTAMaPH4+npyf9+vVDT0+P5cuXU6ZMGebOncvYsWOpUqXKZ3Mp5zh16tQnv5nQ0NDv2rMPqaH8Y8eOJTY2VuXRTC8SiYRt27ZhZ2fHzz//jIeHB9ra2tlkqUh2o/xNRSbFct7/7vch9CVS9GU6LK09JMeFPoBX0JM8IfRlEikHfa98d2Lf7cM95tzdyZdL7mUPCkFBXHICv15by+Jag7DLLxbGFskZxDB+ERX6+vocOXKEtm3b0qlTJ/bs2aNpk74LcqPYF3P2P+XGjRucPn2apKQkXr16RWBgIA0aNODAgQMcPnyYnTt3MnnyZABevnwJpN0mzsjIiFOnTlG8eHGaNGmiGpddKHPeb9++zbhx4zh58iQAJUqUoECBArx48YJhw4axf/9+QH2hqN8iOTmZ2rVro6Ojg1wux9jYmPDwcJ48ecLly5dZsWIFU6ZMUbXmy+paiYmJyGQyYmNjcXd3B+Ddu3cArFmzho4dO2JqasqRI0fo0qULI0aMYO/evSQmJn51Xi0trc82x0JCQsifP3+Wbc7NODo6kpycnOnULnNzc/bt28etW7dUvx2RvEVsbCwrV67E2toaT09PTr69/l0IfQkSLPXNWFtvZIY8rAqFQm21Ra4EPfli2kBuQy4ouBXqTZI8fbVr8gKXAx8zO4eFvhIFAkmKFMbd3MCT8Dc5vLrIj0ruP9OI5Cg6Ojrs2bOHXr160bNnTzZu3Khpk/I8hQsXzjViPygoCC0tLUxNTTVtSq5C6aVNSUmhRInUm7969epRu3ZtDA0NMTc356effsLCwgJHR0cgfT3hzczMOHv2LGZmZjg5OfH27dtsew1Kwerv7w+Anp4e8E/u/PPnz9m6dSuenp5A9hTEU6Kc+86dOwQEBDBq1Cj8/f05fPgwEyZMwMjIiBIlSqCnp8etW7eYO3dulqq3BwUFUbJkSRYtWoSfnx81atRg3Lhx+Pv7qyKUnjx5grm5OfPmzaNatWp06tSJe/fuMWDAAKpVq5buteLi4oiLi/vuPfu2trZYWVnh5uaW6Tnq1KnDokWLWLJkCceOiX278wpBQUFMnz6dYsWKMXbsWOrVq4elpSXnA+7lymJy6UX6/3N2t9L27LAfT2njjBXZDAoKYtasWURHZz3v+kn4m69unEQ89ONK22VcabMMvwP/FMkU5AoejNvDlTbLuNV/EylxiQScfsjDCfu42nkVV9qkjonzC/vqujE+wXh1WJmuY5XIBQWvo3PHPUxWeRbxjul3toEGv8kCAikKOWOv/8WHuI8askLkR0IM4xf5DC0tLbZs2YKRkRGDBw8mJiaGMWPGaNqsPIuVlRXh4eEkJCSoBJimCA4OpkCBAqrCZSKpKEPsDx06xF9//YWLiwsHDx7ExcWFxMREnj17xqZNm0hJSWHjxo00bNgw3XMXLFiQCxcu0LBhQ5o0aYKnp2e2VHJfvXo1CxYswMTEBIBt27bx5MkTdHV1KVy4sKrbRsmSJdW+9n9RboRMmzYNf39/+vTpg5WVFVZWVjRq1Ij79++jr6/P8OHD+fXXX3n+/DnXrl2jUaNGGV4rJSWFdevWERAQwMyZM1m6dCmRkZEMHz4cCwsL6tWrx4gRI1i9ejVhYWFs3bqVadOmERERQdu2bVm9ejUSiQSFQpGu30VoaCjAdy/2JRIJjo6OWRL7AKNHj8bDw4M+ffpw7969HPn+iWSOFy9esGTJErZv346WlhYDBw5kzJgxlChRgiR5Cr4vA786NuKhH4+nHQQBSrjUp1iXWkCqQH04cR/R3oHoFsiH3arevNt9jcgn/iQGR6FITEYnfz4KNLShSMeaaBnofDZ3jE8wD8btRUhJ3USsvrYPBsXM0/26pEhQIGClb840u55UMiuZsTfm/yQkJDBv3jx++ukn2rZtm6k5AOJTEnkfG/rV502rFKNwGzs+HLvHu93XMa9ZCsNSBXh/8BbR3oEggbJjnNEy0CX8zhtiXgejbWJAYnDUN9eVJ6bg/edp1fuYEbwj/SivgXQHdZIoT2bOvZ0IZL7SvrpQIJCoSGbB/T2srDsMaR6I8hDJu4jfLpEvIpVKWbVqFZMmTWLs2LFfLFYmkj6Uwi4w8Os3SjlFUFCQGML/BSpUqEDRokXZsWMHXbp0ISwsjICAACpVqoSjoyP9+vXj0qVLREVFsXPnThITEzNU4K5IkSK4ubkRHx9P06ZN+fhR/bv5L168ICoqCj8/P7S1tbl16xZr165l2bJljB8/nr1796Krq6va2MjOAn1SqZSEhAQiIiKQy+Vs3LiR9+/fExsbS2BgILGxsXh6euLk5ETFihUJCwvLdB0JLS0tJkyYQOvWrZFKpURFRdG6dWtWrVqFnp4exsbGjBgxgilTpqCtrc3Tp0/Jly8fv/76K0eOHEEikSCXy9O9ARYSEgLw3YfxQ2oo/927dwkPD8/0HBKJhK1bt2Jqakq3bt1ISkpSo4Ui6uDq1at06NCB8uXLc/ToUWbMmMG7d+9Yvny5KtLJNzrgmyH8SoEK8G73dWJ9U38n/xWoKTEJfDh2j7h3H9HNnw+png4JHyLw23cD70UnP5s3KwJVSuo5rop5aebW6MPOxpMyLfQhtdhoiRIlVClCmeVV1Ic0/col+zRAv5g5Qooc76VniH4RyLu91wEo3LY6ppVThXeZoY7U3Tec4t3rpLmu72YP4t+Hkb9+2QzZK5NI8Y58n6ExuZGtL87iH/sx13QXkAsKHoS95ujb3N2VQSTvI3r2Rb6KRCLh999/J1++fEydOpXo6GgWLVqUY1W8vxeUYj8gIEDjXq3g4GCxON8XMDY2ZsqUKYwYMQJXV1fV4zo6OsTHxyOVSilQoACGhoYIgkBQUFCGK4yXKlWKCxcu0KhRI5ydnXFzc1N54dXBgAEDaNmyJbNnz+bRo0f8/PPPFCpUiKCgIOLj44mIiKBly5aqThtfKy6oLmQyGX379mXhwoWsXLmSs2fPUqFCBYKCgvDy8qJIkSJIJBLi4+PR1dWlfPnymV7L19cXT09PVcrCmTNnOHfuHE2aNEEqlVKuXDnmzZtHjx49SE5ORktLi4oVKwKpkQFaWum/FP4onn1ILdInCAKXLl2iQ4cOmZ7HzMyM/fv3U79+fSZOnMiyZcvUaKVIZlAoFBw/fpzFixfj5eWFjY0Nf/31F7179/5iBFp6xF7JPg0Iv/eWeL8wvJeeoezIpp8J1KTwWEr2a4hl8ypoGeigSErh0ZSDRHsHEH7nDSkxCWgZ/bP+vwVqqFfG6p78VMCGERXaUTKf+ja4HR0dM9WS8t+8iQlK8xipjhY2Y5vzYNxe4t6E8mjyfoQUBQbFzCnpUl91nK5F+oqtfrzpQ+Dph1i1roZRmYIZei/lggKfqLwdxv80/C27fdxzZRrK6qdHqV2wPIUNLDRtish3iij2RdJkypQpGBkZMWrUKGJiYlizZo0YBp4B/i32NU1QUBClS5fWtBm5kl9++QWJRMLFixd58eIFenp6FChQgOLFi1OtWjXKlClDhQoVsLCwyJA4/Dfly5fn3LlzODg40Lp1a86cOZPhSudfo3bt2kilUp4+fUqpUqWYNm0aFSpUICYmteJzTlXgV6Ktrc2AAQO4desWFy9e5OnTp6rK+Pnz52fcuHG8ePGCU6dOqeogpJf/htzr6urSr18/TExMuH37NqdOnaJbt24cO3aMhg0bcvbsWcLCwmjdujX58uX7ZJ6MfpY/kme/RIkSlClTBjc3tyyJfYCffvqJP//8k1GjRmFvb0/79u3VY6RIhkhISODvv/9myZIleHt7U79+fY4cOUKbNm2+eV1/FfUBmUT6Te9+egSqjpkhRTvW/GSMUdlCRHsHgFQC/7IhKwJVSyLF2riwWoU+gIODA1u3biU0NDTT54CElCRVasG3MLIuRLFutXi3+zqKJDlIJZQb2xypTsbOWUnhsbxaeR6Dkvkp1a8hIZ7eGbY5Xv71IqZ5gdVPjyJB8+H7X0IuKNjkfZoZdr00bYrId4oo9kXSxa+//oqRkRGDBg0iJiaGrVu3Zlrw/GhYWFigra2dK8R+cHAwdeqkHe73ozJkyBA6d+6MRCIhMjKS48ePExsbS/ny5WnQoAF79uxh7969jBkzhsaNG6c7z/vfVKtWjdOnT9OkSRM6dOjA8ePH0dXVzbLtSjuGDRuGgYEBenp6JCUlIZPJ0NLSUqUe6Oh8nhObXVhbW3PhwgVOnTrF9evXef/+PYmJifTv3x97e3u2bt2Kra0tAwYMSPecyjZgAA8ePEAikZA/f36Vt/jBgweEh4dz7do1evbsSbt27VizZg3FixenevXq2NjYqObKzKZlSEgIBgYGGBgYZHhsXkQdnkwlI0eOxMPDg759+3Lv3j1KlSqllnlF0iYsLIx169axatUqgoODad++PVu3bqVu3brpGh+TEp+uVL6MCtSkiDg+Xk0V8QUa2qhy9tUhUGNTEjI8Ji0cHBwAuHTpEp07d87UHEmKlNQIyXS8n/EfIv75QyGQEByFkXXGNjBerbmAPD6JSvM7Z3ijQEmSPPMFVDXN66gAHuXiyvdyQcHFD/cZWaE9Zro5uykv8mMgqjWRdNO/f38MDQ3p1asXsbGx7NmzRy0i5XtHIpFgaWmZK8S+mLP/bQRBwMLCgujoaKZOncrevXuBVK/4+vXrMTU15fjx45QsWZLGjRtnuo5FnTp1OH78OC1btqRbt24cOHBALX3IBUHA3NyclStX4uXlRUpKCkZGRpibm2NiYoKOjg4jR478xLudE7Rs2RJnZ+fPUgecnZ2pX79+ukXfv4X+77//zsqVK4mLi0Mmk/HXX3/Rvn17KleuzB9//MGoUaO4f/8+a9asAWDOnDmfCP3MEhoa+kOE8CtxcnJi48aNfPjwgcKFC2dpLolEwubNm6levTpdu3blypUr4jUkm3n79i3Lli1TFRjt06cPv/32G+XKlcvQPEnylHSHQKdXoMYHRPBk1mGSwmIxti1MmWFOqueyKlAFUkW1uilatChly5bF3d0902JfWypL17Uj1OslIZeeA6Bb0JjE4CherXHD2LYwOmbpjwiL9Q1FkaLgwbjU65kg/yc64/6YXVi1rkapvt8uOqstzbty4cjbq2lGpWgahSBwyu8GPa2d0j5YRCSD5N1fr4hG6NatG4aGhnTu3Jl27dpx6NChH8bDlRWsrKz48OGDRm1ISEggKipKzNlPB+/evcPV1RU9PT1Kly7N06dP2bFjB0eOHMHQ0JBLly4BWSty5+DgwMGDB2nfvj19+/Zlx44dWc6jl0gkLF++nGnTphEXF/fFYwYOHJjjYh++XCMgI3UPFAqFao7hw4ezbt06AMqUKYOPjw+DBg0iMTGRbt260bBhQ3bt2sW0adNUxytTBQRByNLnFhIS8kOE8CtRejIvXrxIr15ZDzM1NTXlwIED1KtXj/Hjx7Ny5coszynyOffu3WPx4sXs378fY2NjxowZw4gRIzK92ZvaEz7tQOj0CtSo5x94OvcYKVHxmNcqjc34lsj0/tnwVIdAVRboUzcODg5ZKtKnK9NOM4Q/KTyWV2tTO2GY1SxF2ZFNuDvib1Ki4nm1+gIVprfL2KIKAUXC5955RWIKQnLaxQ91ZVnfjNYEcSkJnPK7mauFPqS243N9c4Wfyzj8/7cmIqI+xG+USIZp3bo1J0+e5MqVKzRv3pyoqG+3exFJFfua9uwrc41Fz/7XUYrAokWLkpycTLFixXj8+DGWlpZ4eXmhp6dHqVKlePr0aaZC+P9Lq1at2L17N3v37mXo0KFq6XixYcMG4uLi6NmzJzo6OuTPn5+qVauir69PxYoVMTMzy/IaGUFdXTyU7/XEiRNZt24dNWvW5NmzZ3Tv3h0tLS2ioqKYOHEip06dIjExEVtbW/bt28fOnTtxdHREEIQsC31I/R39SJ79ggULUrlyZbWF8gPUqFGDpUuXsmrVqk8KYopkDUEQOHfuHE2bNqV69epcu3aNZcuW4efnx9y5c7N07teRaaf52/mvQK26uBta+fRUAlVJqNcLHk89SEpUPFatq2E7te0nQl/F/wWqIiH5E0GaHoEqQYJONglUR0dHnj17lulrehGDtDcLX646T0pUPFr59Cg7sgk65kZY/z/yIezmawLPPQbAd9tlbg/ewpvtV1Rjn8w8xO3BW/hw7B4AP20eQIPjY1T/lh3VTHVs9bV9KD2o8TdtkUmkFDfKm06C68HPSVTkjRSEkIRInke807QZIt8hotgXyRROTk6cP3+ehw8f4uTklC2txL4ncoPYDwpKrQAsevbTxsTEhA4dOpCQkEBISAh16tQhNjYWDw8PEhISkMvl+Pv7q2WtLl26sGXLFjZu3Mhvv/2WJXGclJTE8+fPKVeuHIsWLSIpKQlbW1tWrlyJubk5c+fOVUu6QEYICwsjNjY20+NTUv4JxX358iUbN26kZMmSnD59mlevXjFv3jwMDAwoWLAgAQEBTJ48mYsXL6qq7uvr6wOpGznq6CTyo4XxQ+r53s3NTa3tV4cNG0aXLl3o378/Pj4+apv3RyQ5OZmdO3diZ2eHs7MzYWFh7Nmzh5cvXzJy5Ei1FAEtoGeSpp88PQI18WMMzxeeRJEkR6IlI+ZlIA8n7OXBuD08GLeHmFep16msClSFoKCgnvq6nfybxo1T11ZGeGUUG5Oi33w+8Owjwm/5Aqmt9XTMU/O48zcoR4HGqV1LfDd5kBAUSXJ4HAkBkSRH/BPJlRgSnfpYjHpqFigEgfImxdQyV07zPMIvw57yiId+XGm7jCttluF34KbqcUGu4MG4PVxps4xb/TeREpdatDDWN4Rnvx/nes/1eHVYwc0+G3j+x4kM2ypBwvMIvwyPExFJCzGMXyTT1K1bF3d3d5o1a0bjxo05f/48lpaWmjYrV5IbxH5wcDAgiv30MmPGDDp27MiIESPw80u9AA8dOpTXr19TrVo1tfYL79OnDzExMYwYMYJ8+fIxe/bsTM0THR0NgI2NjcqLp6OjQ8OGDUlMTGTdunU5XgV99erVqqJgGY2EUFbL//jxI2vWrGHatGlMnTqVGjVqcPPmTdq0aYOOjg5bt27l0qVLbNy4kefPn7Nt2zZVi0F1ExISwk8//ZQtc+dWHB0dWb58Oa9fv6ZMmTJqmVMikbBx40Zq1KhB165dVZEzIuknOjqajRs3snz5cvz8/GjevDlLly7FwcFB7S1ybUyKfjMU+psC9YYPIZee47vJA9OqxVSZAEKKnGjvwE/mSYlXz3lVgYBNNgnUQoUKUbFiRS5evEj37t3TPS4qKoorV67g4eEBVRPB+Mv1KiydK2PpXPmLz9n81gKb31qo/i43xplyY5wzZn+TihRqUjHdxwvZ+F5mN88i32U4hN+0SjEKt7Hjw7F7vNt9HfOapTAsVYD3B2+lfl8lUHaMM1oGukQ+8efJjEMoklKQGehgUNwCeXwyH2+8zrCtUokkXS0uRUQyiij2RbKEnZ0dnp6eNGnShIYNG+Lm5pbh/uM/AoULFyYkJCTDPb3ViejZTx/K8PydO3fi6+uLr6+v6rnnz1NzUV1cXChTpoxaQvmVDB8+nJiYGCZNmoSRkRHjx4/P8BzKYnWJiYkkJqZ6HXx8fFi4cCGhoaG8e5caIqhOu9Pi6tWr1KlTJ8PrCYKAVColMDCQhg0b4uPjQ0JCAvPnzycuLo62bdsCqWkLLVq0YObMmbRq1YqkpKRs7Rbyo4XxA9jb2yOTyXBzc1Ob2IfUCJoDBw5Qp04dxo0bx+rVq9U29/dMQEAAK1euZN26dcTGxtK9e3fGjRtHlSpVsm3NtLzRGRGoDY6PyfD6GRWoAOVMimR4nfTi4ODA6dOnv3lMeHg4ly9fxsPDAw8PD+7du4dCocDKyopKxduRYCzJlX3f/4sEKJuN72V2IQgC3pn0lJfs04Dwe2+J9wvDe+kZyo5syru91wEo3LY6ppWLIQgCr1ZfQJGUQoHG5bEe0RSZbup1JyUu45tWckHBk4i3mbJXRORbiGH8IlnG1taWy5cvI5fLadiwIS9fpr8X7o+ClZUVgiCoBLcmCA4OxtTUNEdbr+VFFIpUL4BS0BUtWpRatWrRpUsXZsyYwdWrVxk9ejRJSUlqF8wTJ05k6tSpTJgwQVWALiNIJBJsbW2JiIggODiYhg0b8ubNGyZPngyg8kirMxz7W8jlcq5fv069evUyNE6ZWx8aGsrJkycJDg5GJpOxadMmZs+ejVQqJTw8HIBly5ZRqlQpXrx4wahRozh69CgGBgYkJ6s/TzMlJYXw8PAfTuwbGxvz008/4ebmpva57ezsWL58OWvWrGH//v1qn/974tmzZwwYMICSJUuyZs0aBg4cyOvXr9mxY0e2Cn2AQvpmGGrlnciLAnomGOtkPX3hazg6OuLj46PaQIXUFJ9Dhw4xatQoqlWrhoWFBe3atWP//v2UL1+ev/76ixcvXuDv78+I1i55QuhLkVDetDgGWnmva0ZwQgTx8sxFikh1tLAZ2xyJTErcm1AeTd6PkKLAoJg5JV3qAxD7JpT492GpAwS4+8s2rnVbw6OpB0n4EJ6pdf1iQkhRpF0wUUQkI4iefRG1ULp0aS5fvqzy8J8/f57Klb+8y/8jYmVlBaR6ZIoU0cwOudh2L30oK7737duXqlWrUrx4cczMzDAyMsLIyAiFQsGaNWuIiIhg6tSpxMfHq/LC1cHcuXOJiYlh2LBhGBoa4uLi8snz34oOKVq0KB4eHkRFRVGiRAlWrlzJ3LlzCQkJwdramilTpgCZ6y+fGZ4+fUpUVFSGxb5EIuHixYv06dOHpKQkzMzMiI6OJjQ0lNWrV6OtrU3v3r159+4dDx48AFIjIxo0aACkbhZkR22CsLAwBEH4oarxK3F0dGTjxo3ZEhXyyy+/4OHhwcCBA7Gzs6Ns2bJqnT8vIwgCV65cYdGiRZw4cYLChQszd+5chgwZgolJ9uSkfwmJREI1izJcC36GIpdXNpdJpFS3sM7WNezt7QFYuHAhAB4eHjx58gSAkiVLYm9vz6hRo7C3t6dUqVKfpVU0KVKdVU+PkpBJMZpTKBDoVLKBps3IFLHJWatZYGRdiGLdavFu93UUSXKQSig3trmqFaRK6AMhHs/RL2IGcYlEPvTj0ZQD2K3qjV6hjP1GBQQS5cloSbPWmUdE5N+IYl9EbRQpUgQPDw+cnZ1p3LgxZ8+epWbNmpo2K1fwb7GvKYKDg8UQ/nSgvCkrWLAgzs7/5EImJiYSGRlJUFAQ69at4+nTp5iamuLr68uff/6p1vWXLVtGTEwM/fr1w9DQkE6dOgGpObpJSUlYWFh8MkbpCb916xa7d++mZMmS6OrqYmJigr29PQkJCdStWxcjIyMSEhJyLDfay8sLmUyW4Rz3ly9f0rt3bwICApgxYwazZs1i69atzJ49m3fv3rFjxw46derEjh07uHLlCiVLlmTw4MFA9qYohIaGAvxwnn2AESNGMHz48Gx5byUSCRs2bKBmzZp07dqVa9eu/fD5+3K5nCNHjrB48WJu3LhBhQoV2LJlCz169EBXVzNe1mYF7PAKeqKRtTOCXFDQtkTGNhjTw4cPH1Qh+R4eHgCsXbsWa2tr7O3tmThxIvb29ulKZTTQ0qVVsVoceXs1V7eFM9LSp7FVVU2bkSmSFClpH5QG8R8i/vlDIZAQHIWRdarTRJD/E5lRqGklyv7alITASG4P2Yo8Ppkgt6eU6FE3w2smKZIx5Mc+/4moF1Hsi6iVggUL4u7uTsuWLXF0dOTkyZM0bPjtXrg/AgULFkQqlWpU7Iue/czx4sULLly4wNOnT/Hx8cHPzw9vb2+kUikjR44EYNCgQdjY2KhtTYlEwl9//aXKxz169CiNGzembdu2nDp16rPjlT3or1y5wooVK1QRCIIgYGxsjK6uLsuWLcPS0pLu3bszePDgHPEKXr16FTs7uwxXA5fL5SqPvtJb369fP6Kjoxk9ejSvXr1i37591KtXjwULFnwyThmZkR0o21f+iJ59S0tLtRd9+zfGxsYcOHCA2rVrM2bMmEylsXwPxMfHs23bNpYuXcqrV6+wt7fnxIkTtGjRIscicv7L06dPWbt2LTv+3kH5ZV3RLWisETvSgwQoYVSIymYlszzXu3fvPhH3r169AlILoDZu3JjSpUtz7949Xrx4kanfRoeS9XF9cyXtAzWEFAntStRFN5taGGY30iyer0K9XhJyKbVOj25BYxKDo3i1xg1j28LomBmia2GkOtaobOq9lZ6lCdom+iSHx5EYlLm21BntHiAikhai2BdRO6amppw7d4527drh7OzM4cOHP/GQ/ojIZDJVazBNERwcTLly5TS2fl7Ezc2NTp06ERX15Yt22bJlKVOmTLbkwMtkMnbs2EFsbCwdO3bEzs6OJ0+efDNlQFtbG5lMRkxMDAD6+vqqOhG6uroEBgZy//59/Pz8WLlypdpt/i9Xr16lVatWGR4XExNDeHg4CoWCa9euUb9+ffT19RkxYgQLFy4kNjYWX19fli1bRqVKlShZsiRAtgp9+Efs/4ie/ewU+kqqVq3KypUrGTJkCI0aNcpQpfO8TmhoKGvXrmXVqlWEhYXRqVMndu/erbHODykpKRw9epQ1a9bg7u5OwYIF+XXkrxSpWoM9AVdybb65AHQu1TDD31dBEHjz5g2XLl1Sifs3b94AULFiRZo1a8b8+fNp1KiRquvQiRMnaNOmTaa7VJQwKkTDQpW4Gvw0V3r3dWRadMyjIfxAljYpksJjebU2tUaJWc1SlB3ZhLsj/iYlKp5Xqy9QYXo7jMpZIjPQQR6XpGoZmRAcRXJkPAD6hU0ztbZOHt1cEcm9iGJfJFswMjLi5MmTdOnShTZt2rBv3z46dOigabM0iqbb7wUHB4ue/XSiDAU/ffo0UVFRlC1blnr16lGqVCnq1KnD5cuXmT9/Pn369GHKlCnZVvBOW1ubPXv2UKZMGa5du8aGDRu+eJzS42dvb4+1tTXW1tb07t0biUTCkydP+OuvvyhdujRWVlacPn2aY8eO0bVrV5XXPDsICgrCx8cnw/n6ADVr1qRfv35s3ryZmTNnoqOjQ+PGjTl+/DjJycl06NCB7du3c+vWLdXGRk4QGhqKTCbD1NQ0x9b80Rg0aBAeHh4MHjyY6tWrqzViJjfy+vVrli5dypYtW4DUCJaxY8eqtetBRggICGDjxo1s2LABf39/6tevz+7du+nUqRM6OjpEJsVyOPgGCfKkXCf3JUA+bQOaFqmR5rGCIPDq1atPPPd+fn5IJBKqVKlC27Ztsbe3p2HDhl/d3GvUqBEymYyLFy9m+vOqGmSKR3wiUj3t1BeQixhZoT0F9U01bUamKaBnggQy9T19ueo8KVHxaOXTo+zIJuiYG2E9zInnC08SdvM1geceY9msEsW718V3swdB5x4T9fQDSeGxoBDQNjPAsnnG61YZaumhKxXFvoh6EcW+SLahp6fHoUOH6NWrF126dGHbtm306tVL02ZpDCsrKz58+KCRtRUKBSEhIWLOfjpRinelB8fFxYWpU6eqNgG0tLSYP3++qvOEXC7PllZvgiAwbtw4goODsbGxYdOmTQwaNOiz45Rh/IcOHeLt27ds3LhRJeS7dOmCn58fT548YceOHUycOJE1a9Z8NVpBXVy9ehWA+vXrZ2r8r7/+yvv37zl79izTp0/H2NiYsLAwnJ2d+fPPP3F3d+fdu3fExcWp0+xvEhISgoWFhcbCqX8ElCksd+7coWvXrly/fl2tBTBzC7du3WLx4sW4urpibm7OxIkTGT58uEZSRJRFANesWYOrqys6Ojr07NmT4cOHU7Xqp/naJjqGjKnUiQUP9uS4nWkhABOqdP1i5XhBEHj+/Pkn4j4gIACpVIqdnR1dunTB3t6eBg0aYG5unq71jI2NqVGjBu7u7l88L3+LsLAwRo8ezd9//43TyC4kNvt2a8OcRCaRUs2iDG2K19G0KVnCQEsPKwMLPsR9zNC4wLOPCL+V2nK3zFBHdMxTw/XzNyhHgRs+hFx6ju8mD0yrFqNI++rIDHT4cOwu8R8i0DbRx7xWaUr2aYC2iUGGbS5vUixHoqhEfixEsS+SrWhra7N7924GDx6Mi4sLsbGxDBkyRNNmaQQrKytV5fCcJiwsDLlcLnr204nyYluhQoVP/laKvPLly/Prr7+qvI7Z1dN98uTJrF+/ns2bN9OxY0fGjPl2f+rLly+TkJDA5cuXqVChAgYGBsTExBAdHc3Nmzd5+fKlqkVXdrdgvHr1KsWKFaNo0czdxFauXJmlS5cybdo0zpw5Q2xsLDY2Nqxfvx5vb2/evXtHtWrVcrS7RUhIyA8Zwp/TGBkZsX//fmrXrs2oUaO+GtGS1xAEgdOnT7N48WIuXbpEmTJlWLVqFX379sXAIOPCIKvExMSwa9cu1qxZw6NHjyhXrhx//vknffr0+Wb0SvOiNXH7cI/boS9yTfi5VCKhsWVV7K1Sz28KhYInT56ohL2np6eqhWeNGjXo1auXStxnpX6Jo6MjW7duVRVJTQ+HDx9m6NChJCYmsm3bNnr37s2UO1tzRacDCRK0pTImV/35uxCdFU1LEBgfnqH31dK5MpbOX/bK2/zWApvfWnx6fLNKWDarlCU7IXWTpbxpsSzPIyLyX0SxL5LtyGQyNm7ciJGREb/88gvR0dGMGzdO02blOFZWVpw5c0YjayvztkXPfvpQivoGDRqwdu1aVZHJt2/fEh8fT/HixVm+fHm22vD777+zcOFCli1bRv/+/QG+uqbypqxUqVIArFixgqtXr1K4cGH8/f05d+4ckPr5K6MRslu0Xr16NVMh/P/G1tYWV1dXHjx4QEpKCpUqVcLLy4tRo0YBMGbMmBwV+6GhoT+82E9OTsbT05Pnz58TEhKCqakpgwYNynARxrSoUqUKq1evZuDAgdjb29OzZ0+1zp+TJCUlsXv3bv7880+e/I+9sw6rIv/++HvupbsUUAE7UcTEJFy7u3vtdu3uXFtw7W5dO9g1ABsLC7sVBUEEJATuff/+8HvnJ2sRN1Dn9Tw+zy4zc86ZO3PnzvmcunULFSpUwM6dO9G0aVON95n4Enfu3IGfnx/Wr1+P9+/fo2HDhpg3bx5q1KiRrqwVQRAwslQrtA+YlS3S+QUIMNMzRk0UxqJFi0TnPioqCvr6+ihfvjy6d+8OT09PVK5cGebm5mrT7e3tjVmzZuHOnTsoVqzYN/d98+YN+vfvjx07dqBRo0ZYtmwZcuXKBQAY69YWfc8uwfP4NzpbQBHwcdFkWtmusDe21okN6qawVR4cC7uqazPShYJKFLGUnH0J9SM5+xJaQSaTYeHChTA3N8fw4cMRFxeHSZMm/RQrx+klV65cCA8P1+hosK8REREBQHL2M4qFhYW4QOXn54fDhw/j2bNnePv2LXx8fDB79mxxrKI68fPzw5gxYzBp0iQMHjxY/PvXIlCq+2nSpEl49OgRTp48iUOHDonb9fT0MGjQIFhZWeHcuXMoXLiwRuxWkZSUhEuXLqF169Zqkefm5obo6GgsWLAAY8aMgYGBAdasWYOOHTuqRX56efPmzS/ZiV/FhQsXMHXqVAQFBaXplbB//34sXboUxYsXV+vzrVu3bggMDESvXr1QtmxZFC1aVC1ytUVMTAyWL1+ORYsWISwsDA0aNBAXD7X925eamooDBw7A19cXx48fR44cOdC/f3/06tUrXaPi/ksOYytMKtMJoy+u1m2zPgKkEtem/I1qZ6fDwMAAHh4e6Nu3Lzw9PVGpUiWNZk1UqVIF+vr6OHny5FedfZLYvn07BgwYAJLYsmUL2rRJGzk3NzDBokp90ffMYrxOjNa6wy/g46LJpDIdUTHnj/U9+xbuNgWybTPJ/yJAQEmbfLo2Q+InRHL2JbSGIAiYNm0azMzMMHr0aMTFxWHevHm/jMPv6OiI1NRUREZGat3pVkX2pTT+jKFKzRw1atRno8A2bdqE+Ph4LF68GLlz585QGue32LRpE/r164fBgwdjwoQJGTo2d+7cWLlyJfz9/RESEoKYmBgYGBigTJkyGDhwIGJiYjBo0CDY29tr1Gm9cuUKkpOTM12v/yUsLCxQpEgRDBgwAM2bN0f16tXVJju9vHnzBoUKFdK6Xl2RlJSEa9euwdjYGIULF8acOXPE0Y/29vbIly8fHj58iICAAGzduhVTp05Vq7MvCAKWLVuGS5cuoWXLlrhw4YJO0t0zyosXL7Bo0SIsX74cSUlJ6NChA4YNGyaWBWmT8PBwrFy5EsuXL8eLFy9QqVIlbNq0CS1atICh4ee17Rmhsn1xjC3dDlNDNme6EVpWoJIACL0DT9GjVmt4TvdExYoVtdrjwdTUFBUrVsSJEyfQt2/fz7a/evUKffv2xd69e9GyZUssXbr0q7//NobmWFZlIIac/wuP415DqaVPVCbIIIOAaeW6oIp9Ca3o1BaFLfOggHkuPIp7la2dfrkgQ6WcxWBnlH3HWkr8uEjOvoTWGTVqFMzNzdG/f3+8f/8ey5Yt00kqo7ZRRVJfvXqldWc/IiIChoaGak1f/NHx9/eHt7f3N2vXBUFAQEAAdu/ejRw5csDFxQWXLl1C165d8ebNG+zZswfNmjVD+/btxSZ5WWHfvn3o0qULunXrhvnz52dq8SB//vzo06cPkpOTkZqamsY5sra2RosWLbJkY3o4e/YsTExMxP4AGeVLCydyuRyNGzdG3bp1YWRkpA4zM8yvlsZ/7do19OjRA71790ZiYiL27NkDKysrjBw5Eu3atYOenh6CgoLQrl073Lt3D4D6+1eYmppix44dqFChAgYMGIDVq1erVb46uXHjBv78809s2bIFpqam6Nu3LwYOHCimamsLkjh79ix8fX2xa9cu6OnpoV27dujXrx/c3d3VqqtWnrKQy2SYcmXTR93acqgIyGUyTC7dEV6NSmtH51fw9vaGn59fmoUuktiwYQMGDx4MAwMD7Nq1C82bN/+uLGtDc/hWHoAloXtx6HkwBAga/UwFCMhtYovx7u1RzCrjGR7ZHUEQ0DJfNcy6vl3XpnwTBZVonrears2Q+EmRWgpL6IR+/fph3bp1WL16NTp16oSUlBRdm6RxPnX2tU14eDjs7e1/mSyK75GcnIxBgwZ9czqCUvkxjfLRo0eIiIhAx44dMXz4cAAfSzLGjRsHADhz5gwAZHn83vHjx9GqVSs0bdoUK1asyPK1MjAw0FkU9MyZM6hQoQL09TM3Quhr5y6TyXTm6JP85dL4U1NTcfPmTYSFhYm9EYoUKYIRI0bAyckJjo6OaN26NaysrFC1alXxO6NuXF1d4efnhzVr1mDDhg0a0ZFZSOLkyZOoV68eSpUqhRMnTmD27Nl49uwZZs2apVVHPz4+HitXroS7uzuqVq2KixcvYvbs2Xj58iVWrVqldkdfRY1c7vizYk9YGphCpoX5cTIIsDOywOJK/eCVp7TG9X0PHx8fREVF4caNGwCA58+fo379+ujSpQsaNGiA0NDQdDn6Kkz1jTDKrQ3+rNAD1oZmGvlMZRAgQEC7At5YW33YT+noq6iR2x0m8qxlsWgSAUAuExuUsSuoa1MkflIkZ19CZ3Tu3Bnbt2/Hzp070bJlSyQlJenaJI2iGuOmC2c/IiJCqtf/hKVLl+L+/fvpmpeuiuRaWVnBy8sLABAaGipez9evXwNAllKXz58/j8aNG8PHxwebN2/OUIZAVhcZ1I0qqti2bVtdm6JW3r9/j+Tk5F8qsu/u7g6ZTIbbt28jT548aNSoER48eIAnT56AJG7evIkRI0YgOTkZc+fOxenTpwF8HEWpbrp06YIuXbqgT58+CA0NVbv8jJKamort27ejfPny8PHxwYsXL7BhwwY8evQIQ4cOhYWF9tJx7927h8GDByN37txiDf7Ro0dx9+5dDBkyBNbWmm+2Vj5HEWzxGoWaucsA+BgxVjcqp7eBswc2e4+Cm21+tevIDB4eHjA0NMSJEyewcuVKlChRAteuXcOBAwewceNG2NraZkpuxZzFsNlrFBq5VIKeIP+fe5415ML/JspYOWN51UHoXawBDOU/91x3I7kBmuerppF7Uh0QQLsCPpAJkksmoRmkNH4JndKiRQuYmJigefPmaNSoEfbs2aP2rs7ZBQMDA9ja2urM2Zfq9T8SHh6OyZMno3fv3t909v87fu/KlSuws7ODi4sLjh49ilu3bkEQBFSoUAFA5p3969evo27dunB3dxdnXGcEQRAQFRWFJ0+eIHfu3DrP4Hj06BE8PT3x+++/68wGTfDmzRsA+KUi+yYmJvDw8MCePXuwf/9+9OzZEzdv3kTlypVhbGyMlJQUvHz5EsDHqPL27ds12kth6dKlCA4ORsuWLREcHKyT34r4+HisWbMGCxYswOPHj1GjRg0cPXoUtWrV0ur3LjU1FYcOHYKvry/+/fdf2NnZoU+fPujVqxfy5s2rNTs+xdzABOPc28M7V2nMvb4TUR9iIYOQ5dpzmSCDkkrkMLbCqFKtUS5HYTVZrB6MjIxQpkwZzJgxA5GRkejevTv+/PPPdC0mfw8zfWP8UbIFehaphyMvLmLX41N4lfgWckEGJZmuFH+5IIOCShjI9FA3T3k0yVsZBS20N8UkO9C50G84EXYVrxLfQpmNFsjlggzFrVzQ0NlD16ZI/MRIzr6EzqlXrx6OHDmChg0bonbt2jh06FCW5t5mZxwdHXWWxq+L5lDZkTFjxkBPTw9Tpkz55n6fjrNzd3fH3r17xXTmp0+f4t69e3BxcRHH4mWG+/fvo1atWsiXLx8OHjyY6bR7W1tbXLx4EZUqVUKzZs2wefNmjBgxAjdv3oS/v3+m7csMMTEx2LFjh1ozDj6t4Vf9t7oaIqYXlbP/K0X2gY8ZWNeuXUOTJk1gZGQEIyMjvHv3DsDHBS5TU1PkyJEDtra2yJMnDwBorAeLqakpdu7cifLly4ulYNoiIiICS5cuha+vL2JiYtCyZUvs2rULZcqU0ZoNKjtWrVqF5cuX49mzZ6hYsSI2bNiAli1b6qzE5b9UsS+BYuVzYf2ZfQiIu423Zimiw5lu+HEMnBJEObtCaJa3KjxyFhMj09kFpVIJPz8/XL58GSkpKThy5Ajq1Kmjdj3mBiZold8TLfJVw7WoR7j29hHuxDxHaPRTRCe//+IxBjI9FLTIjRLWzihi6YQq9iVgpq+95oXZCUO5Aca5t0efM4t1bUoa5IIMY0u3laL6EhpFcvYlsgVeXl44duwY6tSpI0ZKfsYImqOj4zfrxDVFREQEvL29ta43uxEcHIw1a9bAz88v3amVMpkMvXr1wvTp0xESEoICBQogPDwclSpVwvTp0zNdHvH8+XP89ttvsLa2hr+/f5YXuOrUqYNt27ahVatWMDU1RUJCApKTk7MkMzOonJ9vOeIZddQ/3VcXjj7wsTkf8Os5+61bt0Z8fDyGDh0KfX19JCYmwtnZGXny5EHRokVRvXp1lCtXDsWLF0dqaqrG7SlevDj++usvdOrUCZ6enujatatG9d2/fx/z5s3D+vXrIZPJ8Pvvv2PIkCFajZ6TxPnz5+Hr64udO3dCJpOhXbt26Nu3L8qWLas1O75FdHQ0Tp06hcDAQAQGBuLq1atQKpVwcHDAnFWLEZ/fGLfePcXdd8+RqPj/55IqNf/T6L+J3BCRN54ij8wKfn2mILdp9nwXuH//Prp3745Tp06hadOm2LNnj8bfW2SCDO52BeH+SX332w9xiEyKwQdFCpQkDOX6MNEzRG5Tu2y3OKJLXK3zok1+L2x/FJhtOvP3KdYw297fEj8PArNbwafEL821a9dQs2ZN5MiRA8eOHdPoLHBd0LlzZ9y/fx9nz57Vql5TU1NMmzYNQ4YM0are7IRSqUTlypWRmJiIK1euZCj6mJCQgDt37iB37tyIioqCnp4enJ2dMx1Ji4iIQPXq1ZGUlITTp0+LEVF1sGnTJnTq1AnOzs4oU6YM/v77b7XJVgefdqwOCgrC8ePH8fz5c9SuXRulSpX66qxqXbNu3Tp07doVSUlJWR5Z9iNy7949nDx5EsbGxrC1tcXDhw9hZ2eHatWqwd7eHgMGDMD58+exevVqlCtXTq0j+L7E77//ji1btiA4OBiurq5ql3/+/HnMmTMHe/fuRY4cOTBw4ED06dMHNjY2atf1NRISErBlyxb4+fnh6tWryJ8/P/r27YuuXbtq1Y4vERUVhaCgING5v3btGkgiT5488PT0FP8VKlQozcIcSYQlROFezAvEpCTggyIFAgADuT6sDExR2DIPHI1tsGTJEgwZMgS3bt1C0aLZa+67QqHAwoULMW7cOOTKlQurV69G5cqVYWNjgwkTJmDEiBG6NlHiK3xQpGDo+b9wM/qJ1kYbfgkBArwd3TCxTAcpqi+hcSRnXyLbcffuXfz2228wNDTE8ePH4eLiomuT1MaoUaOwfft2PH78WGs64+PjYWZmhk2bNqF9+/Za05vd2LBhAzp37oyAgAB4enrqzI53797B29sbr169wunTp1GwoPo78C5fvhy9e/eGm5sbQkJC1C5fHSxbtgz9+vUT/9/U1BTu7u74888/xT4I/0UXEX0Vc+fOxbRp0xATE6MT/dmJsWPHYunSpYiLi0O+fPmwcuVKvHz5Ep07d8bw4cMxe/ZsKBQKjY5UTUhIQMWKFZGamoqLFy/CzMwsyzKVSiUOHjwoNhssXLgw/vjjD3Tq1EmrKfL379/HsmXLsHbtWsTExKBevXro168fateurdEFlG8RHh6exrm/efMmACBv3rxpnPt8+fJ99zuampoq3htf2/fDhw8oVKgQPDw8sGPHDvWeTBYIDQ1Ft27dEBwcjMGDB2Pq1Kli74g6depAEAQcOXJEx1ZKfIv4lCQMPOeLB3FhOqnfFyCgQo4imFW+O/RkP//YaQndIy0nSWQ7ihQpglOnToEkqlatKs5v/hlQ1exrc40tPDwcAH7pBn2xsbEYOXIkWrdurVNHPz4+Hg0aNMDTp0/x77//asTRB4BevXrBzs4O165dw6xZszSiIyts2rQJ/fr1g7m5OTZv3ozGjRsjPj4e165dw44dO5CQkPDF41Qp/LogMjLyl0vh/xTV5x4cHAw/Pz/ExcXBwsICjx8/hq+vL5o3bw4LCwvs2bMHQNamU6QHExMT7Ny5E8+fP8emTZuydF8kJSVh1apVKFGiBBo3bgylUok9e/bg9u3b6Nmzp1YcfYVCgQMHDqBOnTooXLgwNmzYgJ49e+Lhw4c4ePAg6tatq1VHPywsDFu3bkXv3r1RrFgxODg4oFWrVvD39xf7BDx9+hSPHz8Ws17y58//XUc/MTERCxcuxMGDB7+5r6GhISZNmoSdO3fiypUr6j69DJOSkoIZM2bA3d0dMTExOHPmDObPn5+mSaSPjw9OnTr1S4wS/pEx1TfCokp9UdzKRSujIj9FAFDdoSRmlOsmOfoSWkNy9iWyJXnz5sWpU6dgYWGBatWq4fr167o2SS3kypULHz58EBtcaYOIiAgA+KVH76kisnPnztWZDR8+fECzZs0QEhKCI0eOoGTJkhrX6ePjg9GjR2Pp0qUa1/UtPp2/rlQqcfjwYQDAjh07xBdkQRDQpk0b1K9fH9euXftq/beuIvtv3rz5KfuIpBfV5+7k5ISYmBi4uLjg6dOnyJMnD/bs2QMTExOULFkSDx48QFhYmFauU9GiRRESEoLevXtnWsaBAweQN29e9OzZE0WLFsWZM2dw5swZNGnSRCvO9Zs3bzBr1iwUKFAAjRo1wtu3b7Fu3To8f/4cs2fPRr58+TRuAwBx0aRHjx4oVKgQcufOjXbt2iEgIADVq1fH5s2b8eLFC9y/fx+rVq1Cx44d4eyc8dnsW7ZswYgRI1C6dOnv7tupUycULlwY48aNy8QZqY9r167Bw8MD48ePx9ChQ3H16lVUqlTps/28vb0RHx+Pixcv6sBKiYxgpm+MBR69UdepPADNjIr8FJnwcXBiuwI+mFy2EwzkUss0Ce0h3W0S2ZZcuXIhMDAQtWvXhpeXF44ePfrV9N4fBVUPglevXmll9jEgRfbv3buHhQsXYvz48XByclKLzIymKKempqJ9+/YIDAzE4cOHUbFiRbXY8TVIIjo6Gi1atEDp0qUxYMAAmJqaaryZ2X9JSUmBvr4+ZDIZEhMTQRIymQxXr16FsbEx/P39UbduXQDAvHnzMGTIENSqVQsksXXr1mzlXL958+aXjuwDH+8rR0dHeHp64sqVK0hOTkaLFi2wcOFCrFq1SnTwb968iVy5cmml7EKVHZMZPUqlEjVr1kSvXr3Qrl07FClSRN3mfRGSCA4Ohq+vL7Zv3w5BENC2bVv07dsX5cuX14r+J0+eiCn5gYGBYmlZiRIlUKtWLUyfPh3Vq1eHg4ODWnWvWbMGtWrVStezWE9PD1OnTkXr1q1x6tQpVKtWTa22fI/k5GRMnz4dM2bMQNGiRXHhwgWUK1fuq/u7u7vD0tISJ06cQOXKlbVoqURmMJIbYJRbG3g7umHGtW149+G9Rur4BQjIZWKLcaXbo4T1z1OWKvHjIEX2JbI1dnZ2OHHiBIoXL44aNWogMDBQ1yZliU+dfW0REREBQRDS3X3+Z2PIkCHInTs3hg0bphZ5lSpVwsSJE9O9v1KpRI8ePbB3714xkq1p4uLioFAoYGNjgz///BM9e/bE77//jp07d2pct4rz58/Dx8cH0dHRuH//PmrUqIH58+fDyMgIjo6OSExMxOLFi2Fra4uNGzdiyJAhGDBgAI4dO4bChQtnmzFiKkxNTbUWZc2uqFLl582bBzc3N/Tq1QtPnjyBTCbD2LFjcfr0aRQpUgS5cuUCoLssjK/xaYYJ8LHUwNDQEJMnT9aKo5+YmIg1a9agfPny8PDwwOnTpzFt2jS8fPkSa9eu1ZijTzJNRN7FxQX58+dHt27dcPXqVTRs2BC7d+9GREQEbt68CV9fX7Rq1Urtjv7du3dx9uzZDI0rVS1YjhkzRqslPJcuXULZsmUxY8YMjBkzBpcvX/6mow98XJyoXr06Tp48qSUrJdRBxZzFsNlrFOo5VfgY4Veq5z4TIEBPkKNdAW+sqz5ccvQldIYU2ZfI9lhaWsLf3x9NmjRBnTp18Pfff4vRwB8NXTn7dnZ20NP79b7uhw4dwuHDh/H333/D2Fg984XNzMwQGhqarn1JYujQoVi/fj02btyIRo0aqcWG7/H27VsAgLW1NQRBgJ+fH+Lj49GuXTuYmJigfv36GtUfHh6Ojh074uHDh6hVqxZu3bqFpKQk8Xs7cOBA3Lx5E5GRkXBwcEBMTAxq1aqFY8eOoXz58hg9erRaGq6pk23btunaBJ2jSms3NjbGzZs3kZiYiA8fPgD4mPkAAI0bN4arq6tOmykCH7Nvbt68icePH4uTKWQy2WdZOdqw8eHDh1i2bBnWrFmDd+/eoU6dOjh48CDq1KmjkSaGJHH37l0EBgYiICAAQUFBCAsLg0wmg7u7O1q2bAlPT09UrVpVq139165dCxsbGzRu3Djdx8hkMkyfPh3169eHv7+/RmbYf0pSUhImTZqEuXPnws3NDZcuXYKbm1u6j/f29saYMWOQlJSU7RYsJb6Omb4xRrq1xtMt53Ai6gYKtqyMmJR4yAUZFFR+X8D/UO1vb2SF5vmqoZ5TBVgamH7/QAkJTUIJiR+ExMRENmrUiPr6+ty1a5euzck0FhYWnDNnjtb0DRgwgCVKlNCavuxCUlISCxYsyN9++41KpVJtcgcMGMCiRYuma9+JEycSAP38/NSmPz1cuXKFAHjx4kXxbykpKWzSpAkNDQ15/PhxjepPSUnhoUOHaGlpST09Perr63PSpEni9pcvX3LOnDmUyWQUBEH85+XlxejoaJKkQqHQqI0SmSciIkK8Zk5OTmzQoAGnTZvGq1evkiRv3rzJhIQEklTrdy+9XLlyhX379hVtNDMz48CBA7VqQ2pqKg8ePMi6detSEARaW1tz2LBhfPDggdp1KRQK3rhxg0uXLmXLli1pb29PAJTL5axQoQKHDx/OgwcP8t27d2rXnV5SUlLo4ODA/v37Z/hYpVLJqlWr0t3dXaPPhTNnzrBIkSI0MDDg9OnTmZycnGEZISEhBMCTJ0+q30AJjRIdHU0zMzOOGzeOKYpUnngZwlkh29gpYDarHxzKqgeGfPWf18Fh7B40j/Ou7+L58FAqlNLvl0T2QXL2JX4okpOT2bZtW8pkMq5bt07X5mSKIkWKcMiQIVrT17p1a/r4+GhNX3Zh1qxZlMvlvHXrllrlLlu2jHp6evzw4cM395s/fz4BcObMmWrVnx6OHz9OAJ85FklJSaxVqxZNTU159uxZjdqwdOlSCoIgOvRjxowhSfFzUyqVPH78OHv16sWRI0dy2bJl4rEpKSlflJmamqoT51Hi/1F9/osWLeLOnTsZGhrKd+/eidfs8OHDdHNz4+LFi/ngwQNxAUBbPHz4kN7e3mkWI+RyOQVB4NGjR9OcgyaIjIzk7NmzmS9fPgJg2bJluWbNGnHxQx0oFApevXqVCxcuZNOmTWlra0sA1NfXZ+XKlTl69GgePXqUsbGxatOZVQ4cOEAAvHLlSqaODwoKIgDu3LlTzZaR8fHxHDJkCAVBYMWKFbP0m6FQKGhra8sJEyao0UIJbTB37lwaGBjw1atXn21LSk1maPRT/vPiEg88Pce/H5/mwafn+e+LK7wf84IpilQdWCwhkT4kZ1/ihyM1NZW///47AdDX11fX5mQYLy8vtmnT5qfVlx14+fIlzczMOGjQILXLDggIIIBvvhCuWrWKADhq1Ci1608PO3fuJAC+ffv2s23x8fGsVq0aLS0tM/3i/SU+jbilpqZy6dKl9PHxYevWrUXHa+7cueI+n0Z/PyU19csvTcnJyTqNTEqkJSUlRbzmCoWCb9684ZMnTzh58mQxkm1kZKS1rCKlUsmEhATWrl2bgiBQT0+PM2fO5JkzZ7hjxw5aWVnRz8+PkZGRov3qJDg4mJ07d6ahoSENDAzYsWNHnj9/Xi0LC6mpqbx06RL//PNPNmzYkFZWVgRAAwMDVq9enePHj+exY8cYHx+vhjPRDE2bNmXp0qWzJKNOnTosWrSoWq9dQEAACxQoQCMjI/75559fff5khObNm7Nq1apqsE5CWyQnJzNPnjzs0qWLrk2RkFA7krMv8UOiVCo5ZMgQAuDs2bN1bU6GaNu2LatXr641fcWLF9eI05ud6dixI+3s7MSUcHUSHh5OAF8tJdmxYwdlMhn79Omjsyj0ihUrKAjCV1NeY2JiWK5cOdrZ2TE0NDTL+lQvyKmpqXzy5IkYGYmIiGBCQgL79OkjOvybNm3i5MmTWbBgQc6bN4+JiYni5/S1z0uhUPDWrVvcunVrlm2VUC+3bt3ijBkzWL9+febOnVu8zqpouo2Njdod6y+RnJzM6OhoFilShIaGhpw2bVoa57dy5cp0dHRk1apVv3u/pZeEhASuXbuW5cuXJwC6uLhw1qxZjIiIyPK5nD9/nrNnz2a9evVoYWFBADQyMqK3tzcnTZrEkydPqjVbQJOEh4dTT0+PixcvzpKcS5cuEQDXrl2bZZtiY2PZt29fAmC1atV47969LMtUsXTpUurr6/P9+/dqkymhWbZs2UIAvHbtmq5NkZBQO5KzL/HDolQqOWHCBALg2LFjf5j03qFDh7JQoUJa02dra8vp06drTZ+uOXPmDAFw5cqVGpGvVCppa2vLqVOnfrbt8OHD1NfXZ7t27XRacz5r1ixaW1t/c5/IyEi6uroyV65cfPjwYaZ1qc7z5cuXbNiwIQsXLkwTExOOGzdOfNm9f/8+W7ZsSUEQaGRkJDqE//zzz3flK5VKBgUF0dHRUSOLNxKZZ8+ePWl6Lqjq4x0dHSkIAleuXMn4+HiNfxcuXLjA/fv388WLFzQxMaEgCPT39xe3//3335TL5eICxPDhw7Ok79GjRxw+fDhtbGwIgLVr1+b+/fszHRX+8OEDT58+zenTp4tlNgBoYmLCmjVrctq0aTx16hSTkpKyZLeumDdvHg0MDMSsiqzQokULuri4ZOmz8Pf3p7OzM01NTblkyRK135+hoaEEkOYelMi+KJVKlitXjr/99puuTZGQ0AiSsy/xwzNnzhwC4KBBg34Ih3/u3Lk0MzPTiq6UlBSNOr7ZDYVCwbJly7JMmTJqScf8GlWrVmXbtm3T/C0oKIjGxsZs1KhRpho7qZORI0cyf/78393v1atXLFSoEPPmzcvnz59nWt+lS5dob29PQRBoZ2cnOn4jRowQSwkePXrEmjVr0sbGhkWLFuXly5fTJfvFixesVasWZ8yYkWn7MsOP8CzRFarPpkuXLhQEgSVLluS4ceO4d+9eJiQkcNGiRRQEQVxk1GRkPy4ujv3796etrS1jYmI4cuRICoLA3377jTdv3uT48ePp4uJCQRBoaWnJWrVqpbn30nudFQoFDx8+zPr161MQBFpZWXHo0KG8f/9+hm1OTExkQEAAJ0+eTB8fHxobGxMAzc3NWbduXc6aNYvnzp3T+XNEHSiVSpYoUYKtWrVSi7zQ0FDKZDIuWbIkw8dGR0eze/fuBEAfHx8+evRILTb9F6VSSQcHB52VcUlkDFU/iMOHD+vaFAkJjSA5+xI/BcuWLaMgCOzevbtGnTx1sHnzZgJgXFycxnWFhYURAPfv369xXdkBVa386dOnNaqnR48eaepPL1++TAsLC3p7ezMxMVGjutNDz549WbZs2XTt+/TpUzo7O7Ns2bLfbTr4Jc6ePSumb0+bNo3nzp1j4cKFRYd/3rx54r2emprKkJAQsfY+PRG1xMREPn/+XCvfly/pvnfvHu/evcsXL14wOjr6h42uqhOV8z5+/HgKgiAuxKievRcvXmT+/PnZt29fkupJlw8LC/vqosG0adMoCIKYbbNx40YWK1aMxsbGYpNIW1tbDhgwgO/evWNAQACHDBnCx48fpzmfLxEVFcW5c+cyf/78BEB3d3euWrUqQ/Xx8fHxPH78OCdMmEBPT08aGhoSAC0tLdmgQQPOnTuXFy9e1Eq5g7YJDg4mALE5ojro0qUL7e3tM5Qmf/DgQebOnZvm5uZcsWKFxhfz2rRpwwoVKmhUh4R6aNKkCYsVKyZNgJH4aZGcfYmfhg0bNlAmk7F169bZOiJy4sQJAlBrjeDXUI0BOn/+vMZ16Zro6GjmyJGDHTp00LiuBQsW0MjIiKmpqQwNDaWdnR0rVKiQbbpft2jRgjVr1kz3/g8ePOCtW7fStVD26T5KpZK///47BUEQxwuqRo2pIv2WlpZcv379Zy/m2f3F6tKlS+zevTt9fHxYsWJFVq9enXXr1mWrVq3Ypk2bbN0MTdOorl1AQAAFQeDQoUM/2+fKlStZKg8hP5aaTJkyhTly5GDevHkZHx//VSfNzc2NgiBw2LBhXL58OcuVK0cDAwOamJjQzc1NjAQnJyezW7du4qjHT/tNfOk8t2/fTgMDA3bo0IFnz55Nl5MYFxdHf39/jhkzhlWqVKG+vj4B0MbGhk2aNOGCBQt45cqVbL8wrQ569+7NPHnyqPVcHz9+TH19/XRNOomKimKHDh0IgHXr1uWzZ8/UZse3WLFiBeVyOWNiYrSiTyJz3L9/n4IgcMWKFbo2RUJCY0jOvsRPxe7du6mvr8+GDRtmiwjrl7h9+zYBMDAwUOO6/vnnHwIQI1g/M4MHD6apqSlfvnypcV1Hjx4Vr2Hu3Lnp6urKqKgojetNLzVq1Mhw2mx6nJhP95kxYwYvXrzIy5cvc+zYsYyLi6OnpycFQWDbtm3p5+fHXLlyURAEGhoa8saNGxk+D12iOpev/ZPS/D/eD7Nnz+apU6dIknfv3uX+/fu5f//+LGXXPHr0iP3796eJiQmNjIzYp0+f76bL379/n/ny5UtzjQwNDVmjRg3OnDmT8+bNY+vWrTlv3jySZOfOnSkIAjt16vRde77nsMXExPDQoUMcMWIEK1asSD09PQJgjhw52KJFCy5ZsoTXr1/P9gtc6iY+Pp4WFhYcN26c2mX379+fVlZWX5w4omL37t20t7enlZUV161bp9Xv7P379wmABw8e1JpOiYzTv39/5siR44dpdikhkRkkZ1/ip+Po0aM0NjZmjRo1dJL6+z3evXtHANy2bZvGdW3cuJEAfvoo5K1bt8RRW9rg6dOnBEAHBwcWKFCAYWFhWtGbXtzd3dm7d2+1yvw0MqeKjHp4eIgLSQsXLqQgCOLIqdmzZ9PZ2Zn29vYcMmTId+VnJ0fo3bt3FASBOXPmZNeuXdmtWzc2bdqUXl5edHV1ZfHixXVtYrZBlUW1fv16VqxYkZaWlqKz3bdvX9FJT8/1vXTpElu3bi2m3U+cODFDne3Pnj3L0aNHM0+ePGzatCknTJjAp0+fcvDgwWkWAUaPHk3y/7MBduzYkaFzjo6O5v79+/nHH3+wXLlylMlk4vOgdevWXLZsGUNDQ3/5BaFNmzYRAB88eKB22a9evaKxsTHHjBnz2bbw8HC2atWKANi4cWOdPJ+VSiWdnJy+mPUikT14+/YtTUxMOHHiRF2bIiGhUSRnX+KnJDAwkObm5qxUqVK26+CtVCppbGzMBQsWaFzXvHnztNYMUFcolUr+9ttvLFCggNbqqSMjIymTyWhhYZEtsyby5s0rOjTqQOXox8XF8cSJEyxWrBj19PRoZmbGBg0aMDIyktOnTxcbl6kat40fP55v3rwR5XzN4UtNTc1UvwBN8fr1a9rb29PT01PXpmRrVNfzyJEjaZxpExMTFipUiIIgsEePHmn2/S9KpZKHDx+mt7c3ATB//vxcunRplhYoY2NjxXs2LCxMbBrZtm1bsb/Exo0bxUaCnTp1YnJy8jdtfP/+PUeMGMHSpUtTEAQCYJ48edi+fXuuWLGCd+/e/eWd+//i4+Oj0e/QqFGjaGJiwtevX5P8eJ22bNlCW1tb2tracuvWrTq9Jp06daK7u7vO9Et8m5kzZ9LQ0FC8fyQkflZkkJD4CalevTqOHz+OO3fuwMfHB2/evNG1SSKCIMDR0RGvXr3SuK7w8HDkzJlT43p0yb59+3Ds2DEsXLgQhoaGGtcXFxeHevXqQSaToUaNGsibN6/GdWaU6OhoWFtbq02eXC7H3bt3UbJkSbRo0QLv3r2DmZkZ4uPj8e+//+KPP/5Avnz5ULZsWcTExGD9+vXIkSMHmjdvDjs7OwCAUqmETPb5Tw5JBAYGwsDAQG32ZhVjY2PUr18fYWFhCAkJwevXrxEbG4ukpCQoFApdm5dtkMlkSExMxN9//w0AaNasGVxcXCCTybBjxw44OTlhw4YNSEpK+uK1B4DBgwejXr16eP/+PXbs2IF79+6hX79+MDExybRd5ubmoj6ZTAZTU1MAQO/evXHmzBnY29ujU6dOWL9+vXiMvr6+eMx/r7EgCDA0NES1atXg5uaG1atX4+HDh3j27Bk2bdqEHj16oHDhwhAEIdM2/2w8fvwYJ06cQLdu3TSmY/jw4dDX18eMGTPw6tUrNG3aFO3atUONGjUQGhqKNm3a6PSa+Pj4ICQkBG/fvtWZDRJfJjk5GUuWLEGHDh1gb2+va3MkJDSK5OxL/LSUL18egYGBCAsLg6enJ16+fKlrk0S05exHRET81D9kSUlJGDp0KOrWrYv69etrRV/jxo1x584d1K5dWyvXMKMoFArExMTAxsZGLfJI4v379+jXrx+ePn2KWrVqISwsDKdOnULlypWRnJyMo0eP4t9//8XYsWPRq1cvdO3aFWfPnoWbmxtIAsBXnb25c+fixo0barE1qyiVSgDA7du3cfLkSTx8+BAdOnTA9OnTMXfuXCxduhRLly7FiRMndGxp9sHY2BghISEAgClTpqBq1aqIj49HoUKF0LhxYyQnJyM4OBjA/3++KpKTk1GjRg0EBATgwoULaNmyJeRyuVrsEgQBSqUS9vb2mDt3LgRBwO+//45z586hYsWK0NPTw9WrV6Gnp4dWrVohMTFRvK4nT57EvXv30sjT09NDgwYNsG7dOnTt2hX58+eXnPtvsG7dOpibm6N58+Ya02FjY4Nhw4bB19cXRYsWxfnz57F7925s3749Wyxye3t7i4uZEtmLHTt2ICwsDEOGDNG1KRISGkdP1wZISGiSkiVLIigoCL/99huqVauG48ePI1++fLo2C46OjggLC9O4np89sj9v3jw8f/4cR44c0fiLd0pKClq1aoXz58/D398fp0+fxuzZs0EyW730v3v3DgAyFdn/0rkIggB9fX3ExcVBEASUKlUKAODq6opZs2ahRo0aiIiIwJEjR+Dm5oZly5aJxyoUim86b+fPn8fIkSPx7NmzDNuqCVQLE0FBQXjy5AkAIDQ0FKGhoWn269KlC3x8fLRtXrZDdX0dHBwAfMwAqVWrFjZv3oxZs2YhPDwcenp6iIiIAIDP7i0DAwM0atRIY/apFphatmwJc3Nz7N69G3379hW/I/ny5cP06dNRv359rFmzBsOHD0eNGjXwzz//iJkc2Snj5EdBoVBg7dq1aNOmjZhVoQmeP3+OoKAgKBQK5MiRA8HBwWpb5FQHzs7OyJ8/P06cOIGmTZvq2hyJ/0ES8+fPR+3atVGiRAldmyMhoXGkyL7ET0/hwoVx6tQpyOVyVKtWDXfu3NG1SVJkXw08f/4cM2bMwODBg1GkSBGN6lIqlejSpQuOHj2Kv//+G9WqVUPx4sURExOD169fa1R3RlGljGb0pffQoUNQKBSiw/spCoUCSUlJIImzZ88iMjISAFC1alV4eHjAxMQEERERWLFiBc6ePQvg4wvV96K0c+fORYUKFeDk5JQhWzVN3bp1MX78eAwbNgzt27dHrVq1ULp0aeTPnx8AxNIEiY+osmoOHDiA6tWrw8zMDNOnT8fOnTvh5OSEunXrAvjc2dcGqmyCOnXqwMrKSnT069Wrhw0bNqBFixYAAFNTU8TExGD37t2IjY2Fk5MT7t69q3V7fwZOnDiB58+fayyFnyRWrFiBEiVKIDQ0FD169MDjx4+zVbmeCh8fH5w8eVLXZkh8QmBgIK5evYqhQ4fq2hQJCe2gm1YBEhLaJywsjCVKlGCOHDl49epVndoyY8YMWltba1xPnjx5NDL2KDvQpk0b2tvba3yOsVKpZO/evSmTydJ07b579y4B8NixYxrVn1EuXLhAAAwJCUnX/kqlktOnTycAbty48av7rVu3TmzA9vvvv9Pf358rV66kubk5O3XqRENDQ+rp6XHv3r3p0vv+/XsaGxtz1qxZ6dpfIvvy7Nkz5s6dmzY2Nrx16xZLly5NfX19urm5cf/+/Vqx4VuN2FTb7t69S2NjYw4YMIAPHz4kSX748IHHjx9nvXr1KAgC5XI5LS0txe3qnA//q9C2bVsWK1ZMI83xHj58SB8fHwLg77//znfv3jEpKYlOTk4ZHjeqDTZv3kwAUhO4bETDhg3p6uoqNdSU+GWQnH2JX4rIyEiWK1eOVlZWPHfunM7sWLt2LQEwMTFRYzqUSiUNDAy4ePFijenQFYGBgQTAtWvXalzXyJEjCYCrV69O8/eUlBQaGBhwyZIlGrchIxw5coQA+OzZs+/uq1AoOHDgQALg5MmTv/nyExUVxUGDBokOv7W1NQVBoIuLCyMjI1m1alUKgsAVK1aky85du3YRwHfnp2uL+fPns0+fPoyNjeWRI0e4ZMkS7tmzhydOnOCVK1f46NEjRkZGam3iw4+Gr68vK1asyJMnT3LYsGHs1q2bVhz9t2/fcs2aNd/dLyUlhST5+PFjcUJESkoKV6xYQWdnZwqCQH19fXp6elIQBDZr1kyjdv+svH37loaGhpw7d65a5SoUCi5evJgmJiZ0cXHhP//8k2b76tWrCYBXrlxRq96sEhYWprVRuxLfR7VIn55nhoTEz4Lk7Ev8csTExLBatWo0NTXl8ePHdWKDv78/AWh0bFt0dDQBcPv27RrToQtSU1Pp5ubGChUqaHw2+8yZMwngq2MSXV1d2bdvX43akFG2bNlCAIyLi/vmfh8+fGDbtm0pCAL9/Pw+2/4lxz8qKorjxo2jjY0Nra2t6ejoyNOnT/P58+e0srJirly50v2y3bZtW5YqVSp9J6UFKlSoQLlczpiYGNapU4eCINDCwoI2NjZ0dHRk/vz56e7uzkKFCqU7a+JXIikpiQ8fPmRcXJxGxygqFAreuHGDo0aNYr58+QiAADh9+vQMPw9mzpwpLl6VKFGCFy5c4Nu3b+nj48PcuXPzwoULGjqLnxdfX1/K5XK+evVKbTLv3r3LqlWrEgD79evH2NjYz/ZJSUlh4cKFWa9ePbXpVRdFixZlr169dG2GBMk+ffrQ3t5eWrSV+KWQnH2JX5L4+HjWqlWLhoaGPHjwoNb1X79+nQB49uxZjelQrWCfPHlSYzp0wbJlywhA4y/ifn5+BMCJEyd+dZ+WLVvSy8tLo3ZkFF9fX+rp6X0zSv/+/XvWrl2b+vr6aUoTVKSkpPDBgwdiNPS/3Lt3j6GhoYyNjeXVq1dZo0YNCoLAsWPHpsvGpKQkmpubc/Lkyek7KS3QrVs31q9fn6mpqWzatCnt7e2ZO3du2tra0tzcnEZGRjQ2NqYgCLx+/bquzc32KJVKtaTJKhQKhoSEcNGiRWzSpAnNzMxEB9/AwIDVqlXjli1bvugAfovHjx8zX758FASBHTt25MuXL8VtN2/e/Omem9qibNmybNSokVpkpaamcu7cuTQyMmKBAgUYGBj4zf23b99OADx16pRa9KuLvn37slChQro245cnMjKSxsbGnDJliq5NkZDQKlI3folfEhMTE+zfvx9t27ZFkyZNsGXLFrRs2VJr+h0dHQFAo036VB2wf6YGfW/fvsXYsWPRtWtXVKhQQWN6Nm3ahH79+mHQoEGYOHHiV/crVqwYgoKCNGZHZnj79i1sbGy+2gwtKioK9evXx61bt3DkyBHUqFEjzfb379+jTZs2uHDhAh4+fAgLC4vPZBQqVAhxcXHYuHEj+vfvDwAYN24cpkyZki4b//33X8TFxWl0LFdGWbBgAZKSkiCXyzF58mSEh4cjLi4OcXFxiI2NRUxMDN6/f4+wsDA4Ozvr2txsT2ab8SkUCoSEhCAwMBCBgYE4deoUoqOjIZPJIJfLkZKSgtKlS2P48OFo1aoV9PQy9xpjbW0tHlu9enXkypVL3Fa0aFHo6+sjMDAQhQsXhoODAwRB+O50iV+da9eu4fLlyxg/fnyWZYWGhqJr1664ePEihgwZgqlTp8LExOSbx7Ro0QKlS5fGmDFjEBgYmG2mpHh7e8PPzw8vXrxAnjx5dG3OL8tff/0Fkujdu7euTZGQ0C66Xm2QkNAlKSkp7NChA2UymVZruJRKJfX19bl06VKN6VDVREdGRmpMh7bp168fzc3N1Zoi+l/27dtHuVzOrl27fjcteNu2bQTAqKgojdmTUYYOHcoiRYp8cduzZ89YrFgx5siRg5cuXfps+8uXL+nu7k5zc3MePXr0u7oOHTrE/v37c8+ePRmysWvXrixSpIjUIOknJz3XNzk5mefPn+fs2bNZr149WlhYEAANDQ3p5ubGokWLUiaT0dzcnP3792doaGiW7VJ9r3fv3k1BEOju7s6wsDCS5PHjx9mlSxcxvd/V1ZVTp07N0Dn9qgwaNIg5c+ZkcnJypmUkJydz2rRpNDAwYNGiRTOc/Xbo0CECSNfzS1u8efOGALhhwwZdm/LLkpSURAcHB/bs2VPXpkhIaB0psi/xS6Onp4f169fD1NQU3bp1w/v37zFgwACN6xUEAQ4ODhqP7Ovp6WVq3np25MaNG1i2bBnmzJkjzvVWN8ePH0erVq3QpEkTrFixQpzT/TWKFSsGALh9+zaqVKmiEZsyiiqy/19u376NWrVqQS6X4/Tp0yhcuHCa7Tdu3EC9evUAAKdPn0apUqW+q6tu3brw9vaGsbFxuu1LSUnBvn370KtXr2wTefsvJLFz506EhYVBLpfD1tYWtra2sLGxgbW1NQoWLKhrE7WKanzd974Pn/Lhwwe8fftWzGJSkZycjEuXLiEwMBABAQE4c+YM4uPjYWJigipVqmDgwIGIi4vDkSNHcO3aNZQoUQJLly5Fhw4dYG5urpbzUZ1Hs2bNMGbMGERFRcHAwABPnjzBxIkTcebMGQCAh4cHrl+/jgkTJsDCwgIDBw4EyWx73+qSDx8+YNOmTejatSv09fUzJSMkJATdunXD9evXMXz4cEycOBFGRkYZklG3bl1UqVIFY8aMQa1atbLFtbKzs0OpUqVw8uRJdOzYUdfm/JJs27YNr1+/xuDBg3VtioSE9tH1aoOERHZAqVTyjz/+IADOmDFDKzorVKjAbt26aUz+xIkT6ejoqDH52kSpVNLLy4tFihTRWPOv8+fP09TUlLVr1053857ExETKZDKuXLlSIzZlhsaNG3/WpOr8+fO0sbGhq6trmtpkFf7+/jQ3N6e7u/sXt6uTf//9l56ennz79q1G9WSW5ORk+vr60szMTIzufvpPGyMztcmTJ0+4ZcsWPnnyhOTHqHdqamqWm19WqFCBHTt2ZGJiIgMDAzllyhTWqFGDxsbGBEAzMzPWqVOHs2bN4rlz53j58mX26tWLpqam1NPTY6tWrRgYGKixSPqn56fKFOrQoYM4fk/VgyI0NJSmpqY0MjLirVu3NGLLz8DOnTsJIFOf0YcPHzh+/Hjq6emxZMmSvHjxYpZsUU1r2bVrV5bkqJNBgwYxb968ujbjl0SpVLJUqVLZsnmjhIQ2kJx9CYn/oVQqOXnyZALg6NGjNZ6u2bhxY9atW1dj8vv06cPSpUtrTL422bFjBwHwyJEjGpF/7do1Wltbs0qVKnz//n2Gji1YsCCHDh2qEbsyQ/Xq1dm+fXvx/48ePUoTExNWqVLliw72ypUrKZfLWa9eve928P8WCoUiXZ/d+fPnSWa/dGiVPY8ePWLOnDmpp6dHV1dX6unp0crKilZWVhQEgSVLltSxperjn3/+oaWlJQVB4PLly7+4T0pKCoOCgrh06dJ0Na1LSEjg8ePHWalSJRoYGNDQ0JAAaGlpyQYNGnDu3LkMDg5mSkoKP3z4wK1bt4qd1h0dHTlp0iSNLzh9DS8vL+rp6XHw4MF0cXGhIAiMjIzk2LFjKZfLf7rJJuqkXr169PDwyPBxwcHB4vds4sSJalvMrV27NosWLfrVJqPaZt++fQTAR48e6dqUX45jx44RAI8dO6ZrUyQkdILk7EtI/Id58+YRAAcMGKDR0W69e/emm5ubxuQ3a9aMtWrV0ph8bREfH08nJyc2bNhQI/Lv379Pe3t7uru78927dxk+vmHDhqxTp44GLMscrq6uHDBgAEly8+bN1NPTY4MGDRgfH59mP4VCwdGjRxMA+/Tpk6GX4i856gcOHKCzszPv37//zeNSU1PTrUebqL7rAQEBFASBrVq14po1aygIAtu0acMBAwawUKFCP0WXdtX1e/r0KUePHk1fX980fTAOHz7M8ePH88CBA2zVqpWY1WBra8u9e/d+8bmYmprKgwcPUl9fnwBobm5OABw1ahSvXLmS5ro/f/6c48ePp4ODAwHQy8uLO3bsyFKtd1aJjo4WRy6eP3+ehw4doiAItLe3Z65cuSgIAjdt2qQz+7IzL168oEwm44oVK9J9TGJiIkeOHEmZTMYyZcrw2rVrarXp0qVLBMC1a9eqVW5miY6Opkwm4+rVq3Vtyi9HvXr1WKpUqWy3wCwhoS0kZ19C4gssX76cgiCwS5cuGnNOJk+ezJw5c2pENklWrVqVHTp00Jh8bTFx4kQaGBh804nMLM+ePaOLiwuLFCnC8PDwTMkYMWIEXVxc1GtYFsidOzcnTJjARYsWEQA7d+78mROVmJjI1q1bUxAE/vnnnxl6CYqOjv5iBsDr169ZpEgROjs789mzZ188Nju/bKkc2G3btlEQBK5cuZJnz56lIAhct24d79y5Q1NTU65bt07Hlmac1NRUpqSkiJ//p9dBoVDw4sWLXLt2rXifyGQyCoJABwcH5syZk/Xr12eBAgUoCAIbNGjAe/fufVHPmzdvuGTJEl6/fp0xMTHU09Ojr6+vqPP48eNs1qwZ5XI5zczM2LdvX968eVPDZ59+5s6dS0EQ2KRJE5LkuHHjxJT+0qVLZ/oZ8bMzY8YMGhsbMyYmJl37nzlzhkWKFKGBgQFnzJihseh78+bN6eLikm1mqpcrVy5N1pWE5gkNDSUArl+/XtemSEjoDMnZl5D4Cps3b6ZcLmfLli01Uie+YsUKCoKgsRedQoUK8Y8//tCIbG3x+PFjGhkZcfTo0WqXHRERwSJFitDFxYXPnz/PtJy1a9cSQIbT/zWFkZERa9asSQAcPnz4Zw72mzdvWKVKFRoZGWWqpnX79u20sbH54pSH58+fM2/evCxUqJBGJyZoAtWi3qpVqygIArds2cK9e/dSEAQOHz5cjPKPHDlSx5Zmjf86PlOmTKEgCJTJZGKttCqab2RkJEaz582bR0EQ6OLiwp07d5L8/uJN1apV2bBhQy5ZsoTFihUjABYrVoxLly5Nt2OoDT49D29vbwqCwD/++INhYWGsUaOGWF6QnJycrResdIFSqWTBggXZsWPH7+77/v17Dh48mIIg0MPDQy2TFb7FrVu3KJPJuGTJEo3qSS/Dhw9nrly5pHtIi/Ts2ZOOjo4a6/UjIfEjIDn7EhLfYM+ePTQwMGD9+vWZkJCgVtkHDx4kAL548UKtclVYWlpy9uzZGpGtLZo3b85cuXJlqZb8S0RHR9Pd3Z329vZfjVKmlwsXLhDAF0fZaZv4+HgCIADOmTPns+337t1jwYIFmSNHDp47dy5TOgYNGsT8+fN/dfuDBw/o6OjIkiVLZtsmfF9CFdlft24dBUHgpEmTePjwYRoaGqZp0Ldo0SKd2hkaGsrZs2dz3LhxJP+/NOJrDkRsbCwPHz7M/v37s1KlSvT29ubq1avF586ePXuYL18+mpubiynGqoXIggUL8t9//yVJXr58WYzIT5w48bt23rhxg+XKlSMAyuVytmjRgidPnsy2jo5q0fX169esWrWquLCzf/9+KSr4DYKCggjgu+UtJ0+eZP78+WlkZMR58+ZprZync+fOtLe3zxaLsUeOHCEA3rlzR9em/BJERETQyMiI06dP17UpEhI6RXL2JSS+wz///EMTExN6e3szNjZWbXIvX75MAFnuPPwlkpKSCOCHTDlWcfz4cQJQe51sfHw8q1SpQmtra16/fj3L8mJiYgiAGzduVIN1mScxMZF169YlAA4aNOiz7adPn6atrS2LFCnChw8fZlpP+fLlv1secuvWLbq5ufHFixfZ1rn7Gu/eveOePXt4+vRphoWFsUuXLrSysqKxsTFr166t87TzWrVqURAE5sqV64uN7KKionjkyBGGh4fz9OnTzJcv3xenCqjukdDQUFasWJGCILBv374kPy7YCIJAS0tLMftDoVAwf/78FASBrVu3ZmJi4me6lUolHz58yOrVqxMAbWxsNNpYU92oHNB79+5x3rx53LhxY5qFxh/tXtYGXbp0Yf78+b/a3yY2NpZ9+vQhAFarVi3Li6sZ5dGjR9TX1+fMmTO1qvdLxMXFUU9Pj8uWLdO1Kb8EkydPprGx8Rez0CQkfiXSPzRXQuIXpWbNmvD398fly5dRs2ZNREdHq0Wuav70q1ev1CLvUyIiIgAAOXPmVLtsbZCamoqBAweicuXKaNeundrkfvjwAc2aNUNISAgOHz6MkiVLZlmmhYUFcufOjdu3b6vBwswRExODOnXq4MSJEwCAli1bptm+fft21KhRA66urjh79izy58+fKT0JCQm4evUqKleu/M39ihcvjuDgYNjb22eLOdcZ4dq1a9DX10eZMmXg6OiIWbNmYcGCBfD19cXWrVtRokQJrdukUCiQlJQEAKhRowZMTEyQmpqKkJAQAICfnx+WLVuGDRs2wNXVFfXq1cPRo0chk8nw5MkT9O/fH6dOncLDhw/RpUsXAMDWrVuRnJyMAgUKiPfDzZs3kZKSggIFCiBHjhyIjY3F/fv3ER8fD5lMhvLlywMAHj58iIcPH35mpyAI4vXetm0bnj59ChMTE9y4cUPDn5B6kMvlAIBChQph0KBBaNeuHczMzMTtP9q9rGni4uKwY8cOdO3aFTLZ56+T//zzD1xdXbFhwwYsXboUAQEBKFSokFZtzJcvH3r27InZs2fj3bt3WtX9X8zMzFC+fHmcPHlSp3b8CiQlJcHX1xddunSBra2trs2RkNAtul5tkJD4Ubh06RJtbW3p5uamlkZNqamplMlkXx15lRVUnYgvX76sdtnaYPHixRQEQa32p6SksHnz5jQ0NOTx48fVJpcka9asyaZNm6pVZnp5/fo1S5cuTSsrK/r6+qaZda1UKjlr1iwCYPv27bPcqCogIIAAGBISog7TRbJDxFQV1fX09KSdnZ3WI5Dpxd/fnw4ODhQEgYsXL+bly5fFaL2dnR2dnJw4ePBgnj17lsnJybx58ybfvHnDNWvWsE6dOtTT0xObzp0+fZokOXXqVJqYmNDJyUm8tqq6/S5duvDp06ckyenTp4vp/UFBQemyt3bt2qxdu7ZmPgwdkB3u1eyCqr/FfxtyRkdHs1u3bgTA3377jY8fP9aNgf8jLCyMxsbGHDt2rE7tIMmxY8cyR44c0n2kYVavXk0AvHv3rq5NkZDQOVJkX0IinZQtWxaBgYEIDw9H9erV8eLFiyzJk8vlyJkzp0Yi++Hh4QB+zMj+mzdvMGHCBPTo0QNlypRRi0ylUomePXti79692L59O3x8fNQiV0WxYsUQGhqqVpnp4dGjR6hSpQrCw8MRFBQEJycnAICNjQ1SUlLQq1cvjBo1CuPHj8fGjRthaGiYJX1nz56Fubk5XF1dsyQnLi4O+/btw/Hjx/H48WMIgoAPHz5kSWZWUUUmTU1NERsbCwcHB53ao4Ik/vnnH3To0AFNmzZFcHAwLC0tAQBBQUFwc3ODIAjQ19cHAFy9ehULFixApUqVoK+vjxs3bqBUqVLo3r07/P39kT9/fvH48+fPAwBcXV2RI0cOxMTEiNkCVapUAQCcOXMGkZGRAIDu3bvjypUruH//PqpVq5Yu+318fHDq1CkkJyer7TPRFampqQgPD4dCodC1KdmCtWvXolatWuJzBwAOHjyIEiVKYNeuXVi5ciX++ecf5M2bV3dG4mMW3aBBg7Bw4ULxt1FXeHt7482bN7h165ZO7fiZIYn58+ejYcOGKFy4sK7NkZDQPbpebZCQ+NG4f/8+nZ2dmTdv3izVPpNkkyZN2KtXLzVZ9v+oOsT/iB1oe/XqRUtLS0ZERKhFnlKp5ODBgzVaV79s2TLK5XKtft4hISF0cHBgoUKFxMjZ+vXrCYARERGsXbs29fT01DpnukGDBqxZs2amj//w4QP//vtvurq6UhAE6uvr09nZOU3vBF9f33RHjTWBn58fTUxMOHv2bD58+JDR0dGMj49ncnLyV+uSNcn9+/dZsGBBCoJAKysr5syZk/r6+hQEgcWKFWNKSopYc9+4cWMx6yg1NZXh4eH08vKiIAhs3rw5k5OTGRgYyJIlS1IQBDZr1ozkx7r9woULUxAEdu3aleTH2enTp08Xs0QyiyrLSJfXVF28fv2aFhYWnDJliq5N0Tl37twhAG7fvp0kGRkZyQ4dOhAA69at+9Xxm7oiKiqKlpaWX+xnok0SEhJoYGCg80afPzP+/v7pahopIfGrIDn7EhKZ4NmzZyxcuDAdHR2z9DL84cMHTp06VY2WfWTWrFm0srJSu1xNc+XKFbV3PJ80aRIBiPO+NUFgYGCa9HlNExAQQAsLC5YpUyZNScmCBQtoZGTEkiVL0tLSkseOHVObToVCQRsbm3R1Yv8a27dvF5u82djYMHfu3KLTqVQquXjxYpqbm1MmkzE4OFhttqcXhULB8uXL09jYmMbGxmzYsCH79+/PMWPGcObMmVy6dKnWberduzcFQWDx4sXFz6RNmzai83/jxg0xvb5evXp88OCBeOzdu3dZvXp1CoJAT09Pzpkzh+7u7rSzsxPH7cXGxjIpKYmzZ8/m4sWL+eTJE7Xan5qaSisrK06aNEmtcnXFxIkTKZPJeOLECV2bolNGjhxJGxsbJiUlcdeuXcyZMyetrKy4fv36bJuiPm3aNBoYGIhlKbrC09OTTZo00akNPzO1a9dmmTJlsu19KCGhbSRnX0Iik7x+/ZolS5aknZ1dpmvLFQqFRkYQDR06lEWKFFG7XE2iVCpZpUoVlihRgsnJyWqRuWDBAgLgjBkz1CLva0RERBCAOH9ck+zdu5eGhob08fH5bFZ5z549KZPJ6OLiovaFh9u3bxMA//nnn0wd//z5czo7O1MQBBYpUoS7d+/mnTt32Lt3bxYuXJijRo2ig4MDDQ0NaW5uTj8/P7Xa/y1UEfuwsLAvdq5X/TM0NNSaTSratm0rdsBXjQ87ePAgLS0tKZfL+ddff4l1+wULFmRgYKB4bGJiIidNmiTW6AuCwLp163Lr1q1s3bo1Fy1alOU+DumhadOmrFatmsb1aIPU1FT6+PjQ3t6er1690rU5OiElJYUODg7s1q0bW7RoQQBs0qQJw8LCdG3aN4mLi2OOHDnYvXt3ndoxefJkWllZaW384K/EjRs3NDLFR0LiR0Zy9iUkskBUVBQrVKhAS0tLnjlzJlMyNJEa3L59+x/u5Xrz5s0EoLZotKpBz8iRI9Ui73vY2tpqPL131apVlMlkbNGixWdO2qFDh6ivr09jY2ONOCGrV6+mIAifLTCkF9X8+ty5c/PIkSOi/Xfv3qW5uTlz5MhBQRDo4uLCVatWqdP0DHH48GFu2rSJc+bM4dChQ9mmTRt6eXnRxcWFpUuX1qju/0aiUlNTOWLECAqCwIoVK/Lt27ckP2YWGRkZUU9Pj61bt2ZKSgoFQaCxsfEXyzZWrVrFAQMGcM2aNWorj8kIS5cupb6+fraYda4OXr16RXt7e3p7e/+SDtv+/fsJgFZWVrSzs+O2bdt+mCjqwoULKZfLdTrrPigo6IduoJud6datG3Pnzv1DljBKSGgKydmXkMgisbGx9PT0pImJCf/9999MyVD3i1LNmjXZvHlztcrUJHFxccydO7dYQ5xVduzYQZlMxt69e2vtJbRatWps27atRmQrlUrOnDmTANi7d+/PHAw/Pz/KZDLmyZOHVapU0YgN3bt3Z6lSpTJ9/Jo1aygIAl1dXRkVFUXyozPbuXNnMaXc2dmZR48eFY9JSEjIst3f4+bNm6xTpw779evH8ePHc/369Txw4ADPnz/Pe/fuMSIigvHx8Rq7jxQKBW/cuPHV7Zs2baIgCDQyMuKKFStIflyQMDAwoJ6eHkuUKEGFQsECBQpQEAQOGjRInA2fXRyw0NBQAkhzbX90Tpw4QZlMlqWylh+Rly9f0sHBgQDYunVrnSweZYXExEQ6OTmxdevWOrMhKSmJxsbG/PPPP3Vmw8/I69evaWBgwFmzZunaFAmJbIXk7EtIqIH4+HjWqVOHBgYG3L9/v67NoZubG/v27atrM9LNmDFjaGRkpJYRTUeOHKG+vj7btWun1YZqPXv2pJubm9rlKhQKDhkyhAA4ceLENA6cQqHgsGHDCICDBg1i3bp12bhxY7XbQJJFixZl7969M3389evXaWJiQkEQOHfuXL58+ZJdunShmZkZZTIZCxcuzKCgID59+pQNGzYUI/+adlh37twpOtMymUz8b3Nzc1pYWNDe3p4FChSgo6Mj582bpza979694/jx4+nk5ERHR8evjm6MiYlh8eLFxT4HpUqVooWFBZ2cnMTU/AcPHnDPnj309fVlZGSk2mxUF0qlko6Ojhw+fLiuTVErU6ZMoSAImV7k/ZFQKpVcu3YtLS0tCUDnqfBZYdWqVQTAq1ev6syGmjVrsl69ejrT/zMyYcIEmpiYiBlQEhISH5GcfQkJNZGUlMTmzZuzXLlyaqs5zywODg4/TEOsBw8e0MDAgBMmTMiyrKCgILGxmravgao5njrTepOTk9mhQwcKgvBZc7iEhAQ2b948TUNDDw8PsZu6OomMjFTLNINjx46xQYMGtLKyoqWlpeisFitWjJcuXeKjR4/EdP5Pp1RoMlV6586dzJkzJ4sUKcK8efPS3t5etEtPT09sfPdpLXxWuXPnDqtWrSouLJQtW5aCIHz1JfXw4cOsX7++aNeIESN44sQJ7t+/P9vXSavo0KEDy5Qpo2sz1Epqaipr1qzJnDlz/jDXITM8ffqUtWvXJgCWK1eO+vr62XJRKb2kpKSwUKFCrF+/vs5smDFjBs3MzHT+rvCzkJCQQDs7O/bv31/XpkhIZDskZ19CQo2kpKTw/fv3TElJ0ZkNCoWCcrmcy5Yt05kNGaFRo0Z0cnJifHx8luRcvnyZFhYW9Pb2ZmJiopqsSz+qcT9ZHceo4v3796xbty719fW5bdu2NNvCw8Pp4eFBExMT7tu3T/x7kSJFOHToULXo/5SDBw+q7dzCw8NZr149scbczc2Nt27d4u3bt8XIv6GhIevXry+O9SI109tCJTciIoJhYWEMDAxk5cqV6ebmxhkzZvDQoUN8+fIlSWb5O/1pScLUqVMpCAI7dOjA9+/f88mTJ7Szs+POnTu/qicyMpKBgYE/XNq0ClUZh6qE42chPDycjo6O9PT01OlzXxMoFAr+9ddfNDc3Z+7cuXnw4EGWKFGCrVq10rVpWWbbtm0EwNOnT+tE//nz5wmA586d04n+n40VK1ZQEATev39f16ZISGQ7JGdfQkLNfC/t+NPtmkhRfvPmDQFw9+7dapetbo4ePZpmVnNmCQ0NpZ2dHStUqMDY2Fg1WZcxnj17RgA8cOBAlmVFRUXRw8ODpqamn3W/v3PnDvPly0d7e3tevHgxzbacOXNy2rRpWdb/X0aPHk17e3u13a+q1PmSJUvywYMH4shFVQO//PnzixH+jh07qkVneli7di3z5MnDkJAQtck8ePAgW7ZsyQ4dOoh/c3NzoyAIHDdunNhtXxAETpkyJdvU2aubp0+f/jDPpYwSEBBAmUzGcePG6doUtfHw4UN6e3sTAHv06MF3794xODj4p+m9oFAo6ObmxmrVqunkO5eSkkJzc3ONT4r5FVAoFCxWrJg0zlBC4itIzr6EhJZJTk5O00ld3SnKt27d0mnEIr18+PCBRYoUoaenZ5Zeth4/fszcuXOnafymC5RKJc3MzDhnzpwsyXn+/DmLFy9OOzu7z2bNBwYG0tramsWLF/9sHrpSqaSenh59fX2zpP9LeHp6qq15oop9+/bx2bNnDAoKEp3d6tWrc/PmzXz//j2fPXvGqlWrsmTJknz27Jl4nCYi/KpU2j179vD9+/dUKpWZvidVx509e5ZeXl5pxvZdvHiRKSkpYvmF6l+FChW4cePGnz6lt2DBgj9UL5GMMH36dAqCQH9/f12bkiUUCgUXLVpEExMT5s2bN00/gt69ezNPnjw/zQQCVcaSrhYv6tevz99++00nun8mDh8+TAA8deqUrk2RkMiWSM6+hISWiI2N5Zw5c+jt7U1vb+80Y9rUGVk4ceIEAfDevXtqk6kJ5s2bR5lMxmvXrmVaRlhYGAsUKMD8+fNni5rZcuXKZalm/vbt23RycqKzs/Nno6E2bdpEAwMD+vj4MDo6+rNj4+LiCIBbtmzJtP4vkZycrLHO0U+fPhUd3tq1a/PQoUNpFsLu37/Pp0+f8unTp2kaX6rb2VB9/7Iq9/3796LDrorYu7u788iRI4yIiOCHDx+YlJTEcePG0cDAgIIg8I8//mBCQgKfPHkiRlB/Vnr27MmiRYvq2gyNoFAoWLt2bdrZ2fHFixe6NidT3L17l1WqVCEA9u/fX5zqQH5sQmthYcGxY8fq0EL1olQqWblyZZYpU0Yn0f0///yTxsbGn41RlcgYv/32G8uXL//TZkVJSGQVydmXkNACjx8/5u+//54mmicIQpqmdOpyYFS1iJmdh64NXr9+TQsLiyxF+aKioujq6srcuXPz0aNHarQu83Tq1IkeHh6ZOvbChQu0tbVliRIl0jgLSqWSU6dOJQB26dLlq/ODVWnS6o5SXbx4kQB49uzZdB+jVCrTHYEfPXo0K1euzH/++SdNzbPq+JcvX9LKyoqCIHDmzJmfbc8OxMXFcfjw4WzZsiVDQkLEsgRjY+MvRpvOnDlDb29vCoLA/Pnzs1y5cpTL5RQEgUFBQVl+ac2uL73bt28ngB/WGf4eERERzJ07N6tVq/ZD1e+npKRwzpw5NDIyYsGCBb/YjHLTpk0E8NPVRAcEBBAAd+3apXXdly9fJgAGBQVpXffPQkhICAFw69atujZFQiLbIjn7EhJaYPjw4aKD36pVK44ZM4YlSpRgnTp1eOzYMXE/dTj8ixYtoqGhYbZ94SfJbt260cbGJtMdnWNjY1mhQgXa2toyNDRUzdZlnpkzZ9LCwiLDn72/vz9NTU1ZqVKlNKUIHz58YJcuXQiAU6dO/aZc1UvPhQsXMm3/l1i4cCENDQ0zFH1SOe7p/RwePXr02b3/6NEjhoaG8s6dOzx27Bjz5MlDQRA4depUcR9d3+Pnzp2jn58fT506laasQqlUcu/evTQzMxOdfVUDStVizcWLF1mmTBm6uLhQLpezYMGC9PPzy/AihlKpFB1LXX8e3yMiIoIAuGHDBl2bojFOnTpFuVzO0aNH69qUdHHz5k2WL1+egiBw6NChX22U6uPjQ09PT+0apyVq1arFokWLar08ITU1ldbW1j/M5JzsSOfOnenk5PTTl0BJSGQFydmXkNAwp0+fFh39oUOHig7uqVOnaGpqSktLS7XORh87diydnJzUJk/dXLhwgQDo5+eXqeMTExPp4+NDCwsLXrp0Sc3WZY29e/cSgNjBPT1s3bqV+vr6rFevXpoX7ejoaPr4+NDAwICbNm36rpyTJ09qJPLWqlUrVqlSJUPH1KtXL1OjFFXO6saNG+nl5UUzMzOWKlVKHMunGov36QjAjDi46swGuHv3rlhnn5qa+pkdqampPHToUJqyjsjISLZp00Ys0YiNjeWdO3c+683wPVS6FApFlqdYaJtSpUqxS5cuujZDo8yaNYsAePjwYV2b8lWSk5M5depU6uvrs2jRot/sCv/o0SMC4Pr167VoofZQZS+tW7dO67qbNGny0y6iaJqwsDDq6+tz7ty5ujZFQiJbIzn7EhIa5sCBA9TT02OhQoV4+fJlMQq3bds2CoIgpu9+6sBkxSnp0aMHy5Url2W7NYFCoWDFihXp5uaWqShKcnIyGzVqRCMjo2yZ+njv3j0CSJOt8S2WLFkidpz/NDLx5MkTFi9enNbW1gwICEiXrN27dxOA2udf58mTh8OHD0/3/u/evaO+vj4XLlyYKX3Jycls3LjxZyUvV69eFccrNWrUiAkJCWkc7FevXn1R3vPnzxkfH5+h0oKvsXXrVm7btk38DqcnVbtt27bs2bMnBwwYwMKFC1MQhEx/NuRHRz82NlZnUyeyypAhQ+jk5JTtsxCygkKhYL169Whra8vnz5/r2pzPuHr1KkuXLk25XM4xY8Z8d1TphAkTaG5uzvfv32vJQu3TvHlzuri4aL1+fvHixTQwMEgzmlMifYwdO5ZmZmZf7GEjISHx/0jOvoSEhoiKiuLz58957NgxCoJAa2trXr16leTHruqurq4UBIF2dnacOHEiyY9pwSoHIrMphY0aNWK9evXUcQpqZ/369QTwxZrQ76FQKNi+fXvq6+tn24hZSkoKDQwMuHjx4m/up1QqOX78eALg0KFD0zihFy9epIODA/Ply/dZk75vsWrVKgJQayqqqg/Anj170n2Mqrb30w76GSE8PJwlS5YUU/b37dsnOvx169alIAj08vJK81J+8+ZNenl5cfr06WlkZaWr/n8JDg5mTExMhmQqFIo0YwUFQeCAAQOyRTNJXXHgwIGfsvb7v7x584Z58uRhlSpVsk2KcVJSEsePH089PT0xY+Z7KBQKOjs7s0ePHlqwUHfcunWLMpmMS5cu1areGzduZGiBWOIjCQkJtLGx4aBBg3RtioREtkdy9iUkNEBycjKXL1/O9u3bU6FQsHfv3hQEgU5OTvz9999paWlJQRBoamrKgQMHMjU1lbNnz6ZcLmeLFi3E5nqZafLk4eGRpY7wmiImJoYODg5s3bp1ho9VKpXs06cPZTIZd+zYoQHr1Ierqyv79Onz1e2pqans1asXAXD27NlpHMd9+/bRxMSEFStWZHh4eIb0zpkzh5aWlpk1+4ts3bqVADJkS7NmzVihQoUs6e3Zs6c4ii85OZljxoyhiYkJZTIZBUFI84IXExPD8PBwFi9enB4eHhn+3L7Gq1evePLkSTGamZVFg0WLFnHOnDm/tJOvIiYmhnK5nH/99ZeuTdE4Z86coZ6eHkeMGKFrUxgcHMwSJUpQT0+PkyZN+mqjz//y77//EsA30/x/Fjp37kx7e3utZjAolUrmyJGDY8aM0ZrOn4V//vlHeqZKSKQDydmXkNAAKSkpHD16dJoO4qdPn2b79u1pZmZGQRCYM2dOdu/enTExMUxOTmZwcDBr1KhBQRBYqlQpvn79mmTGU/rz5cvHkSNHqv2cssrw4cNpbGycqYjvqFGjCICrVq3SgGXqpVWrVvTy8vritqSkJDZv3pwymYxr1qxJs23RokUUBIHNmzfPVErn6NGjmTdv3kzZ/DUGDBjAggULpnv/9+/f09jYmLNmzcqy7i5dutDJyYmFCxemh4eHGBn/dLHo6NGj9Pb25t27d8XPTB2R/FevXonp19mp6//PQqVKldiyZUtdm6EV5s6dSwA8cOCATvQnJCRwxIgRlMlkLFu2bIZHnbZt25bFihX7qcsuVDx69Ij6+vpqeX5lhFatWrFSpUpa1fkzoO2GihISPyqSsy8hoSEiIyNZunRp0UFZt24dS5UqRUNDQ5qZmbFFixZcsWIF27Rpw99++01sWDdkyBAKgsCKFSsyIiIiw3pNTU05f/58dZ9Olrh79y719fXTdFJPLzNnziSAbHdOX2PixInMmTPnZ3+PiYmhj48PjYyMuG/fPvHvqampHDRoEAFw2LBhmXYue/XqxTJlymTa7i9RtmxZdurUKd3779q1S60p2kFBQSxRooQY0e/UqZPo1B86dIiNGzfmP//8QzLrTv5/a3V/BedGV4wdO5Z2dna/xEKKQqFggwYNaGNjw6dPn2pV9+nTp1m4cGEaGBhw5syZGc4Ue/v2LQ0NDX+pBmj9+vWjtbW1VuvAly1bRj09vR+2D4eEhET2RnL2JSQ0SHR0NKtUqZKmZtfW1pYdOnRgUFAQa9asSUEQRGemf//+TEpKYqVKlSgIgjiiKr2OR2JiIgGkq3u7NqlXrx7z5s2b4Yi1n58fAWSqs7uu2LZtGwGkGaH3+vVrlilThpaWlmn6Fbx//56NGzemTCbL9HQCFa1atWKNGjWyJONT4uLiMpxu3bZtW5YqVUptNqSmprJIkSIUBIF9+/YVnZV9+/bR09OTFy9ezPI88ytXrvDx48ckpSi+tjhx4gQBMCQkRNemaIWoqCg6OzuzUqVKWqnff//+PQcNGkRBEOjh4ZHp8aS+vr6Uy+VfbX75MxIWFkZjY2OOGzdOazrv3r2b7ac3SEhI/LhIzr6EhIZJSkrijBkz2K1bNzZu3JjLly9nTEwMz507Jzr6fn5+LFeuHAVBYLVq1cS0ZVUkXNUt+eLFi98c66ZUKtm4cWP++++/Wjm39HDw4EEC4N9//52h4zZt2iTWZ/9IUdbr168TAE+fPk3yY2powYIF6eDgkCaF9tWrVyxXrhxNTU156NChLOutWbOmWlOjVQ7ZjRs30rV/UlISzc3NOXny5HTtn95rGh0dzdmzZ4v/v3PnTnp4eLBmzZrpOv5rel++fMm4uDgqlcpMp4N+utDwI92juiYxMZFGRkacN2+erk3RGufOnaOenh7/+OMPjeo5ceIE8+fPT2NjY86fPz9Lqc5ly5Zlo0aN1Gjdj8HIkSNpamqqtv4f30OpVDJXrlwZmnryqyI9ZyUkMo7k7EtI6IizZ8+K9fvHjh1jVFQUPT09xQwAPT09Xrx4kY8fP2aPHj24evVqcRHg9u3bX5Spcly0nS76NZKSkliwYEH+9ttvGfqR3rdvH+VyObt06fLDRVuTkpIok8m4YsUKXrt2jQ4ODixYsCAfPXok7nPr1i26uLgwV65cvHLlilr0li1blj179lSLLJKcNm0aLSws0v35qxZ1bt68+cXtqampvHz5MufNm8emTZvS398/w47IqlWrWLFiRcpkMs6ZMyfD94Zq/6w4+J/KUSE1ico4NWrUYP369XVthlaZN28eAaQp41EXsbGx7N27NwGwevXqWS6lCQkJIQDu3btXTRb+OERFRdHCwoKDBw/Wms4OHTqwbNmyWtMnISHx6yCDhISEViEJAKhUqRLmz58PAwMDtGvXDgMHDkRycrK436xZs1CuXDncuXMHW7Zswe+//44LFy4AAJ49e/ZF2YIgQBAEODk5af5E0sHChQvx+PFjLFq0CIIgpOuYEydOoFWrVmjSpAlWrlwJmezHekwZGhoif/78+Pfff1G9enU4Ojri9OnTyJcvH4CP51e5cmVYWFjg/PnzcHd3V4ve6OhoWFtbq0UWAJw5cwaVKlVK9+e/e/duFClSBMWLFwcApKamIjg4GHPnzkWDBg1ga2uLsmXLYuzYsXj37h2Cg4MRGxsrfh++R3x8PDZv3ozg4GA4OTmhTJky6bbt3bt3iI2NhUwmA0kIggC5XJ6uY1V8aqdKzoYNG1ClShVUq1YN9evXx7Zt26BQKD7bX+JzatSogcDAQKSkpOjaFK0xZMgQNGvWDDdu3FDr/eHv7w9XV1ds3LgRvr6+OHnyJAoWLJglmWvXrkXOnDlRr149NVn542BjY4Phw4fDz8/vq7+16sbb2xtXr15FdHS0VvT9KCgUCmzZsgV+fn6YMWMGgoODdW2ShMSPhw4XGiQkflk+jQxeuHCBa9asoZWVlRjVnzRpEt++fUvyYxp48eLFKZfLKQgCR48eLR6bnVPaXr58STMzswzNwT1//jxNTU1Zq1atzxqm/UiUL1+eMpmM3t7e4hhFkly3bh319PRYu3btNH9XB1ZWVmnS3bOCQqGglZUVp0yZkq79k5OTaWNjw44dO3LGjBmsXbs2zczMCIAmJiasWbMmp02bxlOnTmXput6+fZuurq5ctGhRuvZ/9+4dU1JSmJqamqkMkWvXrn2xUVdYWBhbt24tfl9z585NQRDo4OCQ7s/sV+fChQsEwDNnzujaFK2SkpKitmyl6OhoduvWjQD422+/ib0nssqHDx9oa2vLYcOGqUXej0hsbCxz5MjB7t27a0Xf48ePf9lMiv+iyrp68OABGzVqJD5njY2N6eHhwQsXLvDNmzc6tlJC4sdBcvYlJHTEp4767du3xR+0cePGiT9kd+7cYdu2bcVtqrT/7NaA70t07NiRdnZ26e5qfP36dVpbW7NKlSpanXOsbtasWSO+mKh6LSiVSo4fP54A2KNHD7U36VIoFBQEgStWrFCLvFu3bhEAjx079tV9kpKSGBgYyClTptDd3Z0ACIBmZmasU6cOZ86cybNnz6r9XFWLYCT57Nmzbzboy2zzvvDwcPr4+FAQBO7evZvkx1poVR+Gv/76i4IgsGrVqnzy5Anj4uLo4uJCQRBYuHBhXr9+PVN6fyVSUlJoYWGRqQkdEuT+/fvp6OhICwsLrly5Uq0Lv6qpGrdu3VKbzB+RBQsWUC6X886dO1rRlzdv3gwtjv+sqJz9Ll26UBAE1qhRgzly5KAgCOzSpQsPHTrErl27ZptyRQmJ7I7k7EtIZBP279/PP/74gy9evCD5sYFb586dRUd/69at3Lx5Mx0cHOjl5cWwsLBsG9k/c+YMAXDlypXp2v/+/ft0cHBg6dKltTrySN3Mnj2bAOjl5UUAjIuLY1JSEjt06EAAnDVrlkau2du3bwmAu3btUou8lStXUiaTpRkFlZCQwBMnTnDixIn08vKikZERAdDS0pIuLi60trbmhQsXstwd/3uoPr/evXuzefPmGtGhUCjYq1cvCoLAokWL0sHBgYIgcODAgSRJb29vCoLAkSNHcuTIkbSwsKAgCLSzs2P9+vUZEBCgEbt+Nho1akQvLy9dm/FDERkZyXbt2hEA69Wrx+fPn6tdR7169ejh4aF2uT8aiYmJzJMnD1u3bq0VfV27dmXJkiW1oiu7onq+v379mjKZjAUKFCBJuru708jIiHfu3OG4cePEXkcSEhLfR3L2JSR0jFKpFH/gPnz4IP596NChoqO/ePFi8e8BAQFfjBxml0Z2CoWCZcuWZdmyZdPVBO358+d0cXFhkSJFtNb9WN0oFAr+8ccfBMDx48fz/PnzBMATJ07Q09OThoaG3LZtm8b0P3jwgAB4/Phxtcjr0qULS5UqxX/++Ydjx45l1apVaWBgQAC0sbFhkyZNuGDBAl65coUfPnygvb09hw4dqhbd6WX//v00MTFhQkJClhZQFAqFeJ+qvkOPHj1i1apVKZPJKJfLaWlpyXbt2olOfIsWLdKMzMyVKxdHjx7NO3fuMCgoiCdPntTKiLUfnUWLFtHAwIDx8fG6NuWHYOfOncyZMyetra25YcMGjSwcvnjxQmwwKvFx4RMAr169qnFdGzduJABGRERoXFd2Z9euXRQEgQMGDOCFCxcoCAJbtGhB8mOZnIWFhdj0NrsGPSQksguSsy8hkQ158eIF8+bNS0EQxBrgTxcCrl27xlmzZnH16tU8ceKE+PesdBhXF6tWrUp3LW5ERASLFi1KZ2dnPnv2TAvWqZ/k5GR26tSJAMRFmdjYWAKgo6MjbW1txfRvTXHx4kUCyFJn/5iYGB4+fJgjR46kkZERBUEgAObIkYPNmzfn4sWLee3atc8WlU6dOqWz2uv4+PhMv+h9q45/zZo1tLS0pIGBAQVBSBPZS0lJ4Zw5c0Rnv0ePHnz79i2TkpLo5+dHQRDYpk0bvnv3LlN2/UrcuHGDALLVqNDsTN26ddm0aVONzr3fsmULTUxM1N5T5EclOTmZhQoV0srkiBcvXhAAd+7cqXFd2Z2goCAaGxuzcuXKdHd3pyAIPHToEE+dOkVBEMTRq5KjLyHxfSRnX0IiGxIbG0svLy8KgsB27dqJTvzz5885d+5c0RlTjeibMGGCeKwuI/zR0dHMkSMHO3To8N193717R3d3d9rb2/PevXtasE79xMfHs379+tTX1+eWLVvEv58/f54ymYzW1tZaOTd/f38C4JMnT9J9THR0NA8cOMBhw4axXLlylMlkBMCcOXMSALt27cpbt25992Vq8ODBdHR0zDaZJRnlyZMnnDBhAmvXrs0RI0bw1KlTTElJ4dGjR0Wn3tramk+fPhUX3K5du0Y3NzcKgsAyZcqwSZMmYqp/vnz5+Pfff/+wn4c2USqVzJkzJ0eNGqVrU3SCQqFIt7OSmpqa5SyW76GSHRUVpTEdPyJbt24lAI0v2pJk4cKF2adPH43rye7ExsbS1dVVfM/JmTMnBw8ezPz584uOP5k9AhwSEtkdydmXkMimPHnyhI6OjhQEgRs2bCBJrl+/ntbW1hQEgSVKlOD06dOZJ08esYO/rhk8eDBNTU358uXLb+4XHx/PqlWr0srKiteuXdOSderl7du3rFy5Mk1NTenv7y/+fdeuXTQyMqKVlRXr1q2rFVu2bdtGAN+MxkVGRnLPnj0cPHiwGCkBwDx58rB9+/ZcsWIF7969y7179xJAujp7K5VKOjs7s2/fvmo8G/Xzaaq+ipCQEHbs2FF8mfz0pVKVHvrw4UMWLlyYgiBw4cKFaY4/efIk3dzcxHp9MzMzDhw4kA8fPtTaef0MtGnThhUqVNC1GVrn0/vx0aNHfPjwoUbq7zODFC1Ni0KhoJubG6tXr67xz6ZXr14sWrSoRnVkd/bt28fExESeP3+elSpVEsulBEGggYEBe/bsqWsTJSR+KCRnX0IiG6J6EQwLC+Mff/zBy5cvMzY2VnQ8jI2NKQgCDx48yJiYGJqbm7NAgQJicz9dcOvWLcrlcs6aNeub+3348IF16tShqakpz507pyXr1MuLFy9YokQJ2tra8vz58yQ/viD/+eefYhp3v379WKRIEa3Ys2zZMsrl8jQvouHh4dy5cyf79+/PkiVLit3yXVxc2KlTJ65evZoPHz787OV15MiRzJUrV7peaoODg9XaK0Dd/LdZYExMDM+dO8eUlBRWrlyZgiCwdOnSXL16NTdv3kxnZ2cKgsBRo0YxMTGRCQkJHD58OAVBoLu7OwMDA/nnn3+KjRDj4+N55swZ+vv7fzZSUHKY0oeqGeSP3JgzK4wfP542NjZ0cHCgmZkZZ8yYIS42Sdkh2YeDBw8SQJqFXU2wfft2AvjugvnPhqrHyd9//01zc3MuWLCA5McsqsWLF7Njx45s0KABd+7cKU4rkr4fEhLpQ3L2JSSyKSpHReX43717l+bm5nR0dOTQoUPFiOKqVatYokQJCoLA4OBgndiqVCr522+/sWDBgt+co56amsoWLVrQwMDgh+2ke+fOHTo7O9PJyYm3b98m+fFa9enThwA4evRoKhQK/vXXX5TL5Wl6LWiK6dOn08bGhtu2bWPv3r1ZrFgx0bkvUKAAu3XrxvXr16crzb9atWpiI6TvMXLkSNra2mq8A39Wef/+PadOnUpBEOji4sLk5GQOHjyYS5cuJflx7GPt2rXF6FGhQoXEcVvBwcHU09NLE/1v3LjxF1/Gv9UHQOLLPHr06JecLx4WFsa6detSEASamJiwevXqFASB5ubm7Ny5s67Nk/gPSqWSlStXZtmyZTW6kBceHk4A3Lx5s8Z0ZEfatWvHwMBAlilThoIg8OjRo7o2SULip0Fy9iUkfhDCw8NZunRpWlhY8O7duwwICKCNjY3ogOTPn19n3ez37NlDADxw4MBX91EoFOzWrRvlcvkP+2J/8eJF2tnZsVixYmLKbVxcHOvVq0e5XJ5m1GBgYCAB8ObNmxqx5fnz59y0aRN79OhBa2tr0bkvUqQIe/bsyc2bN2c40+PDhw80MjLi/Pnzv7uvUqlkwYIF2b1798yeQobIzAv29u3b6eXlxb59+7JAgQIUBIG2trbcsWMHSfLKlSusVauW+B1ydXWloaEhBUHgX3/9JUabZs+eTVdXVzo5OXHUqFF8/fp1lm2T+H/y5s0rjjX8WfnvItC6devERmNKpZLHjh2joaEh9fX1Wa1aNa10fyf//97NSP+AX5WAgAAC4O7duzWqp0SJElp7rmYHli1blmYxtWTJkp9F7w8dOsT169dLkwokJDKB5OxLSPxAqMbx+fj4MCoqimfPnmX+/PlpaGjIVq1aaS0VNioqiuXKleOff/7JmJgY5suXj3Xr1v3qy6JSqeTgwYMJgBs3btSKjerm33//pZmZGT08PBgZGUmSfPnyJd3d3Wlubv5ZeuebN2/U2ln58ePHXLduHbt27cr8+fOLzn3x4sVZtGhRFixYMMtdulUjA1WlCd/i+vXrBMDDhw9nSef3SE5OZkBAABUKRYai5mvXrhVfHt3c3FilShWx5rNp06YkyX79+onbr169yqCgIBYrVoyCINDLy0ucEJGSkvLZwonkGKmP7t27s0SJEro2Q+28ffuWgwYNEp8XFy9eFKdWqMY3zp8/nwMHDqQgCJTL5Rw8eDBPnDjBwMBAxsXFacVOaUxk+qlVqxaLFSum0cZwAwYMYP78+TUmP7tx4MABtmrVioaGhuIElEKFCnHKlCl88eIFX716xfz589Pa2lqaciIhkQkkZ19CIpvwLefh023NmzcXfwz9/f25bt06Nm/enJcuXdKGmSTJs2fPis6mjY0NZTKZmPb8JSZNmkQAYtr0j8b27dupr6/POnXq8P379yQ/Ort58uRhnjx5vtpk0M7OjpMnT86wPqVSyQcPHnDVqlXs2LEjnZ2dxc+7VKlSHDBgAHft2iVGOZo2bco6depk/gT/x/z582lkZJSu0oOJEyfSwsLim2UbWSE2Npbz5s2jk5MTAXDu3LnpPvb9+/diirTKsScpRvFz5crFAwcOsGnTphQEga1ataK/vz+9vLzEun09Pb0vXteUlBQpVV/NbNmyhQA0OlJO27x+/VrsJt63b1/26NGDgiCwU6dOVCqVbNeunZjCr5rqEBQURPLjM7548eK8f/++2u1S/ZYkJSVx8eLF7N+/P1u1asVp06b9sONPtYlqzOn69es1puPvv//O8HSVH52bN2+KZSz29vbiQq2lpSWrVq1KQRDYsmVLklIHfgmJjCI5+xIS2QSlUvlNJ+LTH7jhw4fT1NSUOXPm5JkzZz5LK9Y0hw4dEp1P1b8GDRrwwYMHn+27YMECAuD06dO1aqO68PX1pSAIbN++vRgB8/f3p7m5Od3d3b/ZSKlatWps06bNd3UolUreuXOHy5cvZ7t27Zg7d24CoEwmY5kyZThkyBDu3bv3qyOxPD092a5du8yd4Ce0aNGC1apVS9e+rq6ubN++fZZ1/pewsDCOGjWKlpaW1NPTY6dOnXj9+vUMyylYsKDYbE913Xbt2kUDAwOamZmxU6dOYh2/6p+LiwtPnz7N3bt3ay2qKkG+evWKANKMr/wZWLlyJQVBELuJu7q6cs+ePSTJHTt2iI1WPTw8ePnyZd67d481atSgIAjs2rWr2kfgqRz9xMRENmvWLM29ny9fPu7bt4+nTp2SUqW/Q7NmzZg3b16N9WOJioqiIAhcu3atRuRnR65du8auXbvSz8+Pd+/e5fjx49OM3rOwsBB/ByRnX0IiY0jOvoRENiEkJIQpKSnfjPB/+iN36tQp+vv7f/HFTNMpxps2bfrM2QfAXLlyifNvSXL16tUEwBEjRvxwac9KpZITJ04kAA4ePFhciFmxYgXlcjnr16//XYewV69edHNz+6Lsmzdv0tfXl61ataKDgwMBUC6Xs3z58hw+fDgPHjyY7pTFUqVKsV+/fhk+x//a5OjoyJEjR35337t37xIA//777yzp/JTQ0FB269aNBgYGNDc357BhwzI9iiw1NZVdu3alIAj09PQU6z+jo6Opr68vpu4HBQVx0qRJLF26NBs3bvxZ+YL0Uqk9fsY65d69e4tZIra2trx8+bK47d69e/z999/F0pJSpUqJjk3btm3Fe1adqBpprlq1ioIg0NvbW2xM2aBBA164cIH29vbctGnTD/e81ia3bt2iIAj09fXVmA53d3d26tRJY/KzO4mJibx37x63bNnCYcOGiWVy0n0pIZFxJGdfQiKbcP36dTZo0OC7KcLf256SksLLly/z6dOn39zvQ7KSd54kMehqPI8Fv6f/+fc8eTmeF24m8E30t7urL1myRJzTrnJSc+TIwXLlyhEAZ82axZ07d1Imk7FXr14/3A90amoq+/btSwCcOXOmmHUxatQoAmDfvn3T1YF+4cKFNDQ0ZHJyMkNCQrho0SI2a9aMdnZ2BEA9PT1WqlSJo0aN4pEjRxgbG5spe52cnDh+/PhMHavi8ePHBMD9+/d/d98ZM2bQxMSE8fHxWdKpVCoZFBTEBg0aiItFs2fPznJdplKp5Jo1a0Tnady4cbx16xaHDRtGExMT8Z8qcvYlfT/aPfujM3DgQObNm1fXZmSa/y4MvXjxgm3btmXRokVpa2srZpmkpqaK+75584adO3dmrly56OjoyKJFi3L16tWiDE2Vi6jGTkZFRXH8+PEUBIH79+9nQEAABUHgjBkzNKL3Z6JTp050cHAQy7rUzR9//ME8efL81M8h1ffgxYsXXLlyJdu1a8fly5fz+vXrTExM1LF1EhI/D5KzLyGRTVA1dFPVbWaG1NRUJiUlsVSpUnRycuK9e/fEbUkfFPz3wnv+uSmS3aeG8bd+T+nd5+v/mgx/zlG+4Vx38B0fh6Vt4KSqwVf969atG1++fEkDAwPxb6p58z9adDQpKYktW7akTCYTu+snJiaydevWFASB8+bN++4LWGpqKi9fvsxevXoRAC0tLQmABgYGrFatGseNG8d///1XbS+Kpqam6eqg/y02b95MAOmKKJYrVy7d4/m+RGpqKnft2sWKFSsSAEuUKMG1a9dmOC1W1bTvS05RTEwMGzZsSEEQqK+vTyMjIxoZGXHkyJF0cXGhoaEhx44dK96fCoXih7tXfyb27t1LAOKM+R+FT++ZhIQE7tq1i+fOnWNsbCwjIyP57NkzLl++XFx4Uo0Ue//+vTg9JTw8nNevX0+z6KSpezE8PJz58uWjvb09nzx5QjMzMzo5OTE1NZWDBg2iIAjiVBWpN8XXefToEfX19Tlr1iyNyD948CABaKRvQ3ajadOmYu8KQRDo7OzMoUOH8tSpU3zz5o10H0pIZBHJ2ZeQyCYolUrq6+tnuoldSkoKw8LCSH5cKS9WrBjt7e15/NRN+u16ywZDntG7z9PvOvmf/vPp+5Q1/rf/wD9f8+TleKakKlmnTh0CoL29PY8dO0byY0fd/6b19+rV64f6oY6NjWWNGjVoaGgo1ta+efOGVapUoZGR0VdHLqWkpPDChQucM2cO69evLzr3hoaGBMC2bdvy5MmTTEhIULvNHz58IIAs13f269ePhQsX/u5+T548IQBu3bo1wzoSEhLo5+fHggULEgC9vLx46NChDEWvkpKSuHnzZlauXJk5c+bkxIkTefHixS/ue+/ePXbv3p0ODg40MzPj+PHj+eHDB7Hjvuq79jNHz34UoqOj0yyw/Qh8+mz7+++/xfGOcrmcHh4eYhnK06dP2bhxYwqCQHd3d65YsYJVqlRhp06dPmvCpukReLGxsWzYsCFlMhnr1atHQRDYs2dP3rt3jxYWFrSwsJAWvdJJ3759aW1trZEpODExMZTL5Vy+fLnaZWcHVPfYnj17RAe/UaNG1NPTE51+W1tbNmzY8LtZihISEt9GBgkJiWyBIAhwcHDAq1evMnX8q1evsGHDBgBA7ty5sedAAAp6Lca0LebYfSIW8UkEACiU6ZdJAsr/7X/r0QdMWRWJVqNfwq1aH9Rv0AAPHz5EjRo1AAD79++HXC5Pc/zy5csxZMiQTJ2Ptnnz5g28vb1x8eJF+Pv7o0mTJrh//z4qVaqEe/fu4eTJk2jWrBkAIDk5GWfPnsXMmTNRp04dWFtbo2LFipg0aRI+fPiAYcOGISgoCO/evYOZmRnc3d3h5eUFY2NjtdsdHR0NALCxscmSnDNnzqBy5crf3e/vv/+GgYEB6tWrl27ZkZGRmDJlCpydndG/f3+4u7sjODgYJ0+eRL169SAIwndlPHv2DGPHjoWzszPat28PIyMjLFu2DOPGjUO5cuW+eEyhQoWwatUqXLhwAe/evcOIESMwefJk3LlzB+XKlRPPIT36JTSLlZUVypUrh+PHj+valO9CfnyWymQyJCQkoH///mjevDkePXqEChUqwMrKChcuXMCYMWPw5s0bODs7Y+jQociZMydCQkLQq1cvnD17FkqlEvb29mlky2Syr96PCoUiy7abm5vD09MTJHHkyBEIgoDg4GC0bNkScXFx6NGjB+RyuVp0/eyMGzcOSUlJmDdvntplW1hYoFy5cjh58qTaZWcHVO8K8+fPBwDs2LEDpUqVgkKhQIUKFZAjRw68ffsWBw8ehJOTky5NlZD44dHTtQESEhL/j6OjY6acfZLw8fHBwIEDQRL/XojHou0fYGTnAaUSUDLrzozy4/stYt4rEfy+NDzqrkZSqhFM/6d/9+7d4gui6mXRxMQEDg4OWdataZ48eYJatWohNjYWgYGBKF26NM6cOYPGjRvDzs4OgYGBiIyMxLRp0xAYGIizZ88iISEBZmZmqFq1KsaOHQtPT0+ULVsWBgYGaWQXK1YMoaGhGrNd5exbW1tnWkZcXByuX7+Ofv36fXff3bt3o1atWrCwsPjuvo8ePcL8+fOxZs0aAEC3bt0wZMgQFChQIF12kcTx48fh6+uL/fv3w9TUFJ07d0bfvn1RrFixdMmIi4vDqVOnsGTJEoSHh+Pp06dwdnbGwIEDkS9fvnTJkNAOPj4+WLNmDUhm2wUYhUKRZlFz4sSJ8PPzQ6lSpbB582bo6+ujadOmePv2LTZt2oTq1aujS5cuqF69OpYuXYq5c+ciMTERY8eORevWrTOk+59//kFiYqK46JhRmx8+fIiEhAQMHjwYCoUCq1evxv3793Ht2jUAQKdOnTBo0CAA0gJYenB0dMSAAQOwYMECDBgwADlz5lSrfG9vb6xduzZbfx8yg+p8QkNDcfr0aVStWhUVK1ZE06ZNYW1tjSVLluCPP/6Aq6srOnToAEEQkJqaCj09yWWRkMgM0jdHQiIbkVln//3793jw4AEsrHNjjN8bXLiVpAHrPvI/nx/BoUnoPDkMQ9vZgDHn8fbtWwAfXxK9vb3RtWtXNGnSBCYmJhqzRR3cuHEDtWvXhomJCc6cOYMCBQpg48aN6N69O3LlygU7OzuUKVMGSUlJsLS0RLVq1TB58mR4enrC3d39uy8gxYoVw+3btzVmvzoi+8HBwVAqld+N7L969Qpnz54VnfevcenSJcydOxe7du2CjY0NRo4ciX79+sHOzi5d9rx79w7r16/HsmXLcPfuXbi6usLX1xcdOnSAmZlZus8L+BjJTElJQWRkJKytrdG/f3/06dPnq/dlSkoK9PX1M6RDQj3UqFEDs2bNwq1bt+Dq6qprc9KgclDkcrm48PfHH3+gaNGiqFmzJg4cOIATJ06gefPmSExMhL29PcLDw7FgwQKULVsWpUuXRosWLVC9enVYWlrC0NAQwOeLB9/Sv2XLFuzZswfFixdH0aJF0227Sv6IESPw7NkzbNq0CcOHD0fFihXx9OlTvHjxAvny5UPLli3F55lMJiV+pocRI0bgr7/+wsyZM7FgwQK1yvbx8cGsWbNw+/ZtFC9eXK2ydYlq4eLq1asAgFatWuH8+fN4/fo1WrVqhfLly+PFixfo2LEjOnfuDADp+o5ISEh8GcnZl5DIRjg6OuL8+fMZPu7169cwNMuFfdfcEJeoOUf/U5RKICGJmLYmCl7FLWBra4s+ffqgT58+yJUrl1ZsyCpnzpxBgwYN4OzsjDFjxmDNmjXYvHkznj59CgCIiYlB6dKlMWPGDHh5eaFUqVIZfukoXrw49u7dq7HojGqRJSuR/TNnzsDKyuq7DsSePXsgl8vRqFGjz7ap0oLnzp2LgIAAFChQAEuXLkXnzp3TveBz/fp1+Pr6YtOmTUhOTkazZs2wYsUKVKtWLUufXfPmzVGjRo1vpoMqlUoolUrs2bNHjM5KaJcqVarAwMAAJ06cyFbO/qcO+bVr11C/fn2EhYUhJSUFvr6+qF+/PpYvXy5GxefPn4/ExETRUZs+fTr++usv2NnZidFflcz0Pk8EQcCyZctw6dIltGzZEhcuXEjX9+rOnTsICQlByZIlsWfPHpQtWxYuLi4QBAGenp6f7a9UKiVHPwPY2tpi2LBhmDZtGoYMGQJnZ2e1ya5SpQr09fVx8uTJn8bZV/0OKpVKtGnTBu/evUPZsmURHBwMALhy5Qo6duyIJ0+eIDExETKZ7KfLbJCQ0DbSE11CIhvh6OiIsLCwDB9391Ekyjbbi9gEvQzV5KuLgFB7LNj4EFOnTv0hHP24uDhMnjwZXl5eUCgUuHXrFtq0aYP58+fj6dOnqFOnDkJCQhAVFYW9e/diyJAhcHd3z1R0oVixYoiNjc3UdU0P6kjjP3v2LCpXrvzdl/y///4b3t7eabIIkpOTsW7dOpQsWRL169dHQkICdu3ahbt3734zgv7p8du2bUO1atXg5uaGgwcPYuTIkXj27Bm2b9+O6tWrZ/lFz9zc/Lt1nzKZDL6+vmjdujV27NiRJX0SmcPY2BiVK1fOdnX7crkcr169wtSpU7F8+XLEx8dDJpNhz5492Lx5MxwcHLBu3ToAwF9//YXBgwfj7NmzYqmLkZHRZ9/PzDxLzMzMsHPnTjx8+BADBgxI1zGDBw9Gu3bt4OXlBQAoW7YsjIyMxO2JiYkYPXo0Fi9ejNTUVMnRzwSDBw+GpaUlpk6dqla5JiYm8PDwwIkTJ9QqV5co/9cEaNasWRg5ciTq1q0LDw8P1KpVC0ZGRnjw4AE2b94MQRDEqL6qR4aEhETmkJ7qEhLZCEdHR7x58wapqanpPiY6ToFV/nbQN7ZVS21+Zll7IAZ7AuJ0pv9bvHv3DgcPHsTw4cNRoUIFWFpaYtKkSZDL5ahduzbmzJmDKlWqIDU1FevWrcORI0fg5uamlhdfVW25plL53759CyMjo0w3/1MqlTh37tx3U/ijoqIQEBCA5s2bA/iY9TB37lzkz58fXbt2Rb58+RAYGIjz58+jefPm33VmXrx4gfHjx8PZ2Rlt27aFnp4edu7ciSdPnmDChAlwdHTM1PlkBVXDvm3btmHx4sVa1y/xMZU/ICAgQ89ATXPy5Em4urpi4sSJOHbsGDw8PKBUKsU0/QsXLsDW1hYAsGjRItjZ2eHMmTPYsGEDrly5gk2bNqktDdnV1RV+fn5Ys2aN2JD1a5CEk5MT7O3t8fbtWwiCIGbKLFy4EJGRkdi5cydmz56Nf//9F3p6epJjlQnMzc0xZswYrF27Fvfu3VOrbG9vbwQEBIhO8o+OXC5HUlISpkyZgvnz56NOnTr4/fff8eTJE/j6+qJHjx5o0KABVqxYgRIlSoCktAAlIZFFpG+QhEQ2wtHRESQRHh6erv1JYua6KMQl6UMm031VztKd0bj9+IOuzcDbt2/FiHyZMmVgY2ODhg0bYuvWrUhNTQVJsfv0/PnzsW7dOty8eRNHjx4VownqIl++fDA0NNSYsx8dHZ2lqH5oaChiY2O/6+zv27cPSqUS5cuXx/Dhw+Hk5IRx48ahdu3auHXrFg4cOPDdKDxJsa45b968WLhwIZo3b46bN2/i5MmTaNGihU7r5d+8eQMA6Ny5MwYNGvTd3gQS6sfHxwexsbG4cuWKrk0ROXXqFKKjo1GxYkWEhITgyJEjGDp0KPT19XH79m0sWbIEderUgampKW7fvo23b9+iV69e8PT0ROnSpQGop5O+ii5duqBz587o06fPN5t/ksTy5csxa9YskISVlRXkcjnOnDmDoUOHIm/evJgwYQIAoFevXgDw0ziV2qZ3795wdHTExIkT1SrX29sbb9++xfXr19UqVxeoFpKuX78u/mY9ePAA69atw++//46dO3eiaNGiYs8cCQkJ9SA5+xIS2QhVNDO9TfqOnovHpdtJYDb5KgsCMGNdFJJTtBsdioiIwK5duzBgwACUKlUKtra2aNq0Kfbs2YOSJUti1apVuH//Ptq2bYurV69i7Nix2L59O27evAkPDw/Exsbi7Nmz4hhBdaKnp4fChQtrrCN/dHR0lprznTlzBnK5HBUqVPjmfuvWrUOOHDlQsWJFrFy5Ev369cOTJ0+wevXq79aTxsbGYunSpShRogRq1KiBO3fuYPHixQgLC4Ovry9KlCiRafvVSWRkJICPKaa9e/dGjx49sH37dh1b9WtRvnx5mJmZZZtUfqVSiYsXLwIAcuXKJTrto0ePhrOzMxITE3H27FkYGxvj9OnTmD17NgIDAzFz5kyx3hhQf4MxX19f5M2bF3369PlqNF4mk0Emk8HKygqenp6YPXs2Tp06hUGDBqFYsWJISEjAs2fPUK1aNTRo0EAjdv4qGBkZYeLEidi2bZs43UAdeHh4wMjI6KcYwadaCA4JCUFSUhI8PT1RokQJWFlZISwsDCdPnsTUqVPRtm1b8XylWn0Jiayj+1CghISEiKrePT3OfsTbVCzZEa1pkzKEUgmERaZi3cF36Nk089Hm7/H69WsEBgaK/1SOdIECBeDp6Ylhw4bB09MTLi4uAIDU1FT06NED69atw8KFCzFo0CAcPnwYrVq1QrFixXDgwAGNjgjUZEf+t2/fZrlev3Tp0jA1Nf1sG0kEBARgxowZOHXqFKysrDB79mz06NED5ubm35V98+ZN+Pr6YuPGjUhKSkLTpk3h5+cHT0/PbPkSp4rs/x979x3X1NkFcPyXhL0VRVDBhQu3dQ8QcC/ce9ddR221WrXVaq21tq7W2Yp7VMU9q+BG3HtPEBRkKZuQ5L5/8JJKGTISEvR+Px/ftyb33ucEgeTc5zznsbW1Zfny5cTFxTFgwADMzMzo1KmTjqP7NBgaGuLm5oavry/ffvutrsNBKpXStGlTDh06hK+vLw8ePKB+/frY2trSoEEDnjx5QmBgIFu3bqV3795MmTJFfa42m92Zm5uzc+dOtmzZ8sEGZp07d6Zly5bqn/GaNWsybtw4Hj9+zKtXr9SN+sTmfPkzePBgfvnlF2bOnMmBAwc0ck0TExOaNGnCyZMnmTRpkkauqQtpDSl37tzJ6NGj6dixI/v370elUnHgwAGmTp3Ko0ePkEgknDhxAqlUSp06dbCxsdF16CJRoScm+yKRHrGzs0MqleYo2V+8PYoUhf6trxQE+PtELC0+M6eSk1EWx6TGndOELzg4OF1yn7YuslKlSrRo0YIZM2bg6upK6dKlM5ybkJBAnz59OHLkCJs3b6Z///6sWLGC8ePH06lTJ7Zs2ZJpoqtJLi4unDp1SivXzu/Mvr+/P+3atUv3mEKhwMfHh4ULF3L16lV1c7urV69Svnz5bK+XkpLCnj17WL58OWfOnMHBwYHJkyczYsQISpUqlec4C0J4eDhFihRRLyVYt24d8fHx9OzZk0OHDmml8kOUkYeHBzNmzCApKSldMzld6dSpE3///Tc3b95kypQpDBs2jMTERPbv30+zZs24ePEiz58/59KlS7Rt21adfGs7cXZxcWHq1KmZPpeWuMvlcgICArhw4QLVq1encuXKODo6UqFCBSpUqJDuHDHRzx9DQ0PmzJlD37591U1PNcHDw4NffvmlUO81n1YxklYplbZrgSAIeHl5oVAoGD58OB06dGDr1q0cPnyYGzduqBtLikSivBN/s4tEekQmk2FnZ/fBZD/wdQoX7yTppPN+TkglsMs3JtPnLl68SKlSpVi5cmWW57948YINGzYwbNgwKlSogKOjIwMGDOD8+fN4enqyfft2Xr16xcOHD1m9ejX9+vXLNNGPjo6mTZs2+Pr6cuDAAfr27cuUKVP44osvmDBhAj4+PlpP9CF1Zv/NmzdERkZq/Nr5mdkPCwvjyZMn6g+l8fHx/P7771SqVIk+ffpgY2PDsWPHqF+/Pg0aNMg20Q8JCWHWrFk4OTnRu3dvIPWDXWBgILNnz9b7RB9Sy/iLFy+u/ruBgQHbtm3D3d0dLy8v/P39dRjdp8PT05OkpCQuXLig61AAqFKlirr7/ZkzZxg+fDhjxozBxcWF3377DQMDA/VWfFCwpcdWVlaZJulpMcyePZt+/frx7bff0qlTJzp27Mj06dM5ceIEwcHB6phFmtGrVy9q1qzJ9OnTNdbs0N3dnZiYGPW+9IVZWg+Lf/75h02bNhEZGcm7d++4cOECxsbGLFiwgC+//BJILfcXiUT5VzhvEYpEHzEHB4cPJvsHzsYilaaWzesjpQpOXk1gbA8lNpb/rgHduXMnAwYMQC6Xs2vXLsaOHYsgCDx79izdzH3aPvc1a9akQ4cOuLm54erqmi4R+5BXr17Rtm1bQkJC8PPzo2bNmvTq1Yvdu3ezdOlSJkyYoPHXnZX3O/I3a9ZMo9fOT4O+tGSqcuXKfP/99yxfvpx3797Rq1cvdu3aRd26dYmPj6dLly6ZNp4SBIHTp0+zfPly9uzZg4mJCYMGDWLMmDHUqFEjX69LF8LDwylWrFi6x4yNjfHx8aFdu3a0b98ePz8/6tatq6MIPw01atSgWLFi+Pr64u7uXuDjp21Bl5ZEy2Qyhg0bhiAIrFu3jsePH+Ps7MzatWuRSqWYmJjg6OioTmR0LW1W/9mzZyxYsACJREKjRo24dOkSjx494tGjR6xatYrKlSuzadMmvemZ8TGQSqXMmzePTp06ceLECVq1apXva9avXx9zc3P8/PyoX7++BqLUnZYtW7Jo0SKePHnC4MGDqVOnDpaWlpw5cwZIXUIVHx8P8MFeMCKRKGfEmX2RSM98KNlPTFZx2D9ebxP9NCoBjlxIfdMWBIH58+fTq1cv5HI5kNrhum/fvjg6OuLs7Mzw4cO5c+cO3bp1Y+/evURGRnLz5k2WLVtG9+7dc5XoP378mKZNmxIdHc25c+coV64cHh4eHDlyhL179xZoog+pyw2kUqlW1u1HRUXluYz/0KFDmJub06RJExYtWsTAgQN58uQJW7duVSe0R48eJTExUb3lHkBsbCzLly+nevXquLu7c+fOHZYsWcKrV69YsWJFoUz0IePMfhozMzMOHDhApUqVaNOmjdaaLYpSSaVS3N3dC3x/8bCwMHr06MHYsWMznS3//PPPOX36NFeuXOHs2bO8fv2a7t27Ex0dTYcOHShRooRebF2XFsNff/2FIAjqPhsqlYrq1atTqlQpEhMTuXHjxgeX5Yhyr0OHDjRu3Fhjs/uGhoY0b978o2jS16hRIw4dOkSHDh0wNjbm+vXrnDlzBqlUyk8//URiYiJnzpyhVKlStG7dWtfhikQfBXFmXyTSMw4ODtlus3PqagJJct1/oPwQQYC9p2Lp6mpE79692b9/f7rnFQoFN2/epG/fvri5udGsWTONNOO5evUq7dq1w9bWlmPHjpGQkECjRo1ISEjg9OnT1KtXL99j5JaxsTEVKlTQeJIoCEKeZvYDAgL45Zdf2LNnD8bGxnz33XeMGTMm05sGPj4+1KxZE2dnZ+7evcuKFSvYuHEjiYmJdOnShd9//x13d3e9bLiXW+Hh4dSqVSvT56ysrDh69CgtWrSgZcuWnD17NsOaZ5HmeHp68sUXXxATE4OVlZVWxxIEgS1btjBx4kRkMhnLly/PsumdTCYjODiYXr16cfHiRSQSCfPmzdOLZoJp0tZH79+/HwsLC7744guGDh0KwLx589i1axcPHz5kzJgxmJqaFuq14PpIIpHw008/4e7uzp49e+jWrVu+r+nh4cHs2bORy+UYGWXeC6ewaNy4MX/++ScXL17k8uXLhIeH06dPHxo2bMiIESN4+PAhS5cu1XWYItFHQ5zZF4n0zIdm9m88SqKw9FEKf6uka8/PMyT6kDp7N2jQIBYuXEjHjh01kuj7+fnRokULypcvz9mzZ3n+/DlNmjTBzMyMixcv6iTRT6ONjvyJiYnI5fIczeyrVCr2799P8+bNady4Mbdv38bAwIAff/yRGTNmZHqN5ORkDhw4QJUqVXB3d6d69er4+PgwadIkXrx4wa5du/Dw8PgoEn3IvIz/fUWLFuX48eNYWFjg6elJcHBwAUb3afH09ESpVKrLe7UlJCSEzp07M3DgQNq0acPdu3fp2bNntt/TxYsXp2nTpgwaNIjbt2/rVaKf5u7duzx//px69ephaGiIj48PJUqUoFOnToSHh2NnZ6dOQsXt9jSvRYsWtGrVipkzZ6q3a8wPd3d3EhIS1NtAFnb29vZ4eXnx448/snr1atzd3QkODsbOzo6JEycyatQoXYcoEn00CknKIBJ9OhwcHAgNDUWVRZ3+vedyjZXwR4dc4OTKMpxcWYbEmJfpnnv76iI3Dw3m3Lo66mNC7m7OcI2Qu1u4tqc7p/+soj4uPvqJ+vkBw79jxIgRtGvXLl1Cr1KpNNqhfteuXbRr146mTZty4sQJjh49SqtWrahbty7nzp1Tb8OnK9pI9qOiogCyndlPSkrir7/+olq1anh5eSEIAnv37mX9+vUoFIosux2/fv2aYcOGERcXx44dO1AoFGzbto2goCDmzJmTaUPEwi6rMv73lShRQr0HvKenJ2FhYQUR2icnrTGntkr5BUHA29ubatWqceXKFfbu3cvWrVtztFzI2dmZWbNmsX79er1dV1yyZEl69eqFm5sbly9fxtjYGIDp06dz9OhRQkND1dtnfiw36/TNvHnzuH//Plu2bMn3terUqYO1tfVHUcqflUqVKjFnzhx++OGHQl+9IBLpEzHZF4n0jIODAwqFgoiIiAzPJSapCAlXFEgcseF3iA4+h4GxTbbHRQWdIjbiLkamthmek0khCXvWrFnD4cOHiYqK4tGjR2zYsIGRI0dqbO/yVatW0atXL7p3786+fftYvHgxAwcOZMCAARw+fFgv9up1cXEhKCiIuLg4jV0zOjoaINNZ+ejoaObPn0/ZsmUZOXIkVapU4fz585w7dw4vLy8CAgIwNTVNV7YuCAJnzpyhd+/eODk5sWPHDqytrblx4wZnz56lT58+H+2HsKSkJOLi4nKU7Dk6OnLixAliYmJo3bq1+qaLSHMkEgmenp7qGyuaFBgYSNu2bfn888/p2rUr9+7dw8vLK1fXSEuU9Una+vCEhATOnz/Pn3/+yaxZs6hRowZOTk6EhYXx888/A6hn9RWKgnk/+RTVr1+frl27MmvWLHWvmrySyWS4ubkVeB8Lbcjue87S0lLry3ZEok+NmOyLRHrGwcEBINNS/ifBqR8YLmxuysmVZXh6YT6Pzn7HWe9anFtXl8fnZqNSpb6RqpTJPL+0iICtbpxa7cy5dXW5f3Iy8sTUxOT55cXc2N9Hfe2ALc04ubIM9/2+BsC+cjeaf36XWh03ZhtvJdcfcf38LmXrfZnhOZUKHgT++yFHIpFQsWJFBg0axOrVq/niiy9y8ZXJSBAE5syZw5gxYxg/fjze3t6MHj2a77//nrlz57J27Vq9SU7TOvI/ePBAY9fMbGY/KCiISZMm4ejoyA8//ICXlxf3799nz5496fZ9Pn/+PA0aNMDQ0JDY2FhWrlxJzZo1cXNz4+bNm/zyyy9YWFgwduzYLNexf0zCw8MBsi3jf5+zszMnTpwgJCSEdu3aERsbq83wPkmenp7cunVL/W+TXyqVipUrV1K9enXu3bvHkSNHWLduXZ53s9A3adVgq1atonPnzjRv3pwZM2Zw//59li5dypgxY2jUqBFff/21ukxaLOHXrrlz5xIYGMhff/2V72u5u7vj7+9PUlKSBiLTjQULFogNTkWiAiYm+yKRnilZsiSQebL/Jjr92r+Xt9YS9ng/MgMTUpIiCb69jtAHOwG4fXQUL64uJSnmJWZFnFGp5IQ+2Mn1fb1QKpIwNrfHrIiz+loWxVywsquDqZUTAIYmRZAZmHwwXmPzEkikmX9gFIDXEdrZx1mlUjF+/HhmzZrFvHnzmD17Nh06dGDr1q1s3ryZmTNn6lV5apUqVQA0WsqfNrNfpEgRbt68yYABAyhfvjwbNmzgyy+/JDAwkNWrV1O5cuV05wmCgL+/P5UrV2b8+PGUKlWKcePG4ezszPHjx7l//z41atTg7du36brwf8zSKmlys+tDtWrV+Oeff3jw4AGdOnUiISFBW+F9kjw8PAA0Urr89OlTPD09GTt2LP379+fu3bu0bds239fVJ2mJ+/Hjx4HUZqWLFi3Cy8uLRYsWYWlpyfLly1m4cCFFihTJsgmhSHOqVavGgAEDmDt3br5/P3h4eJCcnKzeMrWwefLkCd9++y0XL17UdSgi0SdFTPZFIj1jb28PZJ7sJ/+nC7+xuT2N+5+lYb/TGJmXACA65DzRrwKICkr9gFy78zYa9DpKwz6+SA1MSIh+TNjjvZR06Uul5j+qr1W9zRo+676XsvUmavT1yLWQ68vlcvr168fKlStZs2YN/fv3p1mzZly/fp1//vmH/v37a37QfLK0tMTR0VGjyX7azH7fvn2pXbs2586dY9GiRQQFBfHjjz9SokSJDOcoFApWrVpFWFgYa9asYceOHUyYMIEXL16wZ88eWrZsiUQiwcfHh7Jly34ye8rndmY/Td26dTl8+DCXL1+mR48e+S7XFf2rZMmSVKlSJV+l/EqlkiVLllCjRg1evHjBiRMnWLVq1UdXKpxWwh8fH0/lypUxNzdHoVAgCAKvX7/Gz8+Pv/76i0GDBjFv3jzi4uLERL+AzJ49m4iICP744498Xad69erY2toW2nX7S5cupVixYgwYMEDXoYhEnxQx2ReJ9IyRkRG2traZJvtKVfpkv1jZVhgYWyEzMMHU0hEAeUI4sWE31Mdc39eLkyvL4L+xASpFavlfTNh17b2A/1CoNLtNYGxsLB07dmTPnj3s3LmTOnXq0LBhQ5KSkrhw4QJubm4aHU+TqlatqpESxpSUFLZs2cJ3330HpCb927Zt48mTJ0yYMAELC4sM54SGhjJ37lzKli3L2LFjgdRy37QbA46OjupjlUqlesuoTyUhSEv2czOzn6Zp06bs27cPX19f+vXrJ66D1iAPD488r1N+8OABrq6uTJo0ieHDh3P79m08PT01HKF+SOv4/ssvv7B582ZGjBjB69ev2bRpE23atEEulxMbG8vdu3dZvnw5GzdmvzxLpDnly5dn5MiR/Pzzz7x79y7P15FKpbi7uxfKdfvR0dF4e3szduxYTE1NdR2OSPRJEZN9kUgPZbX9npFh+sTLwPjf2SmJNPN9kq3s6mT4Y2SW+4Qmr/4bc36Eh4fj6elJQEAAR48eVTctKleuHAEBARnK1fVNfjvyx8XFsWTJEpydnRkwYAAmJiaUKFGCq1ev0qdPnwx7ZQuCwLlz5+jbty9OTk78/PPPtG/fnh49elClShVGjRql7tL9vgsXLhAWFvbJlPBDahm/qakp5ubmeTq/ZcuW7Ny5k7179zJs2LAsd9MQ5Y6npydPnjwhKCgox+coFAoWLFhA7dq1CQ8P58yZMyxbtizTm2AfCwMDAwRBYNmyZcTFxTF8+HBKlChBz549OXLkCE2aNKFGjRrUrFmT0NBQVq1apZEt4UQ5M3PmTJKSkvjtt9/ydR13d3cuXbpEfHy8hiIrGKtXr0apVDJmzBhdhyISfXLEZF8k0kNZJfumxjn7kbW0+7ehmlPdsXzWfS+fdd9Lna67KFv/Sxyq9AZAZvDvHXaVIjGfUWfOzFgzyX5gYCDNmzcnMDCQ06dPc/v2bbp27Uq7du3w8/PL04xsQXNxceHp06ckJyfn6rzQ0FCmT5+Oo6MjU6ZMUTfRa9OmDQ4ODhlm3+Pi4li9ejW1a9emefPmXL16lV9++YWQkBDWrFnDo0ePaNq0aZbj+fj44ODgQKNGjfL0Oguj8PDwXJfw/1fnzp3ZtGkTmzdvZty4cerSalHetWjRAolEkuNS/jt37tC4cWOmT5/O+PHjuXHjBs2bN9dylPrh4cOHmJqaolAo2Lx5M5GRkeplJcnJybi4uHDkyBGcnZ2Jjo7mzp07Oo740+Hg4MD48eNZtGgRb968yfN13N3dSUlJ4fz58xqMTrvkcjm///47AwYMyHRpmUgk0i4x2ReJ9FBWyX65koY5Or9IqcYUdUwtZ79zdAQXt3lwcXtLzq2twa1Dg0mKDQbA1LoMEmnqNW8c6MdVny68eXoIgPBnRwjY4pquY//zS4sI2OLKvRMT1I89vTCfgC2uPA34Wf3YzYODCNjiSsjtdVR0zH83/Lt379K0aVPkcjlnzpxhw4YNTJw4kcmTJ7Njx45CUxZYtWpVlEoljx8/ztHxDx48YPjw4ZQpU4bff/+dzz//nGfPnrFx40Zq1qxJdHR0uk7iDx8+ZOLEiZQqVYqxY8dStmxZjh07xoMHD/jyyy+xsbEhJiaG27dvp+vM/z5BENi9ezddu3ZFKv103iIiIiI0csOob9++/Pnnn6xcuZKpU6eKCX8+FS1alDp16nywdDklJYW5c+dSt25dEhIS8Pf3Z+HChZiZmRVQpLpXpUoVvLy8UKlU/Pzzz/To0YPZs2fTs2dPrl69ytOnT3FwcEAul5OSkqJuGioqGN988w0ymUy9/WFeVKlSBXt7+0JVyr9jxw5evXrFpEmTdB2KSPRJyrzuVyQS6ZSDgwNnz57N8Hip4gaYGOVsprx62zUEXVtB2JP9JMYEITM0x6yIM0Wd3DAvmlrubmhShIrNZhN4bTnJca+RJ4QjT0hdu6yQx5EYE5jumilJkaQkRWJs4aB+TJ4YkeG45LiQ1OeS3lK5TMYy8dzw9/enY8eOODo6snv3br7++msOHDjAihUrCl1JYNr2e/fv36d69eqZHiMIAufPn2fhwoXs378fBwcH5syZw6hRo7CxsUl3bHR0NDY2NuzZs4cVK1Zw4sQJihcvzhdffMGoUaMoU6ZMhusHBAQgCEKWyf6VK1cICgr6pEr4IXVmX1PVIZ9//jlxcXF8+eWXWFpaqnsriPLG09OTzZs3Z9k9/vr16wwdOpQ7d+4wbdo0vvvuu0yXp3wKxo0bx7Nnzzh+/DinT5/m9OnT6ue++eYbrl+/TlhYGJ07d/5kv0a6Ymtry+TJk5k3b556e9TckkgkuLu7F5omfYIgsGjRItq0aUO1atV0HY5I9EkSk32RSA85ODjw6tWrDB9upVIJFZ2MSBqQsYSvjtff6f4uMzChXIOvKNfgq2zHKlVtAKWqZeyO61ClJw5Ven4w1qoev1HVI+t1iJWc8j6zf/jwYXr06EH9+vVZs2YNffr04f79+xw4cID27dvn+bq6UqxYMYoXL57pun2lUsm+fftYuHAhAQEBuLi44O3tTb9+/TL9UB4WFsadO3d4+/Yte/bsoVGjRmzatImePXtm+yHe39+fokWLZtnfwMfHB1tbW1xdXfP+Qguh8PBwnJycNHa9iRMnEhcXx8yZM7GwsBBntfLB09OThQsX8uDBA/UNM0gtTZ87dy4///wz1atX5/Lly9SpU0eHkepetWrV2LVrF7t27eLcuXNcuHCBkiVLMmTIENq1a4erqyvJyclMmDDhwxcTadyXX37JsmXLmDt3LmvWrMnTNTw8PPj777959+4d1tbWGo5Qs06fPs3169c5duyYrkMRiT5ZYrIvEukhBwcHkpOTefv2bboybYCqZY249ywZZSHo/yWRQIXSOVt68F+bNm1i6NChdOzYke+++442bdqQkpLC2bNnC/UH+v925E9MTGTjxo389ttvPH78GFdXVw4ePEi7du0ylNELgsCFCxdYvnw5O3fuRKFQUL16ddavX5/jLfL8/f1p0qRJpjOkgiDg4+NDly5dMjT7+9hFRETw2WefafSa06dPJzY2lq+++goLCwtGjBih0et/Kpo1a4ahoSF+fn7qZP/ixYsMGzaMx48fM2vWLKZOnYqRUf6XDH0MLC0tGTJkCAMHDsTAwICEhATMzMy4evUq5cqVw93dPdueHSLtsbS0ZPr06UyZMoUpU6ZQsWLFXF/D3d0dlUrF2bNn6dixoxai1JxFixZRvXp1WrVqpetQRKJP1qezIFMkKkQcHFLL5DNbt+9Wx6xQJPpSKTRwMclxU8H3LV68mEGDBjF48GDGjh2Lp6cn1tbWXLx4sVAn+vBvR/7IyEjmzp1LmTJlGDt2LLVq1eLixYucPn2aDh06pEv04+Pj+fPPP6lbty5Nmzbl4sWL/Pzzz1hbW9OvX78cJ/pKpZKAgIAsS/jv3LnDkydPPrkSftBsGX8aiUTC/Pnz1csqtm7dqtHrfyrMzc1p1KgRvr6+JCYmMmXKFJo0aaJOYL/77jsx0f8PiUSivmGX1rfgs88+Y9myZUyfPl2XoX3yxowZg4ODA7NmzcrT+eXLl8fJyUnv1+0/evSIAwcO8NVXX30yW7iKRPpITPZFIj2UXbJfpawR5UsZou/vnSoVdG6eu23MBEFg2rRpfPXVV0ybNo1mzZrRoUMHGjVqxNmzZyldurSWoi04dnZ23L17F0dHR+bPn0/Pnj159OgRO3fupEGDBumOffToEZMmTaJUqVKMGjUKR0dHjhw5wqNHj/jyyy+JiYmhaNGiOR77zp07xMbGZjmr5+Pjg5WVFR4eHvl6jYWNUqkkMjIy3934MyORSFi2bBmDBg1i0KBB7Nu3T+NjfAo8PT05fvw4tWrV4vfff+enn37iwoUL1KhRQ9ehFSrFixfH0tJS12F80kxMTPj+++/Ztm0bN2/ezPX5hWXd/pIlSyhRogT9+vXTdSgi0SdNTPZFIj2UXbIvkUjo1sIS/W7yLZAU94rF8z5Xb/30IQqFguHDh7NgwQJ+++03DA0NGTZsGEOHDuXAgQNYWVlpOWbtunr1Kn369OHHH39EqVQyfPhwAgMDWb58ORUqVFAfl7Z2v3Xr1lSuXJlNmzYxevRonj17xv79+2nbti1SqZSYmBhUKlWGZR7Z8ff3x8DAgHr16mX6vI+PD506dfrkGndFR0cjCILWtm+USqX89ddfdO3alV69enH8+HGtjPOxio+P5/bt28TFxWFqasqNGzeYOnXqJ7fUJCcUCgUqlSpXu0AkJCRoMSJRZoYMGYKzszMzZ87M0/nu7u7cvHmTyMhIDUemGZGRkaxfv54vvvjik3s/EYn0jZjsi0R6yNzcHCsrq0yTfQCP+maYGksA/cz4JRIJnnVU7Nu7h27dupGYmJjt8YmJiXTv3p2NGzfi7e3N9evX1Y23Vq9ejaFh3tb965ogCBw5cgQPDw/q1avH5cuXmTt3LgCtWrVKl1yGh4czf/58ypcvT5cuXYiJiWHDhg0EBwfz888/U7Zs2XTXjo6OBsh1sl+nTp1MtyN79OgRd+7c+WRL+AGtzOynMTAwYMuWLbRs2RIvLy/OnTuntbE+Jn5+ftSoUYPDhw9jaGhI3759xS3jsqBQKKhRowa7du3Kcdm0SqViwYIFXLp0ScvRid5naGjInDlzOHjwIP7+/rk+393dHUEQ0u22oE9WrVqFIAiMHj1a16GIRJ88MdkXifSUg4NDlsm+iZGU4V42gP7V8kslUMxGxvQxjdi/fz9+fn506NCBuLi4TI9/+/Ytbdq04fjx42zevJn169ezc+dOtm/fztSpUwvlWj+5XM6GDRuoWbMm7du3Jy4ujp07d/Lo0SOmT5+OpaUl9+/fRxAEAgICGDhwIKVLl2bOnDl4enpy5coVAgICGDRoECYmJpmOkZbs56aM//z581mu1/fx8cHMzIw2bdrk/gUXchEREQBam9lPY2RkxK5du2jUqBEdOnTgypUrWh2vMIuJiWHUqFF4enri5OTE7du38fT05NSpU7oOTW8dPXqUBw8e5Lrpm5+fH7169VL/ThEVjN69e1OjRg2mT5+eq0oMACcnJypUqKCXpfzJycn88ccfDBo0SOu/U0Ui0YeJyb5IpKeyS/YBvFwtkCU/BUFZgFF9mEqAbwfbYmoipU2bNhw7dowrV67QqlWrDB8mX79+jZubG3fu3GHjxo3MmjWLu3fv4uvrS+/evXX0CvIuJiaGX3/9lfLlyzNkyBDKlCnDqVOnuHjxIj169EAmkyGRSKhUqRL79u3js88+o3Hjxvj7+zNv3jyCg4Px9vbOUVf4qKgoIOcz+69fv+b58+dZrtffvXs37du3z3TW/2OXNrNfEB9MTU1N2bdvH1WrVqVNmzbcuXNH62MWNkePHqVatWps3bqVFStW4OfnR4UKFfDw8ODs2bM5Xhr0qfH29qZ27dq5amIqlUrZvHkzMTExDB06NNdJpyjvpFIp8+bN4/Tp05w4cSLX53t4eOhlk77t27cTGhrKl19+qetQRCIRYrIvEumtDyX7UqmE+CdLAf1pzS+RQBc3C2pX+nc2unnz5vj5+fHo0SM8PDzUidWTJ09o2rQpkZGR/PHHH4wdOxaVSkVAQECh2xYqJCSEb775BkdHR6ZPn07r1q25c+cOBw8exM3NTV2d8OTJE77++mtu376Nv78/JUuW5NChQzx+/JjJkydja2ub4zFzO7N/4cIFABo3bpzhucDAQK5cufJJlvBDarIvlUpztSQiPywtLTly5AiOjo60atWKx48fF8i4+i46OpqhQ4fSrl07qlatyp07dxgzZox6ZwpPT08SEhIICAjQcaT6582bNxw4cIBhw4bl+twyZcqwYcMG9u3bx+LFi7UQnSgrHTt2pFGjRnma3Xd3d+fevXuEhYVpKbrcEwSBRYsW0b59e/U2mSKRSLfEZF8k0lMfSvYBwoJvU9Y09+v9tEEmBfuiMkZ42WR4rl69epw+fZrXr1/j6urKsWPHaNq0KUZGRsycOZPPP/+cypUrc+HCBZydnQs++Dy6e/cuQ4cOpVy5cqxevZrRo0fz/PlzvL29qVatGpDacO/AgQO0a9eOihUrsn79eho1aoS5uTkHDhygffv26bbZy6moqCikUmmOO2ufP38eJyenTHc02L17N0ZGRrRv3z7XcXwMIiIisLW1zdO/Q14VKVKEf/75BxsbGzw9PQkKCiqwsfXR/v37qVatGnv27GHt2rUcO3aMMmXKpDumVq1aFClSRC9nM3Vty5YtSKXSPHc+79SpE19//TVTp04Vb6YUIIlEwk8//cSVK1fYu3dvrs51d3cH0KtSfj8/P27dusVXX32l61BEItH/icm+SKSnHBwcePXqVbbHhIWFUb10OH1b67ZTvVQKVuZSfvuyBKYmmf9aqV69OmfPniUyMpJ27dqpt+QZO3YsXbp04fjx47ma2dYVQRA4deoUHTp0oHr16pw4cYL58+fz8uVLFixYQKlSpYDUBHLBggU4OzvTuXNnIiIiWLduHcHBwUyePJn4+PgP/vtmJzo6miJFiuQ4QfX39892y73WrVsX+h0P8io8PFwna0vt7Ow4fvw4MpkMT09PQkNDCzwGXYuIiKBfv354eXnx2WefcffuXYYNG5Zprw6ZTIa7uzu+vr46iFR/CYLA2rVr6dKlS75+h86fP5/69evTu3dv9TIhkfa5u7vTqlUrZs6ciVKZ82V59vb2VK1aVa+S/UWLFlGrVq1PbvtWkUificm+SKSnHBwciIuLy7KxXXx8PPHx8ZQoUYLhXtZ099DN3skyKVibS1k8qQT2ttlvhXX79m3evXuHsbExT548YdasWUybNo0tW7Zk2YhOXygUCnbs2EGDBg1wd3fn5cuXbNy4kadPn/L111+rE+VLly4xePBgSpcuzaxZs3Bzc+PSpUtcvnyZIUOGYGpqqi5vvHfvXp7jSUv2cyIpKYmrV69m2pzv9evX+Pv7f7Il/JCa7GuzE392Spcuja+vLwkJCbRq1Upvt9LSNEEQ2LlzJy4uLhw7dozNmzezf/9+9c2yrHh6ehIQEJDl78VP0ZUrV9Q3SfLD0NCQv//+m7i4OAYPHoxKpT9LxD528+bN4969e2zdujVX57m7u+tNsn///n0OHz7MV199VSgb64pEHysx2ReJ9JSDgwNAlqX8b968AVJnByUSCWO72zCkozWQ2hG/IEglYFdExvJv7HGyz357vDVr1tCzZ086duxI48aNSUxMxMLCgp49exZo+XRuJSQksHz5cipXrkzv3r2xsrLiyJEj3Lx5k4EDB2JkZERiYiLr1q2jfv36NGzYkDNnzjBnzhyCg4NZv3499evXT3fNcuXKYWxszP379/McV1RUVI6T/atXr5KSkpJpsr93715kMhmdO3fOcyyFXUREhE67RpcvX54TJ04QGhpK27ZtiYmJ0VksBSE0NJQePXrQq1cvmjdvzt27d+nfv3+OEgQPDw8UCoW4deF7vL29KV26NC1btsz3tRwdHdm4cSMHDx5k0aJFGohOlBP169ena9euzJo1K1cNKD08PHj8+DHBwcFajC5nFi9ejIODA3369NF1KCKR6D36+wlbJPrE5TTZL1GiBJC69m9Qe2sWTrCjiJVMqwl/2rU7NjPnzxkO2c7oC4LAvHnzGDVqFIMGDeLZs2dcuXKFnTt3UqVKFdzd3dXN4/RJeHg4s2bNwsnJiQkTJtCgQQOuXr2Kr68vbdu2RSKR8OzZM6ZMmULp0qUZNmwYxYsX58CBAzx58oRvvvkmy9limUxG5cqV85XsR0dH57g53/nz5zE3N6dmzZoZnvPx8cHd3T1XW/h9bHRVxv++qlWrcvz4cZ48eULHjh1JSEjQaTzaIAgCmzdvplq1apw9e5YdO3bg4+ODvb19jq9RuXJlSpYsKZby/19CQgJbt25l8ODByGQyjVyzQ4cOfPPNN0ybNi1Pe8CL8mbu3Lm8ePGCtWvX5vgcNzc3QPfr9sPDw9m4cSPjxo3DyMhIp7GIRKL0xGRfJNJTJUuWBHI2s/++z6qYsP57B9o1MQdS19NrkkQCRa1l/DrRji/72mKWxRp9AJVKxZdffsnMmTMZO3YsJ06cIDIykvPnz9OjRw98fX2pWbMmrVq10pumW0+ePGHMmDE4OTnx66+/0q9fP548ecK2bduoW7cuSqWSQ4cO0aFDB5ydnVm7di1Dhw7lyZMnHD58mI4dO+boQ3fVqlXzVcafm5l9f39/GjZsiIFB+psykZGRnDp16pMu4YfUmX1dlfG/r3bt2hw5coRr167RtWtXkpOTdR2SxoSEhNC5c2cGDhxImzZtuHfvHj179sz1dSQSCZ6enmKy/3979uwhJiaGIUOGaPS6P/74I40aNaJ3795ERERo9NqizFWrVo0BAwYwd+7cHN/sK1asGLVq1dL5++fKlSuRSqWMGjVKp3GIRKKMxGRfJNJTVlZWmJqaZpnsh4WFIZFIMk1SzE2lfN3flsWT7GjgYoJEkr/S/rQbBkWtpAztaM367x2oWzn7NfZyuZwBAwbw+++/M378eDZt2kTx4sUJCAigRo0a6td49OhRmjVrRvv27Tl48GDeg8ynixcv0qNHDypVqsTu3buZMWMGQUFBLFu2jHLlyhEZGcnChQupWLEiHTt2JDQ0lL/++ovg4GB+/fVXKlSokKvxqlatWiAz+4Ig4O/vn2kJ/759+1CpVHh5eeU5jsJOEAS9mNlP06hRI/bv38/p06fp06cPKSkpug4pX9Kax7m4uHD16lX27t3L1q1b83VzxcPDgxs3bnwy/Q2y4+3tjZubm8Z3MTE0NGT79u0kJiYyaNAgcf1+AZk9ezbh4eEsX748x+e4u7vj5+eX6637NCUpKYnly5czZMiQQtFkVyT61IjJvkikpyQSSbbb77158wZbW9sMs7Xvq1XRhJ/G2rFlTkn6trbC0uzfH/nsJp+l/7k5ULuiMXNHF+PveaUY0M4629l8gLi4ODp16oSPjw8jR45kxYoVuLq6cubMGXXFQhozMzP27dtH+/bt6dq1K3///Xe219YklUrFgQMHcHV1pVGjRty+fZtVq1YRGBjIzJkzsbW15fLlywwdOpTSpUszc+ZMmjVrRkBAAFeuXGHYsGGYmZnlaeyqVasSHh6e51mznDboe/LkCeHh4Zkm+z4+PjRr1ixXZdQfm/j4eJKSkvRiZj+Nh4cHPj4+HDx4kCFDhuSqQ7c+CQwMpE2bNgwfPpxu3bpx9+5djdxY8vT0VO+K8Sl7/vw5fn5++W7Ml5XSpUuzadMmjhw5wsKFC7Uyhii98uXLM2LECH7++WfevXuXo3M8PDwICgri+fPnWo4uc1u3buXNmzd8+eWXOhlfJBJlT0z2RSI9ll2yHxYWpl6v/yH2tgZ87mXD7l9K4f2dA9MGFcWruQVVyxpR1EqKpZkUMxMJ1hZSHIrJaF7blM+9bPh1gh37fi3NrxNL0LSmGTLZh8sDIiIi8PT05Pz583Tv3p3Vq1czatQo9u7di4WFRabnGBsbs2PHDvr27Uvfvn3x9vbO0evKq+TkZLy9valevTqdO3dGoVCwZ88e7t+/z8iRIwHYsGEDDRo0oEGDBpw8eZJZs2YRHBzMxo0badiwYb67Dbu4uADkeXY/p2X8aWtuGzdunO7xd+/ecfz4cbGE//83W/RlZj9Nhw4d2Lp1K9u3b2fMmDE6m7XLC5VKxYoVK6hevToPHjzgyJEjrFu3LsfLTj7E0dGRihUrfvKl/Bs2bMDS0lKrP8Pt2rXj22+/ZcaMGWJTxAIyc+ZMEhISctwg0dXVFalUqpN1+4IgsGjRIjp16kSlSpUKfHyRSJQDgkgk0ls9evQQWrZsmelzffr0Edzd3Qs4ouwFBgYKVapUEYoVKya0atVKkEgkwm+//SaoVKocna9UKoXRo0cLgLB06VKNxxcdHS3Mnz9fcHBwECQSieDl5SWcO3dO/fyzZ8+Eb775RrC1tRUAoU2bNsL+/fsFhUKh8ViSkpIEqVQqrF69OtfnyuVyARC8vb0/eOzIkSOFatWqZXh8y5YtAiAEBQXlevyPyaVLlwRAuH79uq5DydS6desEQPjqq69y/HOkS48fPxbc3NwEQBg1apTw7t07rYwzatQooXLlylq5dmGgVCoFJycnYcSIEVofKyUlRXB1dRVKliwpvHnzRuvjiQRhypQpgoWFRY6/3vXq1RP69eun5agyOnbsmAAIp06dKvCxRSJRzogz+yKRHvvQzP5/m/Pp0r1792jatCnx8fE4OTlx9uxZdu3alas9d6VSKStWrGDKlClMnDiRn376SSOxBQUF8dVXX+Ho6Mjs2bPp2LEj9+/fZ+/evTRu3JgjR47QsWNHKlSowJo1axg0aBCPHj3i6NGjdOrUSWNdrt9nbGxMhQoV8jSz//btW4Acz+xnVcLfoEEDHB0dcz3+xyQ8PBxAr8r43zdkyBB+//13Fi1axA8//KDrcLKkVCpZvHgxNWvWJCgoCF9fX1atWoWVlZVWxvP09OThw4eEhIRo5fr6zs/Pj6CgIK2V8L/PwMCAbdu2kZKSwsCBA8X1+wVg6tSpSCQS5s+fn6PjPTw8OHnyZIFXAC1atIi6devi6upaoOOKRKKcE5N9kUiPfWjNfk7L+LUtICCA5s2bY2Zmhkwm4+XLl5w6dYpu3brl+loSiYQFCxYwZ84cZsyYwbfffpvnDzA3b95k4MCBVKhQgXXr1jFhwgRevHjBmjVrKF68OL/99huVKlWiffv2hISEsGbNGkJCQli0aBEVK1bM05i54eLikqdkPzo6GuCDDfrevn3L3bt3MyT78fHxHDlyJE//Ph8bfS3jf9+4ceOYP38+P/zwA7/++quuw8ngwYMHNG/enK+//poRI0Zw69YtPDw8tDqmu7s7gM67kOuKt7c3VapUoWHDhgUyXsmSJdm8eTP//PMPP//8c4GM+SmztbVl8uTJrFixgpcvX37weHd3d16/fs2jR48KILpUd+7c4dixY7m6oS8SiXRA16UFIpEoa2klvImJiRmeK1asmPDjjz/qIKr0jhw5IpiZmQk1a9YUihYtKlSpUkV4+vSpRq69aNEiARC++OILQalU5ugclUolHD9+XGjdurUACGXKlBGWLFkixMbGCoIgCFevXhWGDRsmmJiYCEZGRkL//v0Ff39/nZRIT5s2TXB0dMz1eRcuXBAA4datW9ked+TIEQEQHj16lO7xXbt2CYDw+PHjXI/9sfn1118FS0tLXYeRIzNmzBAAYeXKlboORRCE1PLun3/+WTA2NhYqVqwonD17tkDHr1WrljB48OACHVMfREVFCcbGxsIvv/xS4GPPnDlTkEqlYtl2AYiJiRGKFSuWo6UasbGxgoGBgbBixYoCiCzVsGHDhFKlSgnJyckFNqZIJMo9MdkXifTY0aNHBUB4/vx5usdTUlIEiUQi/Pnnn7oJ7P82b94sGBgYCHXr1hWMjY0FNzc3ISoqSqNjrFmzRpBIJMLgwYOFlJSULI9LSUkRtmzZItSpU0cAhDp16ghbt24VUlJShMTERGHjxo1Cw4YNBUBwdHQU5s2bJ4SFhWk01tzasGGDAKhvROTU4cOHBUAIDg7O9rjvvvtOKFasWIYbGX379hVq1qyZ63g/RtOmTRPKlSun6zByRKVSCRMmTBAkEomwceNGncZy69YtoV69eoJUKhUmT54sJCQkFHgMX331lVC6dOlC0ctAk5YvXy7IZDLh9evXBT62QqEQWrRoITg4OAihoaEFPv6n5rfffhNkMlmGG7aZadKkidCzZ88CiEoQQkNDBSMjI+Hnn38ukPFEIlHeiWX8IpEec3BwAMhQyh8ZGYkgCDpds7906VIGDBhAzZo1uXbtGj179uTYsWMa67idZsSIEWzZsoXNmzfTt29f5HJ5uufj4uJYunQpzs7O9O/fn+LFi3P8+HGuXr1KkyZN+O6773B0dGTQoEFYWVmxZ88enj17xvTp03Xe8yCtI/+DBw9ydV5aGf+Hvtbnz5+nSZMm6Uosk5OTOXjw4CffhT9NeHi4Xpfwv08ikbB48WKGDh3KkCFD2L17d4HHIJfLmTNnDp999hkJCQn4+/uzcOFCTE1NCzwWT09PgoODefLkSYGPrUve3t506NBBJ1tmymQytm7dilKpZMCAAYV2W8jCYsyYMdjb2zNr1qwPHpu2br8geiqsWLECAwMD9e41IpFIj+n6boNIJMpaeHi4AAg+Pj7pHr9586YACAEBAQUek0qlEqZPny4AQs2aNQVA+P7777U+u7Z3717ByMhIaNeunZCQkCC8fv1amD59ulCkSBFBJpMJAwYMEG7cuCEolUrh6NGjQqdOnQSpVCpYW1sLEydOFB48eKDV+PIiNjZWAIQNGzbk6rzff/9dMDIyyvZrnpKSIpibmwsLFixI9/jBgwcFQLhz506eYv7YdO7cWejQoYOuw8gVhUIh9O7dWzA0NBSOHDlSYONevXpVqFmzpiCTyYSZM2cKSUlJBTZ2ZmJiYgQDAwO9WdZQEG7cuCEAwt69e3Uax4kTJwSJRCLMmTNHp3F8ClavXi0Awo0bN7I9ztfXN0fLu/IrISFBKFasmDBu3DitjiMSiTRDnNkXifSYra0thoaGGWb237x5A1DgM9MKhYKRI0fy008/UalSJe7du8f69ev54YcftN6gx8vLi4MHD3Lq1CkqVKhAmTJlWLZsGUOGDOHZs2csW7YMPz8/qlSpQtu2bQkMDGTlypWEhISwZMkSKleurNX48sLCwgJHR8dcN+mLjo6maNGi2X7Nb9++TXx8fIbmfD4+PlSuXFldVfCpi4iI0NtO/FmRyWRs2rSJtm3b0rVrV06fPq3V8ZKTk5kxYwYNGjRAIpFw+fJl5s6di7GxsVbH/RBLS0saNGiAr6+vTuMoSOvWrcPOzo727dvrNA5PT0++//57Zs+erZP93T8lQ4cOxdnZme+++y7b4xo3boyRkZHWm1Zu3ryZyMhIJk6cqNVxRCKRZhjoOgCRSJSRIAi8ePGCV69eYWVlxf79+wkMDOSff/6hUaNGvHv3DoDr168TFRVFtWrVMDEx0WpMSUlJ9O3bl/3791O6dGnCwsI4duyY1rtupzl//jzLly8nMTGRpKQkSpUqxZkzZ3j79i1z585ly5YtKBQKevTowbp16zKUr+urvHTkj4qK+mAJv7+/P4aGhnz22Wfqx1JSUti3bx+jRo0qFF+bghAeHp7p1oT6ztDQkB07dtCxY0c6duyIr68vDRo00Pg4Fy9eZOjQoTx58oRZs2Yxbdo0DA0NNT5OXnl4eLBy5UpUKhVS6cc9fyGXy9m8eTNDhw7Vi3+D7777jrNnz9K3b19u3Lihk2UFnwJDQ0PmzJlDv379uHDhAo0bN870OFNTU5o0acLJkye1loirVCoWL16Ml5cXzs7OWhlDJBJpmK5LC0QiUUbLly8XgHR/JBKJ+v+lUmm654YNG6bVeN6+fSu4ubkJxsbGQtGiRYUyZcoId+/e1eqYgiAISqVS2L17t9C4cWMBEKpUqSKsXbtWOH36tGBhYSGYmZkJgFC6dGlh7ty5OmlYlV9ffvmlULFixVydM3jwYKFp06bZHtO3b1+hYcOG6R47fvy4AAhXrlzJdZwfKxsbm0LdZCo2NlZo0qSJUKRIEeHmzZsau25CQoLw9ddfC1KpVKhXr55w+/ZtjV1bk06ePCkAwvXr13Udital7aJREL97c+r169dCiRIlBA8PD0GhUOg6nI+WUqkUatSoIbRo0SLb5Vs//PCDYGNjo7V/i7TmsAW984ZIJMq7j/s2uEhUSHl6emJgkL7wRhAEzMzMkEqlGRrw9OnTR2uxhIaG4ubmxpUrV5BKpZQvX56AgACtloEnJSWxZs0aqlatSrdu3TAwMGD//v0cOXKEp0+f0qNHD+Li4lAoFDg4OHDmzBlmzpxZKGeWqlatytOnT0lOTs7xOdHR0Tma2W/atGm6x3x8fChbtix169bNU6wfm5SUFN6+fVtoGvRlxsLCgkOHDlG2bFlatWrFw4cP833Ns2fPUqtWLf744w/mz5/PhQsXqF69ugai1bzGjRtjYmLySZTye3t707BhQ71agmNvb8+2bds4deoUc+fO1XU4Hy2pVMq8efM4depUtt/rHh4evH37lhs3bmgljkWLFlG/fv0M7y0ikUh/icm+SKSHKleuzMyZM9OVWkulUnr16pWu+7FMJqNnz560atVKK3E8ffqUpk2b8uLFCxITE2ndujWnTp3SWlIdFRXFjz/+SJkyZRg9ejQ1atTA39+f7777jrVr11KhQgX++OMP+vTpw/3797l37x5GRka4u7vz9OlTrcSkbS4uLqhUKh4/fpzjcz5Uxh8SEkJgYGC68nSlUsmePXvo1q2bWML/f5GRkQCFOtkHsLGx4Z9//qFYsWK0bNmSFy9e5Ok6cXFxTJgwATc3N4oVK8aNGzf45ptvMtx41CfGxsY0a9ZM6+uUdS0kJISjR48ybNgwXYeSgbu7O7Nnz2bOnDmcOHFC1+F8tDp27EijRo2YPn06giBkekyDBg0wMzPTSh+FmzdvcuLECb766ivxPUQkKkx0XVogEokyl5SUJDg7O6cr3w8KChJKlSqlLt83MzMTQkJCtDL+9evXBTs7O6FIkSICIHz55ZdaKw18/vy5MH78eMHMzEwwMTERRo8eLVy5ckVYsmSJUKlSJQEQqlevLqxcuTLDnvRBQUFCpUqVBAcHB70qb82piIgIARD+/vvvHJ9TrVo1YeLEiVk+v2PHDgEQXr16pX7s7NmzAiCcP38+P+F+VG7duiUAgr+/v65D0YiQkBChQoUKQvny5XP9e+HEiRNC2bJlBVNTU2HJkiWFqiR7/vz5goWFhSCXy3Uditb89NNPgqmpqfD27Vtdh5IphUIhtGrVSrCzs0v3e0ekWX5+fgIg7NmzJ8tjWrduLbRr107jYw8ePFhwdHT8qH/ORKKPkTizLxLpKWNjY9auXau+g9+qVSscHR0ZNWqU+pj58+dTsmRJjY99+vRpXF1dkcvlvHv3jmXLlrF48WJkMplGx7l27Rp9+/bF2dmZrVu3MnnyZA4fPoxKpcLV1ZXJkydTp04dzpw5w61btxg9ejQWFhbpruHo6MiZM2coXrw4rq6uXLt2TaMxaputrS3FixfPVZO+D83s+/v7U65cORwcHNSP+fj44ODgQKNGjfIV78ckIiICKPwz+2lKlizJiRMnkMvltGrVSv36svPu3TtGjRpFy5YtKVu2LLdv32bixIka/1nXJk9PT+Li4rh06ZKuQ9EKQRDw9vamR48eWFtb6zqcTMlkMjZv3oxMJqNfv34oFAogdQeX+Ph4HUf38XB3d6dly5bMnDkzXZXff485e/YsKSkpGhv39evXbN26lQkTJuhFc0iRSJRzYrIvEukxV1dXWrZsCUCvXr2A1G14IHXbvbFjx2p8zL1799K6dWskEglyuZw9e/Ywfvx4jV1fEASOHj2Kp6cnn332GZcuXeK3337j119/xdfXFw8PDw4ePMjUqVMJCgpi+/btNG/ePNuywRIlSnDy5EkqVKiAu7s758+f11i8BaFq1aq5SvbTtt7Lir+/f7oSfkEQ2L17N127dv3oO5bnRnh4OPDxJPsAZcuW5cSJE0RERNC6dWvevn2b5bFHjhyhevXqbN26lZUrV+Lr60uFChUKLlgNqVu3LtbW1h9tKf+5c+d48uSJXpbwv8/Ozo5t27Zx5swZfvjhB+7fv0/16tVp3ry5rkP7qMybN4+7d++ybdu2TJ93d3cnLi6OgIAAzp8/z9q1a5HL5fkac/ny5RgbGzN8+PB8XUckEumAbgsLRCJRdlQqlXD7wWuh68AfhKP+74TD52OFYxdihZFf/yVs3XNRSEpW5uv6/y3V/euvvwSJRCKYm5sL9vb2Gu3aLpfLhY0bNwo1atQQAKFevXrCihUrhOnTpwslSpQQAMHd3V3YtWtXnssEY2JihBYtWghmZmbC8ePHNRa7to0ePVqoWbNmjo5NSEgQAGHTpk1ZPm9gYCAsX75c/dilS5cEQPD19dVIvB+L5cuXC4aGhtl2ty6sbt68KRQpUkRo0qSJEBcXl+65qKgoYfDgwQIgtG7dWnjx4oWOotQcLy8vwc3NTddhaMWQIUOE8uXLC0pl/n7fF5R58+YJgGBkZCQAglQqFRISEnQd1kelS5cuQrly5YTk5GT1YyqVSrh8+bIwf/58QSaTCQYGBuolf7ndTSMlJUW4cuWKoFAohPj4eKFo0aLZLh0TiUT6S3+77ohEn6gnL+WcvpbA/UA5DwOTiU8UwGIICza9fe+oVjz+B9YeD6Z0CQNcyhlTq6IxbnXNMDHK2cztzp07GTp0KMuWLWPo0KH8/PPPTJ8+HWNjY8qWLcuhQ4coU6ZMvl9PTEwMf/75J0uWLCE4OJh27doxePBg/P39GT9+PGZmZgwaNIixY8fmu8u0paUlhw8fpnv37nTo0IEdO3bg5eWV79egbVWrVmXdunUolcoPlk9HR0cDZDmzf/nyZRQKRbqZ/d27d2Nra4urq6vmgv4IhIeHU6xYsY+y2VTNmjXVFTReXl4cPHgQExMT9u3bx+jRo0lMTGTt2rUMHTr0o3j9np6eTJ48mYSEBMzMzHQdjsbExsayc+dOpk2bViiqchITE3ny5AmAejZZpVJx584d6tevn7NrJKsIjVQgTxFIUYCRoQQTIwkOxQwwNCj836uaMHfuXGrWrMnatWsZNGgQq1atIjAwkN9//z3Djj2GhoZUqlQpV9c/ceIE7dq1o2zZsjRs2JDo6GgmTpyo6ZchEokKgJjsi0R6QJ4icPpaAntOxfIgUI5MCkrVh89TCRAUqiDkjYKjF+L5fUc0HZpa0Km5BaXtsl9Xt3DhQuLj4/n888/Zs2cPBw8eRCqV0qxZM3bt2oWNjU2+XtOrV69YunQpq1evJiEhgZ49e1KmTBn27NnD5MmTcXFxYdmyZQwcOBBLS8t8jfU+U1NT9u7dS//+/enevTubNm2ib9++Gru+NlStWpXk5GSeP3+Os7NztsemJftZrdn39/fHwsKCGjVqAKkl/D4+PnTp0kWvu6rrQnh4+EdVwv9fDRo04ODBg7Rt2xYvLy9sbGzYsWMHHTt2ZNWqVZQqVUrXIWqMh4cHcrmc8+fPa213El3YuXMnCQkJDB48WNeh5IinpycXLlzI8PjNmzezTPZfvE7h2oMkHgXJufc8mZBwBZk1m5dJoWxJQ1zKGVPJyYiG1UwoZvNp/k6rXr06ffr0Ydq0acycOZOoqCgaNWpEqVKlCA0NTXds7dq1MTIyytX1hf//A7x48YIXL15gYGDAn3/+ybhx47TSJ0gkEmnPp/lbUiTSE4IgcNg/ntW7o4lLFJD+f9IiJ4n++9KOT0gS8DkZy07fWJrUMGVi3yIUz+TD0MOHjfyaEQAAUzZJREFUD7l8+bL67wcPHgRg8ODBrFq1KtcfDN537949fv31VzZv3oypqSndunVDqVSye/dukpOT6dq1K6tWrcLV1VVrM4pGRkZs27aN4cOH079/f+Li4hgxYoRWxtKEtIqG+/fvfzDZj4qKArJP9hs1aqSuELhz5w6PHz9m6dKlGoz44xAREUGxYsV0HYZWubq6MmnSJObPn4+RkREbN25kwIABH8Vs/vtcXFywt7fH19f3o0r2vb291c1ZC4OOHTty/fp1UlJS1A3kpFIpN2/eTHdcikLg/M0Edp+K5c5TORIJSCXZv/cpVfA0OIUXr1I4cBYkEmhWy5QubpbUrmT80X1PZ0WhULB582b8/PyIiYlJ99w///xDw4YNiY+PRxAEZDIZzZo1y/UY5ubmGcacP38+f/zxB2/evMHExCRfr0EkEhUc/a8JE4k+UmFRCqYse8NvW6KIS0y9i67KfOvcXEmr3rt4N5EhP7zmWEBchj15vb29M5wnk8n4/vvv85ToC4LA6dOn6dixI9WqVePYsWP06tWLatWqsX79ek6cOMHkyZMJDAxkx44duLm5af2DmYGBAd7e3owdO5aRI0eyePFirY6XHyVLlsTS0pJ79+598NjsyvgFQcjQnM/HxwcrKys8PDw0F/BH4mOf2Q8NDaV79+7Mnz+fRo0aoVAoOHXqVJZ7dBdmEokEDw+Pj6pJ38OHDzl//rzeN+Z73/Tp0wkMDGTSpEmYmJggkUhQqVT4+voCoFQJ7PSNodf0EOasjeTes9RSf0HI+U3utOMEAfxvJfL10jcMnP2aM9cTtPGS9M6KFSsYOnQoYWFh6R6Xy+W4uLiwb98+9ZIPpVJJw4YNcz3Gf5P9tPfrr7/+Wkz0RaJCRkz2RSIdOBYQx5A5r7n5OFlrYyhVkJgssGBjFN8uD+dtbOosi0KhYOXKlRmPVypp2rRpltv5ZDqGUsnOnTtp2LAhLVq04MmTJ3h5eaFSqdiyZQtGRkbs2LGDwMBAZs+eXeDlf1KplN9//52pU6fy1VdfMWfOHL1MdCQSSY478mc3s//o0SMiIyNp2rSp+jEfHx86deqEsbGx5gL+SKSt2f/YCILApk2bcHFx4dy5c+zcuZMLFy6wfv16vL29mTRpkl7+HOSXh4cHV69ezXYHgsJk3bp1FClSpFD0HXmfnZ0dCxcuJCgoiK+//hqpVMrjx48JCk1h3MIwVvq85V1casae3xvcaYn/6wgFs/+MYM5f4byLy/l7WGHUu3dvWrRokeHxtK32PDw80t3Qz0uy//4Wt1KpFGNjY3bu3MmsWbNyH7BIJNIpsYxfJCpAgiCw6UgM6w++K9Bxrz5I4ouFoSz+sgSH928mNjY20+MiIiIIDw/H3t4+2+slJCSwfv16Fi1axNOnT6lduzZNmzYlICCAkJAQBg4cyNixY6levbo2Xk6uSCQSfv75Z6ysrJgxYwaxsbH88ssvelfy6eLikuOZfQsLi0z3Ovb390cikag/3D169Ig7d+4wZ84cjcf7MYiIiPjoZvaDg4MZPXo0hw4dol+/fixdulR9Q2PgwIHExcUxduxYLC0t+fHHH3UcrWZ5enqiUqk4deoUXbp00XU4+aJQKNiwYQP9+/cvtDOpxYsXZ+HChXwxbjzr971m+LzXma7F14S06565kcjVB6/5un9RXOt8PI0a31eiRAl8fX1ZuHAhM2bMQKVSIQgCiYmJ6mMGDRrEP//8w6FDhyhm58iNR0k8fiknOlaFXK5CAIwNJViay3AubUglJyOsLf5tDvv+zL69vT2HDh2idu3aBfgqRSKRpojJvkhUgLz3v2PLsZgPH6hhShW8iVIy7tcwoq4fTveck5MTHTp0wMPDgxYtWmBra4tKpcq083N4eDjLly9n+fLlREZGUqdOHcqVK8eNGzeoWrUqS5cuZeDAgVhZWRXUS8ux6dOnY2FhwcSJE4mLi2P58uV61d26atWq+Pj4IAhCtjcioqOjs12vX716daytrYHULvxmZma0adNGKzEXZoIgfFTJviAIeHt789VXX2Fubs6+ffvo3LlzhuPGjBlDfHw8U6ZMwcLCgmnTpukgWu0oW7Ys5cqVw8/Pr9An+0ePHiU0NLRQlfBnRqEU2OJnxpkHDgUynkoFcYkqZv8ZwYguNvRtrX/vRZoglUqZOnUqHh4edOvWjeDgYMLDw4HU3wW3niRTo/VSVOUW0HlyCJDa40D2n7c8lerf6gpbaxnVyhvRppEFLmVS30PKlCnDpUuXsLOzK7DXJhKJNEtM9kWiArL9nxidJPpplCqIjlFi99ki2sokdOnkgZeXV7pZ/JSUFFq1aqVOFtI8ffqURYsWsW7dOgRBwNnZmcTERG7evEmXLl1Yu3YtLVq00LvZ8v+aMGECFhYWDB8+nPj4eLy9vfWmQ33VqlWJjY0lJCSE0qVLZ3lcVFRUlsn++fPn022v5+PjQ/v27T+qrcg0JSYmhpSUlI+ijP/FixeMGDGCEydOMHToUH777bcsv0cAJk+eTGxsLN9++y0WFhaMGzeuAKPVLk9PT/X68MLM29ub2rVrU6dOHV2HkmcKpcDsPyO4cDvxwwdrUNos/59735IsVzGko02Bjl+Q6tevz71792jTpg2R0QnsOx3L7lOxvAxTZNjVRxBAkc0Kh8h3Ss7dTOTM9USK28j44Y8rjOpdFbti4vuHSFSY6cenXJHoI3fzcRJr9r7VdRgoVRD+VsVnbX9n5MjiGZLzSZMmqT8ob9iwgapVq7Jw4UJ8fHywtLSkRIkSvHjxgvDwcL766itGjhyZbWKqj4YNG4a5uTkDBgwgPj6erVu36sV69vc78mf3NY2Ojs60OV9UVBT379/n22+/BSAwMJArV67w9ddfayfgQi5tFqwwz+yrVCpWrlzJ1KlTKVq0KEeOHKFt27Y5Onf27NnExcUxfvx4LCwsGDJkiHaDLSCenp789ddfvH79GgeHgplN1rTw8HAOHDjAokWLdB1KnqlUAgs2RnLhViK67A6x8XAMZiZSerX8OGf4IXV9/ezFx1n2dxRL/44m7V09t7v6wL8NfsPfKjn9rjjnfohguJcN3T0skUn1+2a+SCTKnP7UsIpEH6nEZBXz10eiL++TShVcupfE8Yvx6R739vZm+fLl6r+PGjWKhg0b4ufnh5WVFTExMTg6OrJ9+3aCgoKYM2dOoUv00/Tu3Zs9e/Zw6NAhvLy8SEjQfRfnsmXLYmxs/MF1+1nN7AcEBACoO/Hv3r0bIyMj2rdvr/lgPwKFPdl/8uQJ7u7ujBs3joEDB3Lnzp0cJ/qQ2svi119/ZeTIkXz++efs3LlTi9EWHHd3dwBOnjyp40jybvPmzUilUvr166frUPJsx4lYfC8n6DTRT7Nq91uuPkjSdRhaEfFWwfQV4fy8IZKEpNSvtqa+5mmVAKt2v2XCr2G8DEvR0JVFIlFBEpN9kUjL1u57S/hbpUa21dOkpX9HE/FWAcDFixcZOXJkuueTk5ORSCQkJyfTp08fbt68yZkzZ+jdu3eetufTNx07duTQoUOcO3eOtm3bZtivuKDJZDIqV678wY78Wc3snz9/Hjs7O8qXLw+klvC3bt1aL/sn6IOIiAiAQlfGr1QqWbx4MTVr1uTly5f4+vqycuXKPP07SyQSVqxYQZ8+fejXrx+HDh3SQsQFq0SJElSvXr3QlvILgsDatWvp0qULtra2ug4nTwJfp+B94K2uw1CTSuDnDZHEJ+ZhqluPnb+ZwOAfXnP5vvZvZDwKkvP5j685cDbz5r4ikUh/icm+SKRF954ns/tUnNY6EOeHPEVgyfZonj59iru7e6Zb7pUpU4aQkBBWrVpFzZo1dRCldnl6enL8+HFu3bpFy5YtiYyM1Gk8Odl+L6sGff7+/jRt2hSJRMLr16/x9/ene/fu2gq10Eub2S9MCdWDBw9o3rw5X3/9NSNGjOD27dt4eHjk65oymYz169fTsWNHunfvnuk+9SpBxcu4cK5FPCbgzX3Oh93lSvgj7r8NIkkpz9f42pC2br8wbi945coV7t69y9ChQ3UdSp4olQLz10fo1c1tlZDar2bV7mhdh6IxRy7E8f2aCBKTBXXpvTYpVamz/Iu3RbPh0LtC+bMlEn2qxDX7IpEW/X08JkOTHH2hVIH/rUSuHf0x3ZY97wsMDPzom7s1btyYkydP0rp1a1q0aMHx48c/uPWgtri4uHxwRjIqKirDzH5KSgqXLl3ihx9+AGDv3r3IZLJMu7GLUoWHh1OkSJFMtzDUNwqFgl9//ZXZs2dTpkwZzpw5Q7NmzTR2fUNDQ7Zv307nzp3p3LkzR/85hlDemltRz7j/NoiH74KzTOqlSChtXgyXImWpauOIm31NbE10W03i4eHB0qVLef78ubrSpbDw9vamVKlStGrVSteh5InPyVgevdS/cm+VAIfOx+P+mTl1qxTOrQzTHLkQx8JNUTobPy3Z/5gbH4pEHxNxZl8k0pKItwrO3UzUy0Q/jVQK9VpOwcDAINNO+oIgcPnyZR1EVrDq1KnDmTNniIqKonnz5gQFBekkjqpVqxIREaEuMf8vQRAyndm/desWCQkJ6vX6Pj4+uLu7Z1ru/ymLiYlh3bp17Ny5k2vXrmFpaUlYWBgKhULXoWXp9u3bNGrUiBkzZjBhwgRu3Lih0UQ/jbGxMX9t30CdcR2Y8nwz0694s/P5GW5GPct29l6FQFB8OMdDrrLkzh66nfiB769u5EbkU53N/rm5uSGVSgtdKX9CQgJbt25lyJAhyGSyD5+gZ+QpAluO6nY5VHakEth05J2uw8iXczcS+HWz7hL9NBsPx7D7pFjSLxIVBmKyLxJpyaHz8ehJT74sqVRw7ZklsfHJKJVKYmNjCQoK4ubNm5w8eZJjx45Rv359XYdZIKpWrcrZs2dRKpU0b96cx48f6yQGIMtS/tjYWJRKZYZk//z58xgZGVG3bl0iIyM5deqUWMKfiQsXLjBs2DB69erFjh07CAoKwt7eHiMjI7Zv367r8NKRy+X88MMPfPbZZyQmJnLhwgV++eUXTE1NNT5WdHIsc65tZsD5hUiblcbAOnUMpZDzO5VKQYWAgAqBM6G3GH9hOQNOLeBKxCONx/sh1tbW1K9fP9MlCfpsz549xMTEFNqdEc7eSCA2QX/vbqsEuPk4mcDX+ld5kBMRbxXM3xCpN8sCV+yK5mmw/i3jEYlE6YnJvkikBSqVwL4zsXq1bjErCUkCZ64lIJFIsLCwwNHRkZo1a9KiRQtat25dKMqcNaV8+fKcPXsWMzMzmjdvzu3btwt0/IoVKyKTybJM9qOjU9ec/nfG3t/fn3r16mFiYsK+fftQqVR4eXlpPd7CpkWLFlhbW2f6XOXKlQs4mqxdvXqV+vXrM3fuXKZOncq1a9do0KCBVsbye3WDfid/xvf1DVT/T9bzK+0mQXB8OJMCVvHrrZ0kKAq2G7qHhwd+fn6Fam2xt7c3bm5uODs76zqUPNlzKlZvdp3JilRKoWwyJwgCv22JQp6iR9/PEvhpfSQKpR7FJBKJMhCTfZFIC15FKHgbq78zHO+TSVNnO0SpSpUqxenTp3FwcKBFixZcuXKlwMY2NjamQoUKWW6/l5bs/3dm39/fP10Jf7NmzXTWd0CfGRsbM3z48HQl0jKZjDFjxlCnTh0dRpYqKSmJ6dOn07BhQ6RSKZcvX2bu3LkYGxtrfKx38nhmXlnPrGsbiVckosrFLH5Opd04OBAUwIBTC7gWUXDVMp6enrx584Y7d+4U2Jj58eLFC/z8/Bg2bJiuQ8mTZyFy7j2X6/0NbpUKDvvHk5hcON6f0xy/GM/Fu0l6tSxQpYIXr1LYekx/l26IRCIx2ReJtOJRkHZL26JDLnByZRlOrixDYszLLI+7889Y9XF3j4/L9BilCu69EJP999nZ2XHy5EkqVaqEh4cHZ8+eLbCxs+vIHxWVulbz/Zn9ly9f8vLlS5o0acK7d+84ceKEWMKfjZEjR6bbecLa2pp58+bpMKJUAQEB1K1bV92I79KlS1q7AfEm8S2jzi3lbFhqIqzt/EyFQGRSDJMCVnEi5JqWR0vVpEkTjI2NC00p//r167G0tCy0P7tXHySRSdsXvZQkF3gYWHjKz+MTVSz7Wz93EhCAjYfeERJeOJdGiESfAjHZF4m04GGgHF33V3r9YAfhT3O2b/bLUAXJcj2aMtADNjY2HD9+nPr169OmTRuOHTtWIOO6uLh8sIz//Zl9f39/IDW5OXToEHK5nG7dumk/0EKqUqVKuLq6qv++ePFibGxsdBZPQkICkydPpmnTplhYWHDt2jVmzpypteUzYYnRjD6/lNDEKK3M5mclbYnAD9c3c/jlJa2PZ2pqSpMmTQpFkz6VSsW6devo06cP5ubmug4nTx4FyTNN9q/v683JlWW4sKV5hucS3wWqb0a/uLpM/d/3/b5WH3Nhc1P146GP9qgfjww6pX48OuRCrmKVSrR/Q16Tjl+KJyFZj0smJHDgbJyuoxCJRFkQk32RSAsevJCTybb16g8uTy/M59HZ7zjrXYtz6+ry+NxsVKrUjuAqZTLPLy0iYKsbp1Y7c25dXe6fnIw8MXVW9/nlxdzY30d9zYAtzTJ8QEp8F8jjc7OxKlEXY3OHD8arEuBZiHhn/r8sLCw4dOgQnp6edO7cmT179nz4pHyqWrUqL1++JDb233WlSqUSQRCIiopCIpGkW3fu7+9PhQoVKFGiBD4+PjRo0ABHR0etx1mYjRgxAgBnZ2cGDhyoszjOnDlDrVq1+OOPP5g/fz7+/v5Ur15da+NFJ8cx8cIKopJjc9V8T9N+vvk3p1/f0vo4np6enD59Wq93WwDw8/MjKCiIoUOH6jqUPLv3PDnT/d7tK/cAICkmiLev0+/sok7eJVLsK324ouH55UWolBp4n5JQaGb2BUHQ+673KhUcOhcnThiIRHpKTPZFIi0Ijcr+w+XLW2sJe7wfmYEJKUmRBN9eR+iDnQDcPjqKF1eXkhTzErMizqhUckIf7OT6vl4oFUkYm9tjVuTfBk4WxVywsquDqZUTACqVgnsnJoJEikvLpUikOSsxCIvO5O6ECBMTE3bv3k2XLl3o2bMnmzdv1so4iYmJBAQEqHcBaNu2LU5OTpQrVw4LCwuMjY358ssvkUgkVKhQATs7OwYNGsTu3bupXr068fHxHDlyRJzVz4QgCES+U/IyLIWnwXIaNO9KnQatWb1mXaZbTmpbXFwc48ePx83NDTs7O27evMk333yDgYGB1sYUBIE51zcTmhit00T//9Hww/XNvIwL1+ooHh4exMTEcPXqVa2Ok1/e3t5UqVKFRo0a6TqUPIlPVPE6IvP3j+IV2iMzMAMg7FH6m6Vhj1P/XqRkY0wsS31wnKSYIF7fz/+uGSoV3H9eOJau3XqcTPAb/b5ZBRCfJHDqWoKuwxCJRJnQ3icLkegT9qGOucbm9tTveRiJzIiAra7I48OIDjmPqU05ooJOAlC78zZsSjYkOT6MgK2uJEQ/JuzxXkq69MXUuqx6dr96mzWYWv07k/viyhJi3lynqucS9Q0ATcT8KTM0NGTr1q2MHDmSQYMGER8fz6hRozQ6Rt++fdm3b5/672nl+c7OzhgZGRETE0NKSuqs1osXLwDYvHkzgiAQHBxM0aJFkcvlWuvaXpgkJqu4cj+JR4FyHgTKeRiYTFxi+u9vm8/+5KddsPHsK1zKGVPZyYiaFY0pV9JIq7GdOHGCESNGEBYWxpIlSxg3blyB7Kl+6OVFnWyDlxkBUAkq5t3Yyoqm45FKtDPvUL9+fSwtLfH19aVhw4ZaGSO/oqOj2b17N3PnztXJjSdNeB2RdTJqYGhO8QrtCX24izdPD1Kx2SykMmPehV4l8d0LAOyr9PjgGOa2VYmPesiLq8vU1QL5ERaVWi2l71/zwxfikEnRq8Z8mZFI4MC5ONo0stB1KCKR6D/EZF8k0oLMyhnfV6xsKwyMrQAwtXREHh+GPCGc2LAb6mOu7+uV4byYsOuUrNonw+Pq59/cIujaCkpU6op9pa65ilkpbp+TLZlMxp9//omFhQWjR48mNjaWyZMna+z6/fr1S5fsp43Zu3dvkpKSWLJkSbrGckC6bcXk8tSyVA8PD2rXrs3atWupW7euxuIrDIJCU9h3JpYj/vEkyQVk0tSfxay+s1UCBIUqCHmj4FhAPIIAVcsa0c3dkua1zTAy1Fwi8O7dO6ZMmcKff/5JixYtOHHiBBUqVNDY9bMTlhjN0rt7C2SsnFIKKu6+DWTX87P0Ku+mlTEMDAxwc3PD19eX6dOna2WM/Nq2bRsKhUKny0nyK/kDN4rtK/cg9OEuFMnviHjhi12F9upZfpmRJcXLtfvgGOZFnLEsVo3Qh7sIvr0Oi2Iu+YpZAFIUYKTnO8veepyskUQ/OuSCeoKgUf9z6SYI3r66SOD1FcS+uUVKUupywUqu8yhVbYD6GIU8jueXfuPt60skx4WgTEnA2KIkds4dcao9GgMjCx4FylEqBWQy/b6BIhJ9asRkXyTSAsMP/GSlJfoAEmnmB1vZZezEbWRWPNvrxkc9RBCUhD89zJlnqQ3llIpEAMKfHeHMn1VpMuhiuvHV19ZgYvOxkkqlLFmyBAsLC6ZMmUJsbCyzZ8/WyOxQr169OHLkCBs3bkT1/7tFSqWSLl26UKRIERYtWpTja928eVPduf9T8DAwmVW733LzcTJS6b8323L6Ifn94x4Gypm3LhJLs2h6eFrSp5UVhgb5+/c9cuQII0eO5O3bt6xcuZKRI0cilRbcKrpfbu0gRaWfpcCrHhyimX11SprZauX6Hh4efPvttyQlJWFiYqKVMfLD29ubDh06FOqtMhWK7JN9m5KNMLF0JCn2JWGP9lCsbCvePD0IgF359sgMTXM0Ttl6XxL2eD9BN1ZRqfmPGZ5/eGYGceF31X93qNqbki59s45bKej1+15cooqwKO0vr4sNv0N08DlMLJ3Uyf5/pSRFE3zbG6nMGDObCiTHh5L47jmBV38nNvw2tTpsQKGEF69TqFBau9VRIpEod8RkXyTSAjMTKVExub8db2lXS/3fTnXHUrxcayB1HX508DnMbFJnAmUG/344Uv0/mX+fSplxPaKgUqBUKRCymOc0MxFbeOSERCJh3rx5WFpa8u233xIbG8tvv/2mkYT/999/5/Tp07x48QJBELC3t+ezzz5DIpHQqlUr/vnnHyQSCc2aNSMoKIjAwMBMr7N27VpatmyZ73j0nTxFYNPhd2z9J0bdCfxDVTUfkrZPeGyCivUH3uF3OZ5vhxSjklP2H2CTkpLYsmUL/fr1w9Q09eczKiqKSZMmsXHjRlq3bs2ff/6Jk1POl9ZowtOYV1wKf1igY+aGSlCx6/lZJlTropXre3p6kpycjL+/Px4eHloZI69u3brF1atX+e6773QdSr4YfiBhlkgk2FfuzosrS4gMOknoIx9SklJ3FrGv0jPH45haOVKyWj9Cbq8n6MbqDM8nRD8h5s119d+LOmVfMZLfm3ja9jhIzoXNTUmKDcap9miUigTCHu9HIpFRomJnKjSZiVRqgEqZTODV5YQ92UdSbAgGRlbYlvWgQqPpGJkW5fnlxby4skR93YAtzYDUiouqHr9hX7kbJav1R54Qrn7uv6QGxlRoPJ2SLv0xMLJAqUjixv4+xIRdJyroFCnJ7zA0tubRS7mY7ItEekZM9kUiLajoaMSrCEWuE48ipRpT1NGNqJenuXN0RGpyL5GSHBuCUpFA7c7bMbVyxNS6DBKpIYIqhRsH+mFiURrH2iNwqNITh/98eEr7sGDn3Ilqrf7IcuxyJfW8nlHPTJs2DUtLS8aNG0dcXBwrV67M99prCwsLduzYQcOGDREEgS5duqhvIkyYMIF//vkHQRBYvnw5S5cuZe3atRmusWbNmkLd1TunHgXJmbcuguA3CgQBBC2sQhGAl28UjFkQyoC2VgxoZ51lgrBgwQJmz57N3bt3WbRoEXv37mXMmDEkJibi7e3NkCFDdLI+eE+gPzKJVA+a8mVOKag4GBTAiMrtMDUw1vj1q1evTvHixfH19dW7ZH/dunXY2dnRvn17XYeSLyZGH/6+Tk32lyKoUnhyfg4AptZlsXGon6uxytYdT+iDncRF3MnwXB2vv3N8HakUDHS8Pe6HvL894Mtba5EZmiMzMCE5PpTg2+swL1qZki59uX10FFFBJ5FIZJgVrURSbDChD3YSE3aDej0Oqpv6JkQ/AVKb+kqlxuqePoYmRTId/33GZnY41f63T43MwARLu1rEhF0HiRSJRIZMlhpzu8Ya/kKIRKJ8EafyRCItqFzGKOuFwh9Qve0ayn42EVPrciTGBCFPCMesiDNlPhuPedHKQOqbc8VmszG2KIk8IYKYN9eRJ+S9s7W5qYQSRfX8k48e+uKLL1i3bh1r165l0KBB6gZ6+VGvXj3Gjh0LgJvbvzNTbdu2xdzcHE9PT2rUqEGlSpUAKFu2rPqY5cuXq7eV+5idv5nAuIWhhIQrtJLkv0+lSr2RsPloDDNWhpOUyfZSQUFBzJ8/H4AlS5bQsmVLunbtSr169bh79y5Dhw7VSaIfn5LEkZeX9DbRT5OolOP76vqHD8wDqVSKu7s7fn5+Wrl+XsnlcjZt2sSgQYMwNCzcN1pLFTdA+oFvb1MrJ2xKpjZJVKbEA6k3AHLLyKwYpWsOy/V5/1W6uIHeN+d7G/tvCb+xuT2N+5+lYb/TGJmXACA65DzRrwLSNfVt0OsoDfv4IjUwSdfU9/1lD9XbrOGz7nspW29inmOTJ0QQ/uwIACWcO2FgZIFKBdEx4q4+IpG+EWf2RSItqORkpC4Hfl/jAeczPPbf2QiZgQnlGnxFuQZfZTtGqWoD0jXQyUpmY75PAlQpY6z3H3z01ZAhQ7CwsKBfv37Ex8ezfft2jI2NmTFjBsnJyfz222+5ul5CkorPx/+CVdmePEt0YfyvoSSnCCiVMPC7x1iaSVmzJ5oqDQbRusNthg/2olevnnzzzTfqmwQfs1NX45nrHQlCnu+n5YkgwLUHSUxZ9oZfxtthavzvvfLJkyejVCopVqwYJUqUIC4ujs2bN9OvXz+d/lz9E3JVb9fqv0+CBJ8X5+jopJ2t5zw9PRk7diwxMTFYWWXsV6ILBw4cIDIy8qOowjE2klK6hAFBodl/r9lX7sHbVwGpf5FIsa+U+2QfwKnWSELubEKR/DZP58ukULWc5qtINO39xofaauqbF4nvArl5aDDy+DCs7etRyfUnIPV3pLirj0ikf8RkXyTSAmfHwrNmTSqFKmUKT7z6qEePHpiZmdG9e3c6depE9erVWbJkCTKZjGnTplG8ePaNFROTVfheTmDf6ViehqRWB0gkZZE+T8i0ydz1h//v0Ow0jw0XJMz9M4i+bUto4ZXpl4A7ifzoHan12fysqAS4/1zOd6vC+WmsHUaGEuLi4vj999/ZunUrBgb69ZZ6NeIREiRZ9unQFwICT2JeEZeSiEUOm7XlhqenJ0qlkjNnztCxY0eNXz8vvL29adiwIS4u+esqry+qlTMm5I0i26aYmS0ze5/7mIw9SDK7WW1gbEXzYTfzFCek/hxXLgTvee//1GqrqW9uvQu9yu0jw0lJisK2TEuqtfojXYPFzCY5RCKRbunXJxOR6CNhYSqlXhVjrj1KznfDMG1TqsCtrpmuwyj02rdvz5EjR2jTpg0nTpwAQKVS8ffffzNu3LhMzwl+k8LeU7Ec/v9Wce9PAgsCZLUb4vsfqBOSBE7fAL9roept41p8ZobsQ3W1hUxIeAqz14TrPG1VCXD9UTKrdkczvlcRLCwssLDIfG9pXe/jffdtEKosvmJvb73kzsxdIECZQU1x7NkAAEGp4tbUv4l9GIpxcUvq/DGQ8NMPCT95n7hnb1Alp87e1l0xGDPHourrxQdGELL7KrEPXyOPigcJmDjY4NC+Fvatq+co3kfvgqlbrGI+X3VG5cuXx8nJCV9fX71I9kNCQjh69CgrV67UdSgaU8nJiKMB8boOI0cEgQ823NQHRjloIKippr458ebpIe77TkKlTKZUjSFUbDoLieTfCicJOevfIBKJCpa4Zl8k0pIuLSz1PtGXSqBKWaNCVYmgz27cuKHe7z7NunXrMhynVApsPfqOoXNes/dMHEny1IQsrzPWacl/2rZxX/wSRlBo/vsH6AuVSmDBhkiUKu004sstQYC9p+O49Tjjrhfv02Wi/04eT0TSuyyft6npSMlOqTOBQVsDiH+e2vMjeNdlYh+GggQqTmqDgZkx0VdfEPfsDYbWWd8UjHscxhu/e6S8S8DE3hpBoSL+6Rue/H6cYJ/LH4xXioSH74Jz+SpzRiKR4Onpia+vr1aun1sbN27E2NiY3r176zoUjWlY3VQvfjZzwtpCWiiSfWvzD39ET2vqC3Dn6AgubvPg4vaWnFtbg1uHBpMUm/ozldbUF+DGgX5c9enCm6eHgNRteQO2uHJj/7/l/s8vLSJgiyv3TkwAIDk+jLv/fIFKmYxEakRs2E2u7e7GVZ8uXPXpQmz4baRSsDQT0wqRSN+IP5UikZY0rG6KrbV+N71TCdCthaWuw/gonDp1ikmTJqV7TBAErl27xsOH/2599vyVnDELQvlr/zuUqvxvFfe+tBLKp8Fyhs97zfbjMSg/grrKvafjuPNMnm2JcEGTSmD+hkgSk3UblCAIqFQqVP/5RnqUg8S57OBmmDoWRVAoebjoKLGPQgnanrqmumTnutjUcASgwhgPGv/9BU59s15Tb1zckirTOtBw82jqLBtA3ZWDkZmnrot+c+pBjl7Lg7cvc3RcXnh6enL79m3evHmjtTFyQhAEvL296dGjB9bW1jqNRZPsbQ1oWM0EmZ5/qpRKwMvVAgOZ/s9AV8jhTfj8NvVVyONIjAlU3xgASEmKJDEmkOT4MABUSjlpCwsElZyYN9fT/VHI41CpCtcSRpHoUyGW8YtEWiKTSujqZsHaA+/0dsbD0kyKax2xhF8TKlasSJ8+fTh48CBxcXHIZDKUytTOxCtWrGDp0qUcvRDHb1uitB5LWlK8Zs9bzt9M4KexdoV2xuVVhILVe6J1HUYGKgHC3yr5a99bxvcq+uETckkQBAIDA7l9+zZVq1alQoUKqFSqDNs7SiSSTCsIXiVEfnAMqZEBlb9qy83J20l4EcHtb3cgKFSYORal7KCm6uOMbTNfpvA+m1pO6f5uYmeFcXFLEuKTkRp++KanCoHg+LzvKPIh7u7uAJw8eVKnM+rnzp3jyZMn/PnnnzqLQVu6tLDk4t0kXYeRLQHo0PTD38/6oJKTUYE09f1QLwUAUyvHTHsqvE+gcCyPEIk+NYXz059IVEh0aWFJMWsZ+trofmRXG4wM9TS4QqZUqVJs27aNqKgofH19GTduHA4ODkBqKf8uvxh+2RSFUkWBzlDffyFnwm+hRBXSLZF2+sbo7XIYQYD9Z+KIjs3b11YQBJRKpfrP+6KioujTpw9eXl4cOnQIiUSiTvSF/989TEpK4vHjx5w4cYI9e/YQFBSkPj9ZmYKUD/9sWziXwLF36np9lVwJUgmVvmqL1Ch/cwHv7gSTEJR6w8G+TY0cnZOs0t7Sk5IlS1K1alWdl/KvW7eO8uXL4+rqqtM4tKF+VRPsiuhvNZtUCk1rmlK8SOGY5ypiKaOoVeH5mC6VQoVSYrIvEumbwvNbRCQqhMxMpEwdbKt3M/syKXxWxZj2Tcx1HcpHx9DQEA8PD5YsWUJISAjnzp3jm/nHWLHrrU7iUakgOEzBV0vCiIkvXAl/QpKKoxfi9ap8/79UAhw5H/fB45RKZYZS+7QEPu0PoD5GqVRib28PwD///MP06dOZMGEC58+fRyKRcO/ePXr27EnlypVp3bo13bt3p1evXmzfvh0AhUqZ454Bia/epntBSW9icnReVqKuPOfenL2gEnDoVDvHyX6KSrvfn56envj5+Wl1jOzExsayY8cOhg4dilT68X38kkolDPey0XUYWRNgcIfCtXSiWnljCsu3SlkHQ3HyQCTSQ4Xj9qZIVIjVrWxCp2bmHDofrzfb0hgaSJgywFanDcQ+BRKJBKVZHfzuRug0DqUKgt8omPZHOMsmlygU61UBTlyKJ1muJz80WRAE2HM6jt6trZBKsm7K99/y+8jISF68eMGjR48ICgpCoVDg6upK8+bNefjwIUOHDiUgIABjY2OOHDnCkSNHsLa2xt3dnaioKEaOHIm/vz9NmzalTZs2PHv2jPXr1zN37lzKlSuHkZ0hqhzcZYw4/5jw/6+pN7azIvlNDE+W+2JVtSRGRXJ/M/D14Zs8XX0SVAJO/Rvj1Cfrdf7/ZZTFlmKa4uHhwR9//EFgYCBlypTR6liZ2blzJwkJCQwePLjAxy4onvXN8LsSz6V7SXpVkSMBBra3pkLpwjXz3LqhOWdv5K17fkGSAO0ai5MHIpE+KiT3C0Wiwm1UtyLYFZXpTfOiiX2KYFdUvNenbVExShZu/vDa6YKgUqV269/2T/5mbQvS7lOxersE5n2R75Ss3Hg+25tnq1evpkqVKqxevZrw8HBat25N/fr16d+/P99++y3fffcdgwYNYtmyZVSqVIkWLVrg4uJCcnIy5cqVY8uWLezbt482bdpw+fJl/P39KV++PNOmTaNfv37UqlULiUTC06dP2b59O6YGxggf2KhQHh3PkxWpZe1F6pWj1sLeGFiaoIhJ5MkfJ3L1NRAEgefrzvB0pR8SqZRKX7fNVaIPYG5gkqvjc6tFixZIJBKdlfJ7e3vTqlUrHB0ddTJ+QZBIJHzd3xYTI0kOFpEUDJkUypY0pH9bqw8frGcaVTctFKX8BgbQplHh6IUgEn1q9P83iEj0ETAzkfLbxBJYmkt1XpI3tKO1+KZcAARBYMm2KBKT9WdmWgA2HnrH02D5B4/VtYi3CoJCFXq3BCYzKmUKa7df4osvvlCvp3+fQqEgKCiIR48eERgYiEqlIj4+nn79+rFy5Uq2bdtGnz59CAwMZPXq1cjlcn766SdmzZoFgFQqpW/fvri6umJmZkZgYGqjrBcvXtCpUyecnZ2ZNGkSUqkUCwsLoqKiKGdR4oNxP/79OIqYRAwsTag4viVGRS1wHusJQNSlZ4T+cweA5+vPcmWkNy82nFOfe3fWbq6M9ObV/usARJx5SMjuqwDIzIx4ffAGNydvU//5EJlEirNVyQ8elx9FihShbt26Oinlf/jwIefPn2fYsGEFPnZBs7WWMalv0Q/caioYaTccpg+xLTQVTe+TySR0bWGp1zc9ZdLUCgSLQtoEViT62IlTeyJRAXEoZsDiL0swaUkYsfEqnaxD7t/GigHtCt/sRmF08moC527qX/mlAMxfH8mqb+31+sPvoyDt3pCIDrmg3le6Uf9zmFr9O9uqSInn5fXVvHl6kKTYYAyMrSlWtjXlG32DoXHGNb9SmSHGNlVZuXIyjRo1on///hnWZJcoUQIjIyOCgoIoUaIEhw8fxtramgcPHnDnzh31lnBBQUE8fPiQmjVrYmpqCsDr1695+fIlJUqUQCaTqR8HaN++PQ0bNsTJyYnSpUvz7t07bG1tqWBVEqlEkmUpf+ix20Rffg6kbq1nVDT1BmCxZpUofvEp4ace8Pyv09jUciQlOoGk1+/SnZ8cHgtASlxq93VVyr/r7RUxicTG5O57XymoqGRdOlfn5IWnpycbN25EEIQCXca0bt06ihQpgpeXV4GNqUue9c15GZbCxsM6riSSwPfDixW68v33tWtiwYZD71DoacsVpQq8XMUtfEUifSUm+yJRASrjYMjyKfZ8vTSMN1HKAlnDL5WkNhEb2dWGPq3ERL8gpCgE/tihf9vFQWo5/7NXKRy9EE/HZvpb4fEoSI5MWrA7F6S5fXgYb18FIJHIMCtaiaSYl7y6t5nY8FvU7bYHaSZry01tKiKRyPj7779p3bo1JUr8O7Muk8koX748KSkp6qR+9+7d/PTTT7x9+1Z9nEQiIT4+Xn1M8eLFMTU1JSEhAQAjo9SExc3NDSsrK2JiYqhWrRr9+vUjLi6Omzdvsm3bNrp160bTpk1xMrfjRVxYpq/Rvk2NLBvnVf66HZW/bqf+e6VJbag0qU22X7MSLatRomW1bI/5kMo22i9v9/T05JdffuH+/fu4uLhofTxIrezYsGED/fv3x8REu0sV9MngDtYkyQV2nIgt8LEl//+faYNsaV67cG8vW9RKxtBONvy5962uQ8lAKoEOTc1xdiy8N1NEoo+dmOyLRAXMoZgBa2c4sHrvW/afiVMn49ogkUDxIjK+HWJLTedP50Omrp2/mcDbOD3qTvUfEgn4nIyhQ1NzvWvS+Pr1awIDAzkVYIpSZQP/Wfl7YXNTkmKDcao9GqUigbDH+5FIZJSo2JkKTWYilRqgUiYTeHU5YU/2kRQbgoGRFbZlPajQaDpGpkV5fnkxL64sUV8zYEszAOwr98Cp9ijevgoAwLnZLEpXH0zC2+dc3NaC2PBbhD85SIlKXTLELZEaUbx0beRyObGxsemSfYlEQrly5RAEgejoaPz9/Zk1axaJiYl8/vnndOvWjZs3bzJ//nxiY2OJiEht6Ojo6IiVlRWJiYn89ttvlC5dGhcXF9q3b8/kyZNZtGgRCxcuZOHCheqxrK2t1d3eqxUpy8v4cJSC/n4vppFJpJS3tNf6OE2bNsXQ0BA/P78CS/aPHj1KaGjoJ1HC/z6JRMKorjaYm0pZd+AdEgkFsixHKk39rfHd58VwrVO4E/00vTwtOX01nichKXrT+FAqgaLWMkZ1K6LrUEQiUTbEBTYikQ6Ymkj5sk9Rfp1oh621TOPr8dIaAXZtYcm67x3ERL+A7T4Vi1S/cuh0BAECXyu4+0y/1u6fOnWKTp060aRJEx6+iOW/if77Xt5aS9jj/cgMTEhJiiT49jpCH+wE4PbRUby4upSkmJeYFXFGpZIT+mAn1/f1QqlIwtjcHrMizuprWRRzwcquDqZWTunW3Ev+/xYpkfz7VhkV8u+69f/6dvZSJk+erN4y731FiqR+IJbL5Vy6dEl9M6BevXqYmJhw5coV9Y2XsLAwUlJSKFmyJG5ubgAsW7aMb775hrVr1xIREcHMmTPx8fFhxIgRtGvXjqFDh7Js2TKOHz9Op06dkEqluNrXKDSJfhM7Fwy13I0fwNzcnMaNGxdok75169ZRu3Zt6tSpU2Bj6guJRMLAdtbMG1Mca3Op1n8vSgCnEoasnGr/0ST6kLp2/9shxfTqfUUlpFZOmJmIqYRIpM/EmX2RSIfqVjZh/fcO7Dkdy97TcUS8VSKVkuc792kfBJrWMqVXSytcyhlrLlhRjjx/JefOU/1KojMjk8K+M7FUr6A/3yMzZ87k2rVreHl5kVzUjiRF1scam9tTv+dhJDIjAra6Io8PIzrkPKY25YgKOglA7c7bsCnZkOT4MAK2upIQ/Ziwx3sp6dIXU+uy6jX71dusUa/ZF1RKzItWJj7qIY/PzeLVva0kxr5Uj5scn3lZPMDBQ/8Q6BRD06ZNMzxnY2MDwLt37yhXrhzVqlXjxYsXjBkzBoCuXbtiaWlJTEwMwcHBKJVKDA0NWbBgAQ0aNCA6Ohp7e3uaNGmCtXVq3wB3d3fc3d2zjKehXRWKm1gTnvQuy2P0gVJQ4eXUuMDG8/T0ZPHixSiVygxbImpaeHg4+/fvZ9GiRVodR981rmHKhtkl+X1HFCcuJWh8ll8qBQQY0M6K/m2tMTTQo6xYQ8o4GDK2RxGW/a0fS8R6eFhQt4o4kSAS6Tsx2ReJdMzUREq/Ntb0bmXFpbtJ7D0Vy+X7qU2vpBJAknXyL5OB8v9Ne4pYSvFys6RDUwtsrbX7AVaUNb/LCTpba54bShWcuprAlAECRoYZPxjfunULOzu7TGeptUEul6tnvxs3bsyZ18aQTbJfrGwrDIxTe1CYWjoijw9DnhBObNgN9THX9/XKcF5M2HVKVu2T5XUlUhk1O2zgWcDPRAefJzEmCJuSDUiIfkpiTGCm6/XTPHj4BNdalTE2zngDxczMjOLFixMbG0vx4sVZsWIFCxYsIDQ0lIYNG9K3b19iYmJISEjAxcVFvba7TJkyfPXVV1mOKQgCKpVK3XBOIpGomwPKJFK6l23G6geHP7gNn84IkBT6lt8n/0T9DRsyNDbUBg8PD2bNmsX169epV6+eVsfavHkzUqmUfv36aXWcwsDSTMr0IcXw+CyRTUfecf9F/vtySCWpTUcbVTdlSAfrj37teBc3S6JilGw+orvGhxLAs4EZo8XyfZGoUBCTfZFIT8ikEhrXMKVxDVPiE1U8eSnnYZCcR///k5isQp6SmuAbGkhwsDWgSlkjKjsZUcnJCIdiBkj1qcbvE3X/RbLWEv3sOsgH3VhDZKAvCW+fkpL0DiOz4hQp2Yiy9b/E1Mop0+spVamVCJXL/JucRkVFqcvFP//8c/76669cxykIAu/evSM0NJTXr18TGhqq/m9ra2tmzJiR4RwjIyP1HvIzZ86kfj8PjM3sshwjLdEHkGSRgFvZZSybNjIr/sH4TSwccGm5VP13pSIJ/w31ATCzKZ/ledOnTaF/p3IYGGQej6WlJUZGRiiVShwdHfnjjz8+GAuASqVCpVKpE/n3+yxIJJJsZ6fbOzbkz4dHUOrpHoYSCbQsWpNftn6NpYUFK1as0HofiQYNGmBubo6vr69Wk31BEFi7di1eXl7Y2tpqbZzCplENUxrVMOVpsJz9Z+I4djEeeYqgnp3ProeNVJpaESAIYGUupbOrBR2bWmBX9NP5ODu0ozWCCrYc003C71HfjKkDbcXPGyJRIfHp/HYUiQoRc1MptSqZUKuSWCJXmAiCwMNA3ZTwh9zZQFJsCGY25ZHKTEiKfUnoIx+igs/QsO9JDIwy3xrpUVBqsi8IAlu2bGHChAnExKR+iEzbzz2NXC4nLCwsXfKe2X+HhoaSlJSU7lwzMzMcHBxo0KBBlq9h3LhxdO/enYsXL7LujCWxSVkemiVLu1rq/3aqO5bi5VoDoFIpiA4+h5lNBQBkBv9uX6dSpN8mLjb8NqbW5TAwskBQKXl64ScU8tSviV2FTlmOXc2lIlZWWa8Ttre3x9bWlubNmyMIgnpW/v0kPrMt4aRSaZ5nvIsYW9Cvggebn/jq3ey+FAnFTW34vu0YKv5pxeeff46FhQW//PKLVhN+IyMjXF1d8fPzY+rUqVob58qVK9y9e5dff/1Va2MUZhVKGzGpX1FGdrXh3vNkHgfJeRAo5/4LOZHv0u8zJwFKFjegarl/b3BXKWv8UZbrf4hEIuFzLxusLKSs2v0WSTbVf5qS1ki4h4cFo7sVERN9kagQEZN9kUgk0pCwKCXxSRkTKm13kK/q8RsOVftgX6kbJpalAHh8fg7Bt9YiTwgnOvg8xcu3zRCXTJqa7N+8eZORI0dy6dKldM9funSJVq1aqRP5yMjIdM9LJBLs7OxwcHDA3t6eKlWq4O7ujr29Pfb29urH7e3tsbT88D7Mjx8/5sGDB9SuXZsKTyXceCqQXZO+zBQp1Ziijm5EvTzNnaMjUpN7iZTk2BCUigRqd96OqZUjptZlkEgNEVQp3DjQDxOL0jjWHoFdhQ68frCD1/f/xtS6LPKEcFKSogAoXfNzrErUznJsJ3vDbGPr2rUrPXv2BMhQcp9GG0nukIqtOf36FsHxEajQn/UlKgRm1u6HqYExw4YNIz4+ngkTJmBpacn333+v1bE9PDz4/vvvSU5OznTZhSZ4e3tTqlQpWrVqpZXrfyzMTaXUdzGlvsu/N+CUSgF5ikCKMnWZkaGBBJmYYKbT09OKWhVN+Gl9BC9DFVq7lZfWdX/aIFtxjb5IVAiJyb5IJBJpyNPg7Gf1X95ai8zQHJmBCcnxoQTfXod50cqUdOnL7aOjiAo6+e/e7rHBhD7YSUzYDer1OKjuIJ8Q/QRI7SAvlRqrS/TLfjY+3Vg2DvUJvrUWAKks83WsShU8DJTzzaC6qDKZGkpISKBIkSJUrVo1Q/Lu4OBAsWLFsixZz4ubN2/Sq1fqOvsydcdTpt7EbNfIZ6V62zUEXVtB2JP9JMYEITM0x6yIM0Wd3DAvWhkAQ5MiVGw2m8Bry0mOe408IRx5QjgAVna1iQ65QGJMECBgWbwGJasNyHatv5GhBMcS2cc6dOhQihYtmuvXk19GMgO+q9OfkeeWFPjYWZEioVvZZtS2raB+bPz48cTGxjJjxgwsLCyy7VWQX56enkyZMoWAgAD1jgealJCQwNatWxk/frzWmwB+jGQyCaYyCaYfPvSTVsnJiD+nO7D5yDs2H43R6Cx/Wj+FDk3NGdWtiNh1XyQqpCSCoKcL+UQikaiQOXohjl82RWV4PG1m38TSMUMHeTvnTpSsNoAb+3oDUMdrR7oO8ipFEpVbLKBk1T7Zrtl/n6BScuvwUKJensbEyomGfU4glWU+e2lvK6N5yf1s3LiRixcvIpFI1Im/RCJBLpdrNKHPzsuXL1m8eDGhoaEkG1Qm2mJogYyrCVXLGrH8m4JpZphXfz08wobHx3UdBjKJFDsTGza4TcHUIOP35fTp05k/fz6rV69m5MiRWolBpVJRvHhxxo0bxw8//KDx62/ZsoUBAwbw+PFjnJ2dP3yCSJRPwW9S2H8mjkPn40hMFvK844FEAgYyaNXAHC83Syp+5E0PRaKPnTizLxKJRBoiT8n+k5W2Osi/T5mSwN3j44l6eRojs+LUbLc2y0Q/LeYxY8YwZswYXr16xcaNG1m9ejUvXrxAEAQiIyPVe8Jrm6Ojo3qLsqgYJT2mhRTIuPklk6Ym+/puWKU2vEqI5ETINZ2t3pdKpFgZmrGk8ZhME32AefPmERcXx+jRozEzM2PAgAGaj0Mqxd3dHV9fX60k++vWrcPNzU1M9EUFprRd6tZ8wzpbc/JKAgfOxfE4SK5uGCuTgUpJup99mTR1Lb4gpJbrl3EwpH0Tc1o3ssDSTJzJF4k+BmKyLxKJRBryoaZF2uwgD5Cc8Ibbh4f9v8FceWp13JBlJ/400vfWiJcsWZJp06YxdepUzp49y/Xr17Gzy7ojvjYVtZLhXNqQpyEpGt2PWxuUKmhYXf8LjqUSKdNr9UWuVHAm9FaBJ/wyiRRLQzOWNh5LSbOsu9NLJBKWLFlCbGwsQ4YMwdzcnK5du2o8Hk9PTyZMmEBcXBwWFhYau+6LFy/w9fVlw4YNGrumSJRTJkZS2jWxoF0TC1IUAi9ep6h39XkbqyQ5RUBQgbGRBCtzKc6OqU0Py5cyxNhITPBFoo+NmOyLRCKRhmS2X31OaKKDfHzUI24dHkpSbDDWDg2o0fZPDE1sPji2YSY95SQSCa6urri6uubh1WhOV3dLFmayLELf2NvK+KyQNK4ykMr44bNBLLy1k0MvLyKBAkn6pUiwNbZiWeOxlDIv9uHjpVL++usvEhIS6NOnD/v376dNmzYajcnDwwOFQsHZs2dp166dxq67fv16LC0t6d69u8auKRLlhaGBhIqORlR0NKJDU11HIxKJdEG8hScSiUQaUsw6b4240jrIA9w5OoKL2zy4uL0l59bW4NahwSTFBgOoO8gD3DjQj6s+XXjz9BAAt4+OUh+nTInj1qEhXPXpwlWfLry6ty3LsYvb6O89X/fPzDAz0e8O3BIJdG1hWai2opJJpEyt2YsZtfthKjNGKtHeRwHJ/3dTaFO6HuvdpuQo0U8jk8nYtGkTrVq1omvXrpw5c0ajsVWqVIlSpUrh6+ursWuqVCrWrVtH7969MTc319h1RSKRSCTKCzHZF4lEIg2p6JT3ddvV266h7GcTMbUuR2JMEPKEcMyKOFPms/EZOsgbW5REnhBBzJvr6g7ygurfnQDiIu4R8+a6+k9yfGimY8pk+r3W3MRISoemFuRxi/kCIZNCm0aFL6mTSCS0LV2PLe7TaFAs9ftLksttDj9EigQbI3N+qT+c6bX7YmmY+6UORkZG7Ny5k8aNG9OxY0cuX76ssfgkEgmenp4aTfb9/PwICgpi2LBhGrumSCQSiUR5JXbjF4lEIg3qPSOE8GilrsPIse+G2eJeT3+T1fC3CgbPfk2SXP/eqiQS6NPKihFdbHQdSr4IgsDJ1zfZ9vQkD969RCaRohTytn+XFAkqBCwNTfEq04R+FTzylOT/V1xcHK1bt+bhw4ecOnWKGjVq5PuaABs2bGDIkCFERERga5t1H4Gc6tevH9evX+fevXtIJIWn2kMkEolEHyc9ni8RiUSiwselrBGFqKKbSvmoRigIxW0MGN+riK7DyEAqhVLFDRjcwVrXoeSbRCLBo2Rt/mw+ib+af0W70vUx/H8DSSmSdE0cM5xL6rKANFVsnPi+Tn/2tvyBUVU6aCTRB7CwsODw4cM4OTnRqlUrHj16pJHrenp6AnDy5EkSEhK4ePEiSUlJebpWdHQ0u3fvZtiwYWKiLxKJRCK9IM7si0QikQbtPhnL8l3Ret9BHsDKXMqeX0rpfWIiCALT/gjn2sMk9TZSuiaRwB9TSlC1bNbbGhZmCYpkHr0L5uG7YB6+e8nd6EAik2NIUSkQBAEDqQFmMiMqWZemio0Tla1LU8XGkRKm2r0xEx4ejpubG3FxcZw9e5YyZcrk+VopKSlcunQJLy8vDA0NiYiIQKFQsHPnTnr06JGja1y/fp0DBw7Qu3dvfH19mTBhAsHBwdjb2+c5LpFIJBKJNEVM9kUikUiD3sUp6fltCAo9r+SXSqBvGys+72yj61ByJDxawZA5r0mWC6h0/K4lAfq0Lvzl+3klCIJObxCFhITQvHlzpFIpZ8+excHBIdfXuHv3Lo0aNSIuLg6JRML7H4WuX79O7dq1c3Sd7777jh9//BEAc3NzKlasyJkzZ7C0tMx1TCLR/9q7/yC5y8O+45/d+7l3J52kQ0JISJYMEiCgErWwrUIQFSMQxUMgtV1sU5N4xoUh9jiDmzbx2GO3TWsntmOmM55OSZwU3Np0WrcGyg8bHBsDMZh4ELYnGIECSKjoJCGhH6e727vd7R9XVH6oIMk67d73Xq8ZDULa/e6jG07se5/n+zwAx5tl/ADHUX9fW9at7klbi//t2kjyvguP39nik23u7Pb8uxvnplyemFVvllIpuWBVJR+7cuov3z9WzV4J8uoO+iMjI1m/fn127dp11NeYP39++vv7Uy6XXxf6XV1dOfvss4/4OieffPKhr8fQ0FA2btyYefPm5dOf/nTMpQDQbC3+dhRg6rlq7YyWWW5+OG3lZM25lZw8p3WP3Tuclcu680c3zE1bk4K/VEpWn9Wdz/7OSWmbShszFNDSpUvzwAMPZMeOHdmwYUP27t17VM8fGBjI97///fT29qb8muMeVq1alY6OjiO+zoIFC94U9SMjI3nsscea/qEIAIh9gOPszCVdOWtJZ8vO7tfqyQfWTc1lxu8+u5I/+eS8dLaXTvjXd+15PfmjG+ams0PEtYIzzzwz999/fzZv3pwrrrgiQ0NDR/X8FStW5K677joU+6VSKRdccMFRXeONtxCUy+VcfPHFuffee4/qOgAwGVr0rSjA1PbPr53T7CEcVrmUbFjTm5XLu5s9lGO2anl3/uNn5mfZosk/SaBcTjrak999/6x89mMD6WgX+q1k5cqVuffee/Pkk0/m6quvPrST/q5du44ouNeuXZtbb701ycReBOeff/5Rvf4bY/+qq67Kfffd5559AFqCDfoAJsm37tubP7/z6JYXT6ZSKZnVV86tn1+Qvp6p/1lvrd7Id/5qf/78jldSbyT1Sbh1YsXSzvzBdQM5dd6RL+3mxPvRj36Uyy+/PJdddlm+9rWvZf369dm8eXM2bdqUZcuWve3zr7/++txyyy3ZtGlTFi46Lc9srealXeOpjjUyXks6O0qpdJWy5JSOvOOUjrS3TXzoMzIykkqlcugaX//619PW1japf1YAOFJiH2CS1GqN3Pgn27N529ikhOix+OLvzs17zj4+Z5+3ii2DY/nGHa/k4SeHU0p+rd3628oTtznMm92WD106M+/7jT73508R99xzz6Fj9KrVahqNRr785S/npptuesvnjVTr+eHPDuaRJ17Jc9vLeWnX+Ot+v1TK647SbG9Lli7oyIqlXfmNVT3ZcNHirFu3Lt/+9rfdpw9ASxH7AJNo246x3PjlwQwN15se/NdcOjP/rMDHxe18ZTx3P3wgd/74QF45UE+5lKT09jP+rwZ+krznnO5cvXZGVp/VnbLIn1KeeuqprFmz5tBmfa/eg//QQw8d9vFbBsdy548P5N6/PpDh0cbr/js4Eq8+fsFJ7bn64r5c9t6+QqyYAaA4xD7AJHt2azWf+tPBjI41mhb8V1zQm5s+PGdazDyO1xr55ebRbNpSzaYt1fzt341m++7amx7X3VnKskWdOXNJZ5Yv7sy5p3Vl3hQ7oYAJL7zwQs4777zs3bs39dd8k5XL5ezYsSMDAwOHfu3lvbXcfPvuPPLk8FEH/v9PKUl7e3Lthv586LKZh5b5A0AziX2AE2DTlmp+/9/vyNDIiZ/hv2ptXz7xgdnTeqZ6tFrPSLWR0Woj7W2ldHaU0tNdmtZfkyJ5+umnc8kll2Tbtm1pb2/P+Pj/W4r/zW9+M9dee20ajUZ+8PjB3Hz77oxUJ+eDt1Imlvj/4W8P5LRTJ38DSQB4K2If4ATZMjiWL9yyK8+/NDbpr1UuT4THx66clWvWz5gWM/pMb/V6PY888khuu+223H777Tlw4ECSiR37f/zIz/LHt+3OT34xsa/DZL7xefV777or+vORDTN97wHQNGIf4AQaG2/kW9/bl2/es/eI7ic/FqUkSxd25DO/PZB3LjS7yPQzMjKSu+++O5/73OfS278wZ19+a17cMX7CV9VcvqY3N31kjk0eAWgKsQ/QBM9ureZLt72cv9s2dvzuGy5NbBr20X/Un2sudd8w7N5byye+sj0799SOy/fY0SolWXd+T/7wugG3jABwwol9gCZpNBrZuGk0331w/zEfG/fao+KuvnhGNqzpTX+fc77hwMF6PvmV7Xlxx3hTQv+1rryoL5/6J7Mt6QfghBL7AC1g5yvjue8nQ9n49Eie3lLNwZGJv5rLpYkZ+2TiPuNGfeKfpVJy6rz2rFjalX/4rh5HxcEb/Jtv7MqDTxxs+pGXr/rsxwaybnVvs4cBwDQi9gFaTKPRyPaXa9m0pZode8ZTHWukVs/EDvJdpbxzYWdOX9SR7k5nesPhPLTxYD5/y65mD+OQUpKeSim3fn5B5sy08gaAE0PsAwCFsfdALdf9q5ey/2A9rfQOp1xO1pxTyb++/iTL+QE4IUwLAQCF8R++sycHhlsr9JOJkzce+flwHto43OyhADBNiH0AoBB2763lgZ+2zn36b1QuJbffv6/ZwwBgmhD7AEAh3P3XB9JiE/qvU28kv3q+ms0vVps9FACmAbEPAEx5tVojdzy4v+WW779RWzm588cHmj0MAKYBsQ8ATHk//duR7N7Xouv3X6NWT7732FCGR1t/rABMbWIfAJjyfv7MSNqmyKl21bFGnt1qKT8Ak6u92QMAAPh1PfV8NbXa5F1/z7afZOOd1yRJ3vuRh1OZuejQ79XGDua5v7k5u577XkaHtqdU7kh338LMX351Fq26/k1H7ZVKydNbqjn39O7JGzAA057YBwCmtEajkWeaOFO+6aHPZfvT/z1J0jt7ecar+zO0+1fZ/OgXU27vyqnn/s7rHl8uJZu2mNkHYHKJfQBgSvvfO8czPHr4nfl+8p8vyMj+F7N41Q2pjR/M4DN3plRqy8nLrsxp/+CzKZfbU6+N5oWffT2Dz96Rkf3b0t45MwNL1uW0934mnZU5ee7xr+X5v7n50DUf/S8XJknmn/H+nLXuq9n70uNJkjmL1mbl+25LbXwkD//F30u9NpqR/dveNKZaPXnqObEPwOQS+wDAlLbzlbdfv7/1599IW0dv2tq7Mzq0PS/+4i/TO+eMLFjxofzivuuze8sPUyq1pWfO8ozsfzHbf/Xfsm9wY1a//3+lq3d+emafnoN7nk2S9J20IuVyVyozFydJ+k95d4b3vZDdWx/MT29fn/Hq/tRro+k/5d1ZtPLjhx3PriMYMwD8OsQ+ADCljY69/Xl7Xb3zc/4H7kmprTOPfuuiVIcGs2fbI6nMWprdW36YJFl15bcza8F7Mjo0mEe/dVEO7nkmg898NwtWfCiV/iWH7tk/57JbXnfP/hlr/23SqGf7pu9kaM+mJEmp3Jm+gTPT3tV/2PGM1Vr8jEAApjyxDwBMafUjOMXupCXr0941M0lSmbEo1aHBVA/uzP7BjYce88QdH3zT8/YNPpEFZ13zltfe+uQ3sn3T/0j//NU5Z8MtGRt+OU/c8cFs++VtKZXas+zCz7/pOY36xF4Db9y8DwCOF7EPAExpnR1vH8yvhn6SlMqHf/szc955b752z9y3vG5tbDjPPf7VJI3Mfefl6awMpLMykP75q7Pr+fuz58WHDz+e9gh9ACaV2AcAprTe7mOP5hnzVh76+eK/f2PmLr00SVKvj2fPiw+nZ9ZpSZK29sqhx9XHhw/9vDY+nEZ9PEmyf+cv/u+vjWRo98Ry/nJHz2Fft9JVPuYxA8CREPsAwJT2jlM6UioljWO4DX72wjWZs2htdm99ML+87+MTcV8qZ3T/ttTGD2bVlbenMnNRKv3vSKnckUZ9LBvv+nC6+07NolUfz7zTrkj/Ke/J3pcey+Az382+HRtTqw6lOrwzSXLKGf/4sK97+qkdv84fGQDelo+VAYAprdJVzsK5xz5/cc6GW7LkXZ9KpX9phvdtSfXgzvTMPj3veNcn0zvnjCRJR/fsLLvwC+nqW5DqwV3Zt+OJVA9OBP25l/9ZFq+6IZX+d2Z0aDD1ejUz552Xsy65OQvP+eibXq+tnJy5pOuYxwsAR6LUaBzL5+AAAK3jS7e+nB88PpTaEWzW1wq+8PGTctF5h1/iDwDHg5l9AGDKW764M/UpNH2xfHFns4cAQMGJfQBgyrvovMrbP6gFlEsToT9/wLZJAEwusQ8ATHknzWrPhSsraWvxdzb1RvJbF/c1exgATAMt/r9EAIAjc9XaGS1/z35vdykXv6u32cMAYBoQ+wBAIaxa3pWFc9tTKjV7JIdXLifvu7AvnR0tOkAACkXsAwCFUCqV8skPzk4rnjNUKiV9lXKuuXRms4cCwDQh9gGAwnj32ZVsWNObcotNnjcaye9fOyf9fW3NHgoA04TYBwAK5cb3z86sGeWWWc5fLieXnN+TC1b2NHsoAEwjYh8AKJS+Sjl/cN1As4eRJGkrJ7NnlPOJD8xu9lAAmGbEPgBQOKvPquRf/NM5TR1DuZz0dJfz1d872fJ9AE44sQ8AFNJl7+3LTR9uTvC3lSdWGPzp783L4pM7mjIGAKa3UqPRinvWAgAcHz94fChfuvXlJEmtPvmvVy4lA/1t+cqn5mWR0AegScQ+AFB4z780li/+p115ZuvYpL1GuZTUG8kVF/Tmht+and6KBZQANI/YBwCmhVqtkf/6wL785V17J/79OM7yl0rJnJnl/MuPDmT1WZXjd2EAOEZiHwCYVrYMjuU7f7U/33t0KNWxRkpJjuXNULmc1OvJ3Flt+c21ffnNi2aYzQegZYh9AGBaGhqu5/6fDuV//mh/tg6OJ5kI+EZj4scbtZUnluk3GhMz+avP7M7VF8/I+Wd3p61cOsGjB4C3JvYBgGlvz/5aNm2pTvx4oZqtO8ZSHWtkfDzp7Egq3eWcfmpnli3qzPLFnTnt1I5UusziA9C6xD4AAAAUjI+kAQAAoGDEPgAAABSM2AcAAICCEfsAAABQMGIfAAAACkbsAwAAQMGIfQAAACgYsQ8AAAAFI/YBAACgYMQ+AAAAFIzYBwAAgIIR+wAAAFAwYh8AAAAKRuwDAABAwYh9AAAAKBixDwAAAAUj9gEAAKBgxD4AAAAUjNgHAACAghH7AAAAUDBiHwAAAApG7AMAAEDBiH0AAAAoGLEPAAAABSP2AQAAoGDEPgAAABSM2AcAAICCEfsAAABQMGIfAAAACkbsAwAAQMGIfQAAACgYsQ8AAAAFI/YBAACgYMQ+AAAAFIzYBwAAgIIR+wAAAFAwYh8AAAAKRuwDAABAwYh9AAAAKBixDwAAAAUj9gEAAKBgxD4AAAAUjNgHAACAghH7AAAAUDBiHwAAAApG7AMAAEDBiH0AAAAoGLEPAAAABSP2AQAAoGDEPgAAABSM2AcAAICCEfsAAABQMGIfAAAACkbsAwAAQMGIfQAAACgYsQ8AAAAFI/YBAACgYMQ+AAAAFIzYBwAAgIIR+wAAAFAwYh8AAAAKRuwDAABAwYh9AAAAKBixDwAAAAUj9gEAAKBgxD4AAAAUjNgHAACAghH7AAAAUDBiHwAAAApG7AMAAEDBiH0AAAAoGLEPAAAABSP2AQAAoGD+D0CKEiQ/dhImAAAAAElFTkSuQmCC\n" + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/sAAAQSCAYAAADwlOr+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1iTZ9vH8W8S9hKcoCIoinvVWVete+9dN1artXVb92rrqrPa2lrFUffeWqt1j4qKdU/EwRRE9kzu9w8eeWtBAQkE8PwcB8+jyZ3rOqMW8ruvpVIURUEIIYQQQgghhBC5htrQBQghhBBCCCGEEEK/JOwLIYQQQgghhBC5jIR9IYQQQgghhBAil5GwL4QQQgghhBBC5DIS9oUQQgghhBBCiFxGwr4QQgghhBBCCJHLSNgXQgghhBBCCCFyGQn7QgghhBBCCCFELiNhXwghhBBCCCGEyGUk7AshhBDZhLe3NyqVirVr1yY9NmPGDFQqleGKygZe/7ksWLDA0KUIIYQQOYaEfSGEECIFa9euRaVSYWZmho+PT7LnGzZsSIUKFd6r7U2bNrFkyZIMVvh2vr6+zJgxg2vXrqXrdY8fP2b48OG4urpiYWGBhYUF5cqV48svv+T69euZU6wQQgghMoWEfSGEEOIdYmNjmTt3rl7bTE/YnzJlCtHR0elq39fXl5kzZ6Yr7B84cIAKFSrw+++/06RJExYvXszSpUtp2bIlhw4dokqVKjx58iRddQghhBDCcIwMXYAQQgiRnVWpUoXffvuNiRMnUrhw4Szv38jICCOjzP1x/ejRI3r06IGTkxPHjx/HwcHhjefnzZvHzz//jFr97jGCyMhILC0tM7NUIYQQQqSRjOwLIYQQ7zBp0iS0Wm2aR/c3bNhAtWrVMDc3J2/evPTo0YNnz54lPd+wYUMOHjzIkydPUKlUqFQqnJ2d39peSmv2//zzT+rVq4etrS1WVlaULl2aSZMmAXDy5Elq1KgBwIABA5L6+Pc+AP81f/58IiMjWbNmTbKgD4k3HL7++mscHR2THuvfvz9WVlY8evSIVq1aYW1tzWeffQbAmTNn6Nq1K8WKFcPU1BRHR0dGjRqVbIbC6za8vLxo3rw5lpaWFC5cmFmzZqEoSoq1rly5EhcXF0xNTalRowYeHh5vfV9CCCHEh0xG9oUQQoh3KF68OH379uW3335jwoQJ7xzd//7775k6dSrdunVj0KBBvHjxgmXLltGgQQM8PT2xtbVl8uTJhIaG8vz5cxYvXgyAlZVVmuu5desWbdq0oVKlSsyaNQtTU1MePnzIuXPnAChbtiyzZs1i2rRpDB48mPr16wNQp06dt7Z54MABSpYsSa1atdJcB0BCQgLNmzenXr16LFiwAAsLCwC2b99OVFQUQ4cOJV++fFy6dIlly5bx/Plztm/f/kYbWq2WFi1aULt2bebPn8+RI0eYPn06CQkJzJo1641rN23aRHh4OEOGDEGlUjF//nw6deqEl5cXxsbG6apdCCGEyO0k7AshhBCpmDx5MuvXr2fevHksXbo0xWuePHnC9OnT+e6775JG2QE6depE1apV+fnnn5k0aRJNmzalSJEihISE0Lt373TX8ueffxIXF8fhw4fJnz9/sucLFSpEy5YtmTZtGh9//HGqfYSFheHr60uHDh2SPffq1SsSEhKSfm9paYm5uXnS72NjY+natStz5sx543Xz5s1747rBgwdTsmRJJk2axNOnTylWrFjSczExMbRo0YIff/wRgGHDhtG2bVvmzZvH119//cZ7fPr0KQ8ePMDOzg6A0qVL0759e/744w/atGnzzvcphBBCfGhkGr8QQgiRihIlStCnTx9WrlyJn59fitfs2rULnU5Ht27dCAoKSvqyt7enVKlSnDhxQi+12NraArB37150Ol2G2wsLCwNSnl3QsGFDChQokPT1008/Jbtm6NChyR77d9CPjIwkKCiIOnXqoCgKnp6eya4fPnx40q9VKhXDhw8nLi6OY8eOvXFd9+7dk4I+kDRrwcvLK7W3KYQQQnxwJOwLIYQQaTBlyhQSEhLeunb/wYMHKIpCqVKl3gjIBQoU4M6dOwQGBuqlju7du1O3bl0GDRpEoUKF6NGjB9u2bXvv4G9tbQ1AREREsud+/fVX/vzzTzZs2JDia42MjChatGiyx58+fUr//v3JmzcvVlZWFChQgE8++QSA0NDQN65Vq9WUKFHijcdcXV0B8Pb2fuPxf88IAJKCf0hIyNvenhBCCPHBkmn8QgghRBqUKFGC3r17s3LlSiZMmJDseZ1Oh0ql4vDhw2g0mmTPp2dd/ruYm5tz+vRpTpw4wcGDBzly5Ahbt26lUaNGHD16NMW+3yVPnjw4ODhw8+bNZM+9XsP/39D9mqmpabId+rVaLU2bNuXly5d88803lClTBktLS3x8fOjfv3+GZiO87b29bTM/IYQQ4kMmYV8IIYRIoylTprBhwwbmzZuX7DkXFxcURaF48eJJI9Nv89/d9dNLrVbTuHFjGjduzKJFi5g9ezaTJ0/mxIkTNGnSJN3tt27dmlWrVnHp0iVq1qyZodpu3LjB/fv3WbduHX379k16/M8//0zxep1Oh5eX1xt/Zvfv3wd45ykFQgghhHg3mcYvhBBCpJGLiwu9e/fm119/xd/f/43nOnXqhEajYebMmclGmhVFITg4OOn3lpaWyaazp9XLly+TPValShUgccO81+1D4gZ7aTF+/HgsLCwYOHAgAQEByZ5Pz8j569H3f79GUZS3bmwIsHz58jeuXb58OcbGxjRu3DjN/QohhBDiTTKyL4QQQqTD5MmT+f3337l37x7ly5dPetzFxYXvvvuOiRMn4u3tTYcOHbC2tubx48fs3r2bwYMHM3bsWACqVavG1q1bGT16NDVq1MDKyoq2bdumqf9Zs2Zx+vRpWrdujZOTE4GBgfz8888ULVqUevXqJdVia2vLL7/8grW1NZaWltSqVYvixYun2GapUqXYtGkTPXv2pHTp0nz22WdUrlwZRVF4/PgxmzZtQq1Wp7g+/7/KlCmDi4sLY8eOxcfHBxsbG3bu3PnWdfVmZmYcOXKEfv36UatWLQ4fPszBgweZNGkSBQoUSNOfiRBCCCGSk7AvhBBCpEPJkiXp3bs369atS/bchAkTcHV1ZfHixcycORMAR0dHmjVrRrt27ZKuGzZsGNeuXWPNmjUsXrwYJyenNIf9du3a4e3tjbu7O0FBQeTPn59PPvmEmTNnkidPHgCMjY1Zt24dEydO5IsvviAhIYE1a9a8NewDtG/fnhs3brBw4UKOHj2Ku7s7KpUKJycnWrduzRdffEHlypVTrc/Y2Jj9+/fz9ddfM2fOHMzMzOjYsSPDhw9P8fUajYYjR44wdOhQxo0bh7W1NdOnT2fatGlp+vMQQgghRMpUiuxqI4QQQggD6N+/Pzt27EjxJAAhhBBCZIys2RdCCCGEEEIIIXIZCftCCCGEEEIIIUQuI2FfCCGEEEIIIYTIZWTNvhBCCCGEEEIIkcvIyL4QQgghhBBCCJHLSNgXQgghhBBCCCFyGQn7QgghhBBCCCFELiNhXwghhBBCCCGEyGUk7AshhBBCCCGEELmMhH0hhBBCCCGEECKXkbAvhBBCCCGEEELkMhL2hRBCCCGEEEKIXEbCvhBCCCGEEEIIkctI2BdCCCGEEEIIIXIZCftCCCGEEEIIIUQuI2FfCCGEEEIIIYTIZSTsCyGEEEIIIYQQuYyEfSGEEEIIIYQQIpeRsC+EEEIIIYQQQuQyEvaFEEIIIYQQQohcRsK+EEIIIYQQQgiRy0jYF0IIIYQQQgghchkJ+0IIIYQQQgghRC4jYV8IIYQQQgghhMhlJOwLIYQQQgghhBC5jIR9IYQQQgghhBAil5GwL4QQQgghhBBC5DIS9oUQQgghhBBCiFxGwr4QQgghhBBCCJHLSNgXQgghhBBCCCFyGQn7QgghhBBCCCFELiNhXwghhBBCCCGEyGUk7AshhBBCCCGEELmMhH0hhBBCCCGEECKXkbAvhBBCCCGEEELkMhL2hRBCCCGEEEKIXEbCvhBCCCGEEEIIkctI2BdCCCGEEEIIIXIZCftCCCGEEEIIIUQuI2FfCCGEEEIIIYTIZSTsCyGEEEIIIYQQuYyEfSGEEEIIIYQQIpeRsC+EEEIIIYQQQuQyEvaFEEIIIYQQQohcRsK+EEIIIYQQQgiRy0jYF0IIIYQQQgghchkJ+0IIIYQQQgghRC4jYV8IIYQQQgghhMhlJOwLIYQQQgghhBC5jIR9IYQQQgghhBAil5GwL4QQQgghhBBC5DIS9oUQQgghhBBCiFxGwr4QQgghhBBCCJHLSNgXQgghhBBCCCFyGQn7QgghhBBCCCFELiNhXwghhBBCCCGEyGUk7AshhBBCCCGEELmMhH0hhBBCCCGEECKXkbAvhBBCCCGEEELkMhL2hRBCCCGEEEKIXEbCvhBCCCGEEEIIkctI2BdCCCGEEEIIIXIZCftCCCGEEEIIIUQuI2FfCCGEEEIIIYTIZSTsCyGEEEIIIYQQuYyEfSGEEEIIIYQQIpeRsC+EEEIIIYQQQuQyEvaFEEIIIYQQQohcRsK+EEIIIYQQQgiRy0jYF0IIIYQQQgghchkJ+0IIIYQQQgghRC5jZOgChBBCCCE+FNExOh4+j+P+08SvRz7xRMfoiE8AjQZMTVQ4FjTG1ckE12KJX3bWGkOXLYQQIgdSKYqiGLoIIYQQQojcSqtTuHgzmj0nw7l6LxZFAZUK1CrQ6pJfr1YBKtD977li9kZ0bGhN05qWWJjJpEwhhBBpI2FfCCGEECITRETr2HsqnD2nIggO1aJW/3+ATw/V//7fxFhFi48t6dzImqIFjfVaqxBCiNxHwr4QQgghhJ79fSua+euDeRWhQ5+ftDTqxFkBA9vZ0rWxNRq1KvUXCSGE+CBJ2BdCCCGygKIo+EQFcffVc+6FPuPuq6c8iQgkVhdPgk6LkVqDqdoYJ6uClLV1orRtUUrnKUoRi/yoVBLocoqIKB0/7wzhyIVIVCr0GvT/q7STCRP75aOYvYzyCyGESE7CvhBCCJGJwuOiOPTcg52Pz+AX/RIAjUqNVnn7fO5/P1/YIh+dnevRsmgNrE0ssqRm8X6e+MUz9sdAQsK06LLg05Vanbi+f9KA/DT8SP5tCCGEeJOEfSGEECITPI0IZOPDv/jT9woJOh2g8D4/cFX/+18jtYZmRT6il0sjilkV1GutIuPuP41jzNIAomOV91qXnxEqFYz9LC8t61hlbcdCCCGyNQn7QgghhB5pFR1bvU7y293DKCjvHMFPL41KjQoVQ8q0pmuJBmhUsjN7dvDYN46vF/wv6BvwU9XkAfloXMPScAUIIYTIViTsCyGEEHryJCKA7zw3cTf0Wab3Vc62GJOr9JJRfgMLCdfi9p0fYZG6LB/R/y+VChZ8XZCqpc0MW4gQQohsQYYEhBBCCD04F3CLAacW8CDMJ0v6uxf6nP6nF3Au4FaW9CdStnTLy2wR9F+bsy6YqJhsUowQQgiDkrAvhBBCZNCfPleY6OFOgqLV67T9d9EqOhJ0CUzycOeYj2eW9CnedPJqFKc9o7NN0FcUeBmq5dddIYYuRQghRDYgYV8IIYTIgNN+1/nWcxPKe27AlxEKoENhlucGzvrfzOLeP2wh4VoWbQwmux2KqFNg/9lIrt6NMXQpQgghDEzCvhBCCPGe7r56xrSr6yHLY/5/KUy9so57oc8NXMeHY9MfYUTFZv0NnrRQqWDZtpfItkxCCPFhk7AvhBBCvIc4bQLfem5EUbJD1E8c4f/WcyPxugQDV5P7RcfqOHQuIttM3/8vRYEn/gnc8oozdClCCCEMSMK+EEII8R7WPjjKs8gX6MgeiU+n6HgaEcC6B38aupRc78TlKKJjDX2L5900athzKtzQZQghhDAgCftCCCFEOt199YwND48bYJX+uynA+gfHuPcq84/++1ApisKuE+Gostti/f/Q6uDU1ShCwrWGLkUIIYSBSNgXQggh0mnFnf2osmnaU6lUrLh7wNBl5Fo+LxLw8o0nJyyH1+ng7LUoQ5chhBDCQCTsCyGEEOnwNCKQq8EP0WXREXvppVN0XAl6wPPIF4YuJVe69yRz18GH+FzgxAonTqxwIjrs7TM0bh4dlnTdrT+Hp3iNWg33nsq6fSGE+FBJ2BdCCCHSYc+T82hU2fvHp1qlZu+TC4YuI1e6/zQOjYH/+v3ubuPFo4OpXqfVwZ3HEvaFEOJDZWToAoQQQoicIkYbx8Gnf6PNpqP6r+kUHfueXmBQ6RaYakwMVsfro99eL3lQFCXp6/XjavX/J+eYmBi2b9/OmjVraN++PSNGjCAhIQGNRvNGG68ZYinFXe9YtCn89V/YUJeY8OcUq/IF2oQoAh7sQ6XSUKhUO1zqTEGtNkKnjeXJlZ8IeLiXmHAfjExsyOfcCJfakzAxz8tjj8V4X16S1ObFjfUAsC/dhbKNFgIQHfqEB2dnYFPoI2Ij/IiN9HtnvU/844mLVzAxzp7LToQQQmSe7D00IYQQQmQjV4IeEKWNNXQZaRKVEMvVoIcGrUGlUr0RyF+He41Gg0ajSQr6Wm3iJnJmZmbcuHGDkydPcuFC4swEIyMjVCrVGzcI/tuuPr169YpWrVqxfPlyoqKSr3d/5BP/ztc/u76agAf70BiZER8TzPMba/C/ux2AG0eG4H1lKTFhz7CwK4lOF4f/3e147u2GNiEGU0t7LOxKJrVllb8cNgWrYm5TDACdLoHbx0aASk25JktRqTWpvh+dDp76v7tmIYQQuZOM7AshhBBpdO/VMzQq9VtH9l9df8bNKTtAAae+dXHsWhMARavj+jdbCb/nj2kBa6ou78OLU/d4ceIOEV6B6GITAPjo535YOOZ9o83QWz482/o3kV6BaKPjsXDOj2P3muSr6fLOWjUqNfdCn/NxoXJ6eOdpExkZSVRUFCYmJhgbG+Pj40N4eDhFihShQIEC3Lp1C19fX4KDg4mLi8PCwoIqVarg6upKUFAQGzdu5ODBxOnpFy5coGnTplhYWDB48GBat25NSEgIy5cvZ/fu3fj5+VGgQAHc3NwYOnQoJib6mcHw+PFjDh8+zOHDh5k6dSqjRo3iyy+/JF++fADEpHLknqmlPTW6HkKlMeHipgbERQYQ4nMOc9vivHx6AoAq7TZjW7gWsZEBXNzUgKiQBwQ82EPhcj0xz+PMtX09AKjQfCXmNo5JbXtfXkJYoCdlGy9JugGQFpEx2XsmihBCiMwhI/tCCCFEGt159QzdO7Zht63kSOG2VQF4uukikY8TN8l7vsOD8Hv+oIJSo5pjZGFKyBVvIrwCMc5j8db2Xv3zlBuTtvPK8wmoVZgWsCbivj93vttH0IV3j9rrFIW7oVl3BN+xY8eoVKkShQoVonnz5kyYMIFKlSpRvXp13N3def78Oc2aNaNly5b07t2bgQMH0qNHD7788kv+/vtvVCoVe/bs4c6dOxgZGfH8+XOOHz+Oh4cHkZGRREZGMmzYMKZPn861a9fQ6XTcvn2bUaNGMWjQIL29j3/fNHj16hUzZ86kcOHC9OrVi+s3bqFLZRf+/M5NMTK1QWNkhrl1YlCPi3pBeMC1pGs893bjxAonzq+viS4hBoCwAM93thsWeJ2nV3+mkGtH7F07pus9xcXngKMDhBBC6J2M7AshhBBpdOfVUxTeHZyc+9UjxPMJ0c9ecm/REUp91ZSnWy4CULjdR9hWTAyALkMbYWJrQeCJOzxYejTFtvwPXwedgkk+K6r/NgC1sRH3Fhzmxam7eK89Q/6PS6b4OgAFhdshT97znabPjRs3+OKLL3j8+DFOTk6YmZmxefNmEhISMDc3x8TEBJVKxUcffUS1atUoUaIEr169YvPmzRw/fhxra2t27drF7NmzWblyJevWraN69eqsXLkSU1NTXFxcOHToEFu3bqVUqVKsX7+eWrVq8ccff9CyZUtOnjzJrl276NSpE4qiJE3x12q1/P333yxatIiYmBhiY2OJiYlJ+vrv72NiYoiPf3PKu06nIy4ujs2bN3Py5CnKdHj3xodGpjZJv1apU/6YZVOwarLHTCwKvLPdyJf3UBQtLx4d4rTXH4nvLyEagBdehzn9W1nq9P37jf5f06hlvb4QQnyIJOwLIYQQaRAaF0lofGSq16lNjCg9ugX/jN1ClHcQNyZuQ0nQYeGYF+e+dZOuM81nlWpbSZvRqZL+J+n/YnxfERMYhlnB5OHutZC4CMLjo7E2Nk+1r9eh9r/h99+B2NnZGUdHxzc21QPw9PTEy8uLYsWKsXz5clq3bs3evXvp2LEjiqIQEhKCo6MjS5cuJSYmhhcvXmBkZET+/PkBePLkCWFhYXz88cd4enqybt26pCn+kBjaPT0TR759fHxo3749QNKa+sDAQK5cuUKnTp3eqEulUpGQkEBERARmZmZYWVlhZmaGqakpZmZmSV///n1MTAxjxoxJakOj0aDT6WjTpg3z5s1jxM+QoE31jzMZ64KVk35d7KNhFCje7H9/7gmEPD+LhW3isgyN0f//Xen+F+bf+HtKYc8IRZeAVpfw1htRsjmfEEJ8mCTsCyGEEGkQnZD2jfmsShbCsXtNnm66iC5OC2oVrqNboDZJ34/d/PVcCT7/kLigCC4PWo3GwpTo5y+Tno97GfHOsA/Qo08v4oIjUh3ZjotL/Yi2efPmMXLkyDemuut0Op49S1wukDdvXmrXrg2Aq6srhQoV4sWLF8THxxMcHMzw4cM5ejT5LIbo6GhCQ0OxsrJKqiMiIoLo6GhMTU2JiooiISEh6XorKysURSF//vyYmppiamqatKb+39RqNQ0aNKBBgwapvrfXQkJCGDNmTNKmgC1btmTu3LmUL18+8T3a+BAYkv60b1fkY/I6fsLLZ6e4eeTzxHCvUhMb7oM2IYoq7bZgbuOIeR4nVGpjFF081/b3wsyqKI5VPsehTFccynR9o83XJwAULNmW8k2Xv7XvAnapb+QnhBAi95GwL4QQQqRBnC4h9Yv+Jdr31f//RqcQExiGVclC6WqjQP3S6OIS8NlzlRi/V6iMNeRvUJqg0/cAUKXhwHeVsYa8efOmOIr9tsfe9vuCBQtibGz8ZvsqFaampkDi0XnR0Ymj0UZGRkRGRmJkZERISAibN2/m6NGjFCpUiHHjxpE3b1727t3L3r17SUhIQKvVolarsbJKnPHwegkAgLW1NRUrVgQgX758LF26lNatWwOJo/uXLl3CyckpqZ6MsLS0xMbGhrJly7JgwQLq1av3xvPlipsQ9Co61bX7KanQYiVPr/5MwMN9RIc9RWNsiYVdSfIW+wTLvKUBMDazo1S9GTy5+hOxEX7ERb0gLurFe78fK3MVBSXsCyHEB0nCvhBCCJEGGlXa97QNOveAFyfvAmBa0IbYwDAe/nQcm7KFMbGzTFe/hRqXp1Dj8km/f7b9UmLYV6swL2yX6ut/+3UlDhZ5U73ufalUKipVqgSAv78/W7duZciQIRw+fJiIiAjMzc0JDw8nODgYSAzT9evXx8fHh5cvE2cp6HS6pJH7okWLAuDr60v//v0pXrw4PXv2pGHDhlSsWDFpf4CSJUsSHx/P9evXMTc3Z9OmTRQvXjzD78fExISAgABMTU1TvHHgWsyU057Jp9d/3Ptcsseqtt/6xu81RmYUrzma4jVHv7OGIuV7U6R871RrTanPf1MBpZ1Sfh9CCCFyP9mNXwghhEgDU41x6hcBcSGRPPz5OAB21YtT+YfuGFmbkRAWzcPlx9LVpzY2gfB7fkm/j3wShM+eq4ltf+SMkaWp3urOiGrVqtGoUSNevXrFuHHjcHZ2ZurUqdjZ2RETE4OZmRnNmzfH2toaLy8vatWqxVdffZW0GZ63t3fSjICqVavSqFEjgoKCWL9+PTNnzuTq1avY29uzc+dOBgwYQFhYGKdOneLq1auUKFGCr776iqpVk296977MzMzeGpBdnUzea1TfENRqKOOsnyMJhRBC5Dwysi+EEEKkga2JFcYqDfHKu9drP1j2Jwlh0RhZm1HqqyaY5LWi5LDG3J13kJeXvPA/ehP7ZhV4vPYMwecfoI3+/93fb03fhcpITeE2VSncriq6mHj+GbsFk7yWaCxNifF9haLVYWRjTonPG6Zas4naiDwm6ZtJ8D7y5cvH+vXrGTVqFJcuXaJSpUoMGDCAMWPGEBYWhoWFBbVr12b16tUcOXIEc3NzPv30UypWrMjPP/9MsWLFKFy4MACFChXC3d2d27dvo1KpsLS0pFy5cgCULFmSZcuW8cMPP6BWqzExMcHU1BSNJuumqZcuZoKR5v026ctqWh1UKpn6DSEhhBC5k4R9IYQQIg2M1BpcbAq/8+x6/z9uEOLxGPjf0Xp5E9ef56/nSoG/H/Hi5F0erzqFbWVH4kOiiPELfeP1sS/CAYiPSDx7XW1qhN1HzkR4BRLj9wojazPsPnKiWK+PMSuUJ9WaS9oUTtfyg/elKApxcXG4u7tjaZl4c+HAgQM8fvwYU1PTpHXvXbp0oUuXLm+8dvHixcnaK1asGMWKFUuxLwsLCywsLPT8DtLO0lxNkxqW/HkpEq3OYGWkSQE7DR+VMTN0GUIIIQxEpSSd6yOEEEKId1l8Yyd7n15Aq2TzlAcYqdR0cKrLiAodM70vrVbL7Nmz+e6776hUqRLh4eHcv38fKysrGjZsyJ49e1Cr1SiKgk6nQ1EU1Go1arWahIQEVCpVstF5nS7xz1ilUmW7Nef3nsQydF6Aoct4J5UKPm9vS49m7z6tQaSPoigEh2qJilWIj1dQq8HURE3+PBo54lAIke3IyL4QQgiRRq62jmifvHtTtOwiQdFR2rZolvSl0WioU6cO9erVw9vbG61WS6NGjWjRogWjR49GrU6cXZBSqDcySvmjyOvXZEelnUwp5WjMw+fxZNchE40aWtbJ/CUcuV1ktI7Ld2K49zSOe96x3HsaR1RM8r90tQoc7Y0o52yKazETKrua4eyQ+ftlCCHEu8jIvhAiw2LidDz2iSc8SkdcvIJKDSZGKvLl0eBkb4xGI6MdInfwjQqm+1/fG7qMNNvWaEqm7sT/ITtxOZJv3YMNXUaK1Cpo8bElY3vnM3QpOdZj3zj2norgj4uRxMYraNSkadmGRg06HShA+RImdGxoTf0qFhgbyc9BIUTWk5F9IUS6vQzTctozirvecdx+HIvPi4S3jm4ZaaBEEWPKOptSwcWUepXNMTXJviN2QqREURTOnz+Pu7s7YS7h2FQomq3Ps9Go1FTLX0qCfiZqWM2CPy5GcuVuTLZau69SgY2VmiGdUj+WUSR3yyuWX3eFcNMr7o2An9a/439fd+dxHLe8grGxDKFbE2u6NbHBSG5+CyGykIzsCyHSRFEUbj6KZc+pCE57RqFTEkeP0voBSKMBrRYszFS0rmtFu/pWFCkoUxxF9ubv78/69etxd3fn3r17ODs703pkb/5xiTR0aamaV2MQdQqVM3QZuVrQqwT6zfQjOjZ7fZSaPbQAtSuaG7qMHCU2TseaA6FsPx6OCvR+vKIKKF7YmIn98+FSVI5DFEJkDQn7QohUXX8Yw5LNIXj7xad5KuO7qP83zbFWBTNGdM+LfT6ZZCSyj/j4eA4dOsTq1as5dOgQRkZGdO7cmYEDB/Lpp5+iqKDLsVkExYYZutSUKWCtMmVfq+8wUmfdkXQfqqMXI5i7/qWhywASv7c2qWHBhH75DV1KjnL7cSyz1wTjF/z2WWr6oFYnhv6+rfLQq7mNLHETQmQ6CftCiLeKidOxam8ou06Eo1bpf6RDowYjjYphXWxpU88q2+24LT4sd+7cwd3dnfXr1xMYGEi1atUYOHAgPXv2xM7uzSnROx6fZumtPYYpNA0erfgLlzBr5s2bR506dQxdTq6mKAqLNr3k4DnDzvZQq8HZ3pglYwphZZ6N15hkMyevRvG9exCKov+fcW+jIvFm94zPC8gO/kKITCVhXwiRoltesXy/JoiAl9os2W26iqspE/vlo4CdjPKLrBMWFsa2bdtwd3fnwoUL5M2blz59+jBgwAAqV6781tdpFR3Dzv3IvdDn2eoYPo1KTZk8jnSMLMOECRO4du0aHTp0YPbs2ZQtW9bQ5eVaWp3C9+5BnLoajSE+VGnUYJ/PiGVjC2FrLbM50uro35HMWx9skBMVVCqoVNKUuV8WkH1shBCZRr67CCGSOfdPFKMWBxCYRUEf4MbDWIbN8+dpQHzWdCg+WIqicObMGfr374+DgwODBw8mT548bNu2DV9fX5YsWfLOoA+JoXpylV6oyF6jcur/1dW8eXOuXLnCxo0buXbtGhUqVODzzz/Hx8fH0CXmShq1iskD8tOkpkWW961Wg2MhY5aOkaCfHmeuRRks6AMoClx/GMv0lUEkaGXcTQiROSTsCyHecOpqFNNWBqHVZt2URkjcB+BVhI6vfgjgiZ8EfqF/Pj4+zJkzB1dXVxo0aMCZM2eYNGkST5484fDhw3Tt2hVTU9M0t1fMqiBDyrbOxIrT74syrXG0KgAknlPfq1cv7t69y6JFi9i9ezclS5Zk4sSJvHr1yrCF5jJeXl706fMZ3w5zokM9BbUqMYRnpte3mepUNOfHMYXIayNBP62e+MXz7eogDDIN418UBTzuxLBq7yvDFiKEyLVkGr8QIsmlW9FMXvHCoMdIqdWQx1LNT+PtZeM+kWFxcXEcOHCA1atXc+TIEUxNTenSpQsDBw6kQYMGqDOYyHSKjplXN3DC7x8UAyYHFSoaF67C1KqfoVal/J7CwsL44YcfWLRoEWZmZkyePJlhw4ZhZmaWxdXmDoqicOLECZYsWcKBAwd4/XHq5cuXBEdYMnttME/84jPlX4VaDeamKkb3zEvDahay30k6aHUKX84P4OHzOHTZZwUOy8YWonyJtN9sFEKItJCRfSEEAC9CEpi5KihLR/NTotNBWKSO6StfoJWpjeI93bx5k9GjR1OkSBE6d+5MUFAQK1aswM/Pj/Xr19OwYcMMB31InDY/pWovahYobbAp/SpU1C5YhslVer016APY2Njw7bff8vDhQ7p168b48eMpXbo069evR6vVZmHFOd/+/fspX748jRs35tChQ0lBv1y5ctjZ2eFS1BiH2F+oUcIXI03i+mx9eP1Ptn5lc9bPKMyn1S0l6KfT9uPh3H+avYK+WgVz1gYTG5eNihJC5AoS9oUQKIrCgg0viYtXDLZ+8d+0OnjwLJ6tx7Lp0WYiWwoNDeXXX3+lVq1aVKxYkd9//52+ffty48YN/v7776S1+fpmrDZiTo2BNLCvaJC439ChEt9XH5DmY/YcHBxYsWIFt2/fpmbNmvTr14+qVau+EVrFuy1btow7d+4AJN0oMTIyolmzZjx58oS6desy+/tZnN41mh1zi/BFJ1vs8yX+/WjS+cnrdcC3MFPR+VNr1s9wYPrnBbCT9fnp9jQgHvd9rwxdRjI6BfyCE1h7INTQpQghchkJ+0IIjlyMxONOjEGn76dkzf5QHvvGGboMkY3pdDpOnjxJnz59cHBwYNiwYRQoUICdO3fi4+PDwoULqVChQqbXYaw2Yma1vvQt1RQ1qneOsOuDWqVGjYoBpZox/aM+GKvTv+TF1dWV7du3c/HiRfLmzUvr1q1p1KgRly5dyoSKc5ft27fTuHHjNx5LSEggKiqKsmXLcvHiRQBq1aqFjaWGro1t2DCzMPO/KkDrulaUcjTG6D9ZPaUB+iIFjGhU3YJv+ubFLmg6kwaVgLiAzHpbud6Wo2HZ4oZ2ShQFdp4IJyxSZtkIIfRH1uwL8YF7GaqlzwxfomOz37cCjRpKFDHmlwn2MlVVvOHZs2esW7eONWvW4OXlRcmSJRk4cCD9+vWjcOHCBq3tXuhzvvXcyNOIgExZr60CnK3tmVrlM0rlKaKXNhVF4fDhw0yYMIEbN27QpUsXvv/+e1xdXfXSfm60cuVKhgwZ8tbn1Wo13377LZMmTUrx+QStwpUbfoydvJhevQdQyN4RYyMwMVbhkN+IUkVNMDf7/5tGrzeVLFCgAKdPn6ZMmTJ6f0+5WXiUjs7fPCchG2dplQq+6GRL18Y2hi5FCJFLyMi+EB+4/WcjiI3LfkEf/n86/7X7sYYuRWQDsbGxbN++nZYtW+Lk5MScOXNo0KABp0+f5v79+0ycONHgQR+gdJ6irGkwhn6lmmGqNkYFGZ7e/7oNU7UxA1ybs7r+aL0FfQCVSkWrVq3w9PRk3bp1XLp0iXLlyjF06FD8/Pz01k9ucerUKb788ku++OILli1bluI1iqK8c9mIkUbFFwNac/bQAuZNbEWnT61pW9+a5rWtqFTS7I2g/29BQUHUrl2bv//+Wy/v5UNx5EJEtpu99l+KArtPhqMz9OY5QohcQ8K+EB+wBK3C3tPhBt+U7100athzKtzQZQgD+ueffxgxYgSFCxemW7duhIaGsnLlSvz8/FizZg3169fPdjM/jNVGuJVuwd6mMxlVoTOOlonH4WnSOb3/9fXFrAoyqkJn9jWbyQDX5u81bT9N/Wk09O3bl3v37jF//ny2bdtGyZIlmTp1KmFhsocGwMOHD+nUqROffPIJP/74I8OHD+fnn3/GycnpjetSC/t//vkn165dA+DJkyep3lTx9fVNajciIoKGDRty5MiRjL2ZD4SiKOw+GZ5tp/D/m3+wlit3YwxdhhAil5Bp/EJ8wE57RjHjtyBDl5EqlQq2fl+Y/LZyFN+HIiQkhM2bN+Pu7s6VK1coWLAg/fr1Y8CAAZQtW9bQ5aWboij889KLi4F3uPvqGXdDnxGZ8PYP9JZGZpSxdaSsbTFqFyhLpbzFDXJD49WrV8ybN48lS5ZgZWXF1KlTGTJkCKamH+YRYSEhIXz88ccoisLFixexs7NLeu7ly5c4OzsTExODVqtFp9Oxb98+2rZtm6yd6OhoihUrRlDQ/3//nTx5Mt99991b+7a2tiYiIuKNxzQaDRcuXKBGjRp6eHe5l29QAr2n+Rq6jDTRqKHTp9YM7WyX+sVCCJEK+eQsxAdsz6lw1Cqy9cg+JE5fPnw+kj6t9L+Tusg+dDodJ06cYPXq1ezatYuEhARat27N1KlTadWqFcbGxoYu8b2pVCqq5HOhSj4XIDH8+0eH8DQigFhtPHE6LSZqDaYaY4pZFcLe3C5bzFawtbVlzpw5DB8+nBkzZjBq1CiWLFnCd999R48ePfRyfGFOER8fT7du3QgMDOTvv/9+I+gDzJ8/n4SEBK5cucKqVatYtWoVpUqVSrGtqVOnvhH0AZYvX87MmTPRaJLvsh8TE5Ms6KtUKho3bpwtlq5kd/efprzRq+fe7rzyvYiZTTE+/uzMG89Fhz7h4qYGABSvOYbHlxYCYF+6C2UbJf76woa6xIQ/B6Bs4yXYu3YEIPjpSa4f7AdAlXZbsCvycZpr1ergrrcsXRNC6MeH81NaCPGGBK3CzUex2T7oQ+LNiMt3ZFpjbvXkyRNmzpxJiRIlaNKkCVevXuXbb7/l+fPn7N27l/bt2+fooJ8SlUqFg0VeahUsSwOHSjQpUpUGDpWoVbAsDhZ5s0XQ/7ciRYrw22+/cfPmTSpXrsxnn31GtWrVOHr06AdxXJ+iKIwYMYKTJ0+ya9euZCH+0aNHLF68mHHjxlGxYkWWLl1KZGRkipvo3b59m0WLFiV7PDQ09K3T8l+8eJH067x58wJw7tw5/vjjD4oU0d/eDbnV/adxKR55aF+6CwAxYU955efxxnP+93cn/kKlxt61c6p9PPZYhE4bn+FaAe4/i5d1+0IIvZCwL8QHyts3Xm+7Eof4XODECidOrHAiOuzZG8+98v2bfw724+yaqknX+NzakKwNn1sbubq7M6d+K5N0XWTIw6TnHzyLkw8/uUhMTAxbtmyhWbNmFC9enAULFtCkSRPOnTvHnTt3GDduHPb29oYuU/xH2bJl2b17N+fOncPS0pLmzZvTtGlTrly5YujSMtXy5ctZsWIFv/zyCw0bNkz2/Lhx4yhQoADjx49Pta3du3e/9QZJSjcBIPFmy5w5czh27Bje3t5YW1vLev10uOsdm+LmfAVcWqExsgAg4HW4/5+AB4m/tyv8MWbWqd9QiQl7it+dLRkvFoiNU3j+IkEvbQkhPmwS9oX4QL1tWqO+hb+4ScjzsxiZ2r7zupdPTxIedAsT83wpPh8Tp+AbJB9+cjpPT0+GDx+Og4MDPXv2JDo6mtWrV+Pn58eqVauoU6dOthvVFsnVqVOHM2fOsG/fPvz8/KhevTo9evTg4cOHqb84hzl8+DAjR45kzJgxuLm5JXv+xIkT7N69m3nz5mFpaZlqexMmTGDXrl1MmzYNI6PE1ZRVqlShVKlStGrVKsXXqNVqJkyYQOPGjbG2tqZHjx6sWbMGrTYbnyOXjTz1T3nE3cjYkgIuiX/mgY8OoNMmTp8P9b9CdKg3APZluqTavmW+sqBS433lR7Tx0Xqp2SdQft4JITJOwr4QH6j7T+O4sKEuJ1Y48ejCHO6fmcoZ98qcXfMRD87OQKdL/KCh08by+NIiLm76hJO/luTsmo+4c2IscdEvAXjssZhr+3oktXtxYz1OrHDizl9jALAv3Yn6breo3Gb9O+txbfAdDdxu4Vx95DtrFjlPcHAwy5Yto2rVqnz00Ufs2rWLL774gnv37nHmzBkGDBiAlZWVocsU6aRSqWjbti3//PMPq1ev5uzZs5QtW5bhw4cTGBho6PL04tatW3Tv3p1WrVoxb968ZM9rtVpGjhxJ7dq16dWrV5ra1Gg0dOzYkcmTJ5OQkIC5uTmenp7cv3+fMWPGpKkNNzc3nj17xrFjx9L1fj5UcQlvnxX2eip/QmwoQd7Hgf8f5deYWFOgeMtU27e0K4m9ayfiogJ5fmONHiqG2HiZySaEyDgJ+0J8oP49Sv7s+moCHuxDY2RGfEwwz2+swf/udgBuHBmC95WlxIQ9w8KuJDpdHP53t+O5txvahBhMLe2xsCuZ1JZV/nLYFKyKuU0xAIzN7NAYmaVaj6llIVTq5BtTvaZRg7+M7OcYWq2Wo0eP0qNHDwoXLszo0aMpXrw4+/fv5+nTp8yZMwdXV1dDlyn0wMjIiIEDB/LgwQO+//57Nm7ciIuLCzNnziQ8POcem/nixQvatm1L8eLF2bRpU4ob561atYrr16+zdOnSdM9ICQgIAHjn8XxvU7NmTSpUqMDq1avT/doP0buWrNkWro2ZtSOQGPJ12ngCHx0AoGCJVmiMzdPUh3P1kajUJjy99gsJscmPqbx3ejJXdnZI+vK9vfmd7cVL2BdC6IGEfSE+UDFx/7+A0dTSno8/O0OtXqcwsSwEQIjPOUJ8L/Ly6QkAqrTbTM1uR6jV4zhqIzOiQh4Q8GAPhcv1xLX+/x8XVaH5Sqp13oNz9RF6rVelkpGOnMDLy4tp06ZRvHhxmjdvzvXr15k9ezbPnz9n165dtGnTJmnqsshdzM3NGT9+PI8ePWLo0KHMmTOHkiVL8tNPPxEXl7Nm5cTGxtKxY0eioqLYt28f1tbWya559eoVU6ZMoW/fvtSsWTPdffj7+wOQP3/+dL9WpVLh5ubGnj173ti8T6TM6O33kVGpVNiXTtyAL/jpCfzv7yQ+JgQA+zJd09yHuY0jhcv3IiE2lKfXfk32fFTIQ8ICPZO+YiP939mesbEsZxJCZJyEfSE+UP9e6pnfuSlGpjZojMww/98IR1zUC8IDriVd47m3GydWOHF+fU10/zsfPCzAMytL1tuGgkK/oqOj2bhxI40bN8bFxYUlS5bQsmVLLl68yK1btxgzZgyFChUydJkii+TNm5f58+fz4MEDWrduzVdffUW5cuXYunUrOl0Ku6RlM4qiMHjwYC5fvsyePXtwcnJK8bpvv/2W6Oho5syZ8179+Pn5Abz3fxu9e/cGYMOG5BueijeZGb/7425i2Feh6OJ5eG4WAOZ5nLF1qJGufpw/+gqNsSURQTeTPVe1/VY+Hfok6at4jVGp1CxhXwiRcRL2hfhAmfzrg4SRqU3Sr1XqlEddbQpWTfZlYlEg0+t8TVHerFkYlqIoXL58maFDh+Lg4EDv3r3RarWsW7cOPz8/fv31V2rVqiWb7X3AHB0dcXd35/r165QrV44ePXpQs2ZNjh8/bujS3mnu3LmsX7+eNWvWULt27RSvuX//Pj/++CMTJ05873PuX4/sv+/r8+fPT4cOHVi9evUHcfxhRjg5GPOu70TmNsWwLVwLAG18JEDSaH96mFjkp2ilge9TYjKO9jIDSgiRcRL2hfhAWZilHsKsC1ZO+nWxj4ZRrfMeqnXeQ9WOO3CuMRKHMt0B0Bj9/5pGXYJ+diL+L0UBc1MJjoYWFBTEkiVLqFy5MjVq1GD//v0MHz6cBw8ecPLkSfr27ZumHcnFh6NChQrs27ePU6dOYWxsTJMmTWjRogXXrl0zdGnJ7Nq1i0mTJjFt2jR69uz51uvGjBlDkSJFGD169Hv35efnh0ajoWDBgu/dhpubG7du3eLSpUvv3caHoIyTCepUPvG+3qgPAJUae9f0h32AYpUHp3r6TGrMTVUUzi9hXwiRcfKdRIgPVInCJqleY1fkY/I6fsLLZ6e4eeRzLGxdQKUmNtwHbUIUVdptwdzGEfM8TqjUxii6eK7t74WZVVEcq3xOQZfWvPA6zKMLc1CU/5+D//jSIp5dW4lNoSqUa/IjAI8uzOGF12ES/jeqAvDPgb6o1UYUrTiAopUGULywsf7/IESqXm+25+7uzt69ewFo37498+bNo1mzZiluXCbEfzVo0IDz58+zZ88eJk6cSNWqVfnss8/49ttvKV68uKHL4+rVq/Tp04fu3bszY8aMt173xx9/cODAAbZt24a5edo2b0tJRtbsv9akSROKFSvG6tWrqVWr1nu3k9u5OpmgTWUFiUOZrji8Y43+p0OfJHvs497nkj1mZGpD/YH/pLvGf3MtZiKzooQQeiEj+0J8oEoVSz3sA1RosRLnaiMwz1Oc6LCnxEW9wMKuJE7VvsIyb2kgccf9UvVmYGpVmLioIMICPYmLStw0KiEuguiwJ8SEP09qMz4mmOiwJ8RGBiQ9FhcdRHTYE+Kjg5Iei43wSXws9hWQ+AFIZJ2HDx8yefJknJycaNWqFXfv3mX+/Pn4+vqyfft2WrZsKUFfpItKpaJjx47cvHmTlStX8tdff1G6dGlGjhxJUFBQ6g1kEh8fH9q2bUuFChVYs2bNW4NWfHw8o0aNon79+nTpkvr56+/i6+uLVqvNUNjXaDQMGDCAzZs3ExERkaF6crOc9LNDo06ciSCEEPqgUmShlxAfJP/gBHpN9TV0GWmW10bNjrlFDV1GrhcZGcnOnTtxd3fn1KlT5MmTh169ejFw4ECqVasmo01Cr6KioliyZAnz5s1DURS++eYbRo4cmaVLQaKiomjQoAEBAQFcunQJBweHt167bNkyRowYwZUrV6hatWqG+q1evTpXrlxh9+7ddOjQ4b3befLkCcWLF2f16tUMGDAgQzXlVoqiMGCWH88CEsgJH3oXjypI5VKpH1krhBCpkZF9IT5QhfJqsDLPGcFNrYKyxU0NXUaupSgKf//9N0OGDMHBwYF+/fqh0WjYsGEDvr6+/Pzzz1SvXl2CvtA7CwsLJk2axKNHjxg0aBCzZs2iZMmS/Prrr8THx2d6/zqdjr59+3L37l3279//zqAfHBzM9OnTGThwYIaDPiSO7EPGpvEDODk50aRJE1avXp3hmnIrlUpFx0+ts33QVwGOhYyoVFJ+3gkh9EPCvhAfKJVKRcNqlmhywHcBnQKfVLUwdBm5TmBgIAsXLqRChQrUrl2bw4cPM3LkSLy8vDh+/DifffYZFhby5y4yX/78+Vm0aBH37t2jadOmDB06lAoVKrBz585M3Wl+2rRp7Nq1i40bN1KlSpV3XjtjxgwSEhL4/vvvM9yvoihJyxYyGvYhcaO+c+fOcffu3Qy3lVs1rWmJaTY/0UUBOjW0lhurQgi9yQEf84UQmaVdfatUNy3KDqzMVTSQsK8XCQkJHDhwgE6dOlGkSBEmTZpExYoV+eOPP3j8+DGzZs3KFpuliQ+Ts7Mz69evx9PTExcXF7p06ULt2rU5deqU3vvasGED33//PfPmzaN9+/bvvPbWrVusWLGCKVOmUKhQoQz3HRISkjRzQR9hv0OHDuTNmxd3d/cMt5VbWZipafFx9r7BbWqsoklNOc1ECKE/2fhbnhAis5V0NKGMswnqbDyIoFZD2/rWmGTzEZns7v79+0yYMAFHR0fatm2Ll5cXixYtws/Pjy1btsiu+iJbqVy5MocOHeKvv/5CURQaNmxI69atuX79ul7aP3fuHG5ubgwYMICxY8e+81pFURg9ejTOzs6MGDFCL/37+fkl/drOzi7D7ZmamtKnTx/WrVuXJcsfcqruTW3QaLLnzxIV0LO5DZbm8tFcCKE/8h1FiA9cp4bW6LLxQkadDtrWtzJ0GTlSREQEa9asoX79+pQuXZqVK1fSpUsXrl69yrVr1/jqq6/ImzevocsU4q0+/fRT/v77b7Zt28b9+/epUqUK/fv35+nTp+/dpre3Nx07dqR27dr88ssvqU6ZPnjwIEePHmXhwoWYmupnLfXrY/fy5Mmjt5tsbm5uBAYGcuDAAb20lxvZ5zNiaGdbQ5eRjEYNzoWN6dXcxtClCCFyGQn7QnzgGlazoERhY9TZ8LuBSgXtG1hhn8/I0KXkGIqicP78eQYNGoSDgwNubm6Ym5uzefNmfH19WbZsmV42FxMiq6hUKrp27crt27f56aefOHLkCK6urowdO5bg4OB0tRUWFkabNm2wtrZm586dmJi8+4izuLg4Ro8eTePGjWnXrl1G3sYbXo/sFyhQQG9tVqxYkRo1ashGfaloW8+KyqVMs9V0fkWBSf3zYZRNZx0IIXKubPStTghhCEYaFRP75yO7fcRQqyC/rYbBHWwNXUqO4O/vz/z58ylbtix169bl2LFjjB07lsePH3P06FF69OiBmZkc5SRyLmNjY4YOHcrDhw+ZPHkyv/76Ky4uLsydO5eoqKhUX6/VaunZsyfPnz/nwIEDaVorv3z5ch49esTixYv1ummav78/xsbGFCxYUG9tQuLo/uHDh/Hx8dFru7mJWq3im76JwTq77IPXt3UeXIq++8aTEEK8Dwn7QghciprQt1WebBX4dQpM7JcPczP5NvU28fHx7N27l/bt21O0aFGmTZtGtWrVOHbsGF5eXkyfPh0nJydDlymEXllZWTF16lQePXpEv379mDZtGqVKlWLVqlUkJCS89XVjx47ljz/+YPv27ZQtWzbVfgIDA5k1axZDhgyhYsWK+nwL+Pn5YWJiopfN+f6tR48emJqasm7dOr22m9vY5zPi+6EFUKsw6M89lQoaVbegdwuZvi+EyBzyKVoIASRuDFTS0ThbTG1UAR0bWlHFVUaiU3Lnzh3GjRtH0aJF6dChAz4+Pvz444/4+fmxceNGGjdujDo7rssQQo8KFizI0qVLuXPnDp988gmff/45lSpVYu/evcmO6/v1119ZsmQJP/74I02bNk1T+1OnTkWlUjFr1iy91+7v749ardZ72M+TJw/dunXD3d0dnS4HHLViQB+VMWPG4Pyo1RhkhF8F1KlozoR++VBn511yhRA5mnwaFEIAidP553xZkIJ2GoMGfpUK6lQyZ1jnjO9QnZuEhYWxatUq6tSpQ7ly5XB3d6dnz55cu3aNy5cvM2zYML3s6i1ETuPi4sKmTZu4cuVK0g2wevXqcfbsWQCOHz/Ol19+yfDhwxk2bFia2vznn39YtWoV06dP13sgh8SRfUVRMqVtNzc3Hj16lCnHFeY2dStZMHtYAYw1ZPnPvcY1LZjxeX5Zpy+EyFQq5b+3v4UQH7SAlwmMXBTAi1dasnpgSKWCKiU1TOpnTb68Mq1RURTOnj3L6tWr2b59O9HR0TRv3pyBAwfSrl07ve0MLkRu8ueff/LNN9/g6elJo0aN8PDwoE6dOhw4cAAjo9Q3+1QUhUaNGuHn58eNGzcwNjbWe41ly5bFy8uL7777jnHjxum1bUVRKFOmDDVq1GDDhg16bTu38vaLZ87aIB48y9xjCzVq0GhUDO1kS9v6VjKiL4TIdDKyL4R4Q6G8RiwfZ49jIaMsn9rY8CMLdiytT4H8tvTs2ZO//vrrg5yK6uPjw5w5c3B1daVBgwacOXOGiRMn8uTJEw4fPkzXrl0l6AvxFk2bNuXy5cv89ttvnDlzhvDwcAoUKJB03F1qdu/ezcmTJ1m0aFGmBH1InMYfFxeXKSP7KpWKgQMHsnPnTl69eqX39nMjZwdjfh5vz6D2eRIDeSZ9Oi5XwpQ1Ux1o/4m1BH0hRJaQkX0hRIpi4nS47wtlx1/hqNVk2ii/Rg1GRiq+7GJH67qWfP75528cHVW4cGEGDhxIv379KFmyZOYUkQ3ExcVx4MAB3N3dOXz4MKampnTp0oWBAwfSoEEDWYMvRDrExcXRokULrl+/zpdffsnPP/9MREQEX3/9NRMmTHjrkpeYmBjKlStHmTJlOHToUKbUFh0djYWFBQD79u2jbdu2eu/D39+fokWL8uOPP6Z56YJI5O0Xz+q9rzh/IxoViZvFvq/XPzsd8mno2TwPrepYSsgXQmQpCftCiHe68TCGueuC8X+pRZ/fLVSqxLOFq5Y2ZXyffBTKmzi99sKFC9SpU+eNazUaDVqtlmPHjtG4cWP9FZEN3Lp1C3d3d37//XdevHhBzZo1GThwID169CBPnjyGLk+IHEdRFAYPHsy6des4fvw49evXJywsjIULF7Jw4UJMTEyYNGkSw4cPT3Yc5dy5c5k6dSo3btygTJkymVKft7c3xYsXB+D8+fN8/PHHmdJPhw4dePbsGVeuXMmU9nO7FyEJHDgbwb4zEYRG6FCrAFXqN741GtBq/7f/TEVzOjS0pqqrqYR8IYRBSNgXQqQqJk7Hrr/C2X0qguBQbYZG+jVq0OqglKMxXRvb0LiGxRvnV2u1WvLnz//G9FONRkPZsmU5efIk+fLly+C7MbzQ0FC2bNmCu7s7ly5dIn/+/PTp04eBAwdSoUIFQ5cnRI62aNEixowZw9q1a+nXr98bz/n7+/Ptt9+ycuVKHBwcmDVrFn369EGj0eDn54erqytubm4sWbIk0+r79w3N+/fvU6pUqUzpZ//+/bRr146rV69StWrVTOnjQxCfoHDzUSz3n8Zx/2kcdx7H4v9Sm+w6c1MVpZ1MKONkgmsxEyq4mJLfNvU9IoQQIjNJ2BdCpJlWp3DxZjR7ToZz5W4skDhNUVF466i/Rp04DVJRwEgDTWpY0q6BFWWc377mvE+fPmzZsiXpzOxChQpx9+5dbG1t9f2WsoxOp+P06dO4u7uzY8cOYmNjadmyJQMHDqRNmzaYmJgYukQhcrwDBw7Qrl07vvnmG+bMmfPW6x48eMCUKVPYtm0b5cuXZ+7cuezcuZP9+/fz4MGDTD3ZYvfu3XTq1AmAly9fZlpfCQkJFCtWjE6dOrF8+fJM6eND1aJVO0qXqciUqTPRaFSYGKmwNFe9ceNaCCGyAwn7Qoj3EhKu5YzHM67dfUW8ugh3n8QSGaMQH6+gUoGJkQo7Gw1li5tgqX5BiJ8n34zogblZ6mvPt27dSo8ePVCpVJQtW5bbt28zZcoUvv322yx4Z/r1/Plz1q5dy5o1a/Dy8qJkyZIMHDiQvn37UqRIEUOXJ0Sucf36derWrUvTpk3ZsWNHmva58PDw4JtvvuHEiRMAjB07lh9++CFT6/z555/56quvUBSFhISETN2PY+LEifzyyy/4+vpibm6eaf18SE6ePMmnn36Kubk5oaGhmbaJoxBC6IOEfSHEe4mMjMTR0ZHIyEhiYmLeOaJRq1YtLl26lObNqF69ekXRokVp1aoVGzZsYOnSpYwfP56FCxcyevRofb6NTBEbG8u+fftwd3fnjz/+wNzcnG7dujFw4EDq1asnoz9C6FlAQAA1a9YkX758nDlzBktLyzS/VqfTUbFiRby8vIiJiaFTp07Mnj2b0qVLZ0qt06ZNY+nSpZiamhIYGJgpfbz24MEDXF1d2bhxI7169crUvj4E8fHxVKhQgfv37wOwa9cuOnbsaOCqhBDi7WR7ZyFEuimKwqBBgwgJCSEuLo579+698/onT54A0K1bN27dupVq+7a2tvj4+LB161ZMTEwYN24cEyZMYMyYMbi7u+vlPWSG69evM2LECAoXLky3bt0IDQ1l5cqV+Pn5sWbNGurXry9BXwg9i4mJoUOHDsTHx7Nv3750BX2A7du3c/v2bfbu3cvvv//OlStXKF++PEOGDMHX11fv9fr5+WFubp4px+79V6lSpWjQoMEbJ5yI9/fjjz/y4MEDIPGIw59++snAFQkhxLtJ2BdCpNuPP/7Ili1bgMQPPMeOHXvrtX5+fgQEBACJx2G1atWK4ODgVPvIkyfPG8F49uzZfPHFF3z++efs2LEjg+/g/bxtIlRkZCQ1a9akcuXKbNmyhYEDB3L79m3Onz/PoEGDsLGxyeJKhfgwKIrCwIEDuXbtGnv37qVo0aLpen1UVBTjxo2jXbt2NGvWjN69e3Pv3j0WLFjAzp07KVmyJJMnTyY0NFRvNfv5+WFkZJQlYR9g0KBB/PXXXzx69ChL+sutfH19mTp1atLPAUVROH78OA8fPjRwZUII8XYS9oUQ6XLmzBnGjBmT9HuVSsXRo0ffef1rOp0OHx8fOnbsSHx8fLr6ValULF++nG7dutGrV6933mDQlzt37rBgwQLc3d25d+/eW0flLS0tadGiBXv27OH58+f88MMPlC1bNtPrE+JD991337F582bWr19PjRo10v36BQsW4O/vz4IFC5IeMzU1ZeTIkTx69IjRo0ezePFiXFxcWLx4MbGxsRmu2d/fH5VKlWVhv3PnztjY2LBmzZos6S+3GjNmDNHR0W88plarWblypYEqEkKINFCEECKN/P39lXz58ikqlUoBkr4sLS2V+Pj4FF/z5ZdfKkZGRm9cDyjjxo17rxri4uKU3bt3Ky9fvszIW3knDw8PpU2bNopKpVJUKpViYmKiGBsbK9u2bVOioqKSXa/T6TKtFiFEyrZu3aoAyrfffvter3/27JliYWGhjB079p3X+fj4KIMHD1Y0Go3i5OSk/P7774pWq32vPhVFUQoXLqw4ODgon3/++Xu3kV5ffPGFUqRIESUhISHL+sxtGjVqpKjV6mQ/y0qUKGHo0oQQ4q1kZF8IkWZPnjwhIiIi2XT2yMhIPDw8UnzN8ePHSUhIQKPRJD1mb2+Pvb39e9VgbGxM+/btM+24Kp1Ox6JFizh48CB16tRhzZo1dOrUiYSEBGbOnMmRI0eSvUbW4QuRtS5dukS/fv347LPPmDx58nu1MWHCBKysrJgyZco7rytcuDC//vorN2/epFq1avTp04ePPvqII0eOvHVpz9vodDoCAgKIjY3NspF9ADc3N3x8fPjjjz+yrM/c5vjx48THx7N161YA9u7dy/79+5N+L4QQ2ZGEfSFEmtWsWZPQ0FA8PDwoVKgQZcqUoUyZMhgZGfHy5csUX2Nra0uFChXo27cvAL/88gt+fn4Z2lVfX+Haz8+PhQsX0qdPHzw9PQHYsGEDW7ZsoU6dOuzZs4dSpUrh7e0NJB6jd+HCBb30LYR4P8+ePaN9+/ZUrVqVVatWvdf3g4sXL7Jx40a+//578uTJk6bXlClThp07d3LhwgVsbGxo2bIljRs3fuuNzpQEBQWh1WqJiorK0rBfrVo1KlWqJBv1ZZBarSYuLg6Apk2b0qZNG6pXr27gqoQQ4u2MDF2AECJnMTU1xdXVlcDAQObOnUv//v3RarVvjNz/27/D8YkTJ1LduT8r+Pr6MmfOnDd2Ura0tOSXX35JOvPa09MTZ2dnoqKiAKhXrx6NGjXik08+ISEhASMj+fYpRFaLiIigXbt2mJiYsHv3bszMzNLdhk6nY8SIEVSpUoUBAwak+/W1a9fm1KlTHDx4kIkTJ1KzZk26du3K999/T6lSpd75Wn9/fyDxBIGsDPsqlYpBgwYxevRoAgMDKViwYJb1ndsEBQVhYWGBubm5oUsRQohUyci+ECLdrl69iqIoSRtivS3o/1fdunU5d+5cZpb2Vvfv30/ajXrjxo2sWrUKc3Nzpk2bxt9//824ceMAMDExIV++fERHR2NnZ8e4ceO4fv06p0+fpmLFiqxZswY/Pz+DvAchPmQ6nY7evXvz8OFDDhw4QKFChd6rnY0bN3Lp0iWWLl2a5u9d/6VSqWjTpg3Xrl1jzZo1XLhwgXLlyjFs2LCkQJ+Sf3/vyMqwD/DZZ5+h0WhYv359lvab2wQHB2f5350QQrwvCftCiHTz8PDA0tKSMmXKpOt1devW5erVq0mj5ZktJiYGHx8funTpQpkyZVi3bh2RkZF8//33xMbGMmXKFGbMmEGNGjUoUaIEAK6urknTMgsWLEibNm24f/8+TZs2pWvXrly9ejVLahdCvGnixIns37+fLVu2ULFixfdqIyIiggkTJtClSxcaNGiQ4Zo0Gg39+/fn/v37zJkzhy1btlCyZEmmT59OWFhYsuv/fSMgqwNj3rx56dixI6tXr073XgPi/wUFBZEvXz5DlyGEEGkiYV8IkW4eHh589NFH6R4Vq1u3LlZWVjx//jyTKksUFhZG27ZtsbCwYPz48ezbt49q1apRpUoVrly5QoECBYDEUfzX179WqVIlvv76aywtLfH09OSTTz6hS5cuHD9+nFatWrFixQqKFCmSqfULId60du1a5s+fz4IFC2jduvV7tzNv3jyCg4P54Ycf9FgdmJubM3bsWB49esTw4cOZP38+JUuWZNmyZUlrvCFxZN/a2hrI+rAPiRv13b17V/YeyYCgoCAZ2RdC5BgS9oUQ6ebh4fFeZ1pXqFCBgICAVNe1vo9nz56xZcsWwsLCsLGx4f79+wBs3rwZNzc3PDw86NSpE4UKFcLY2BiAgwcPAmBjY4NKpWLdunV4e3vTsmVLNm/ezIwZM2jXrh1ff/01ly5d4sCBA9SvXz9pXb8QIvOdPn2awYMH8/nnnzNy5Mj3bsfb25sFCxYwZswYnJ2d9Vbfv9nZ2TF37lwePHhAu3btGDlyJGXLlmXz5s3odDr8/PySNgQ0RGBs1KgRzs7OslFfBsg0fiFETiKfWIUQ6RIUFIS3t/d7hX21Wo2JiYnej6pzd3fHycmJwYMHc/bsWQCGDx8OgLW1NbVr1wYS1/yWLl2amjVrYm5uzsmTJ/nyyy9ZtmwZ3bp1Y8CAAaxatQqANm3aMG3aNHbv3s2SJUtkx2UhDODRo0d06tSJ+vXr89NPP2Xoe8f48eOxs7Nj4sSJeqwwZUWLFmXVqlVcv36dChUq0KtXL6pXr84///yDhYUFRkZGSSP8WUmtVjNgwAC2bt1KeHh4lvefG8g0fiFETiJhXwiRLpcvXwYwSPh9vc700qVL/PLLLzx48ACAcuXKUbRoUQDOnDkDQPv27bGysiI8PJy4uDgSEhKSRuSHDh1KixYtAFixYgUjRoxgx44dVKlSJdk6Xn3fmBBCpM2rV69o06YNefPmZfv27Ukzct7H6dOn2b59O3PmzMHKykqPVb5b+fLl2bt3L2fOnMHc3JxTp07h6+tLnjx5DPa9ZcCAAURFRcn58O9JRvaFEDmJhH0hRLp4eHhgZ2eHi4tLlvetUqm4dOkStWvXZtiwYdy4cQNIPAqrRo0aREREcO7cOR4+fEixYsXo0KEDAEeOHOHVq1dJ7dSqVYtVq1bxyy+/MGjQIIYNG8Yff/zB1atXk24CCCEMJyEhge7duxMQEMCBAwfImzfve7el1WoZOXIkNWrUoE+fPnqsMu3q1avH2bNnKVy4MPHx8QQHB9OrVy+8vLyyvBZHR0eaN28uU/nfg6IoMrIvhMhRJOwLIdLFw8OD6tWrZ9mo1I0bN5LW3wPUrFkzaYM8Dw8PgoKCAGjdujVmZmbcv38/aXS/e/fuAJw8eZJ79+690a6dnR2DBw9mxYoVLF++nKZNm2bF2xFCpMHIkSP566+/2LFjB66urhlqa+3atXh6erJ06VKD7rehUqkICwujbNmylC5dmlOnTlGmTBm+/vprAgMDs7QWNzc3Ll68yO3bt7O035wuMjKSuLg4GdkXQuQYEvaFEOly+fLl91qvnx4BAQF89913ODs7U7NmTZo3b86AAQO4cuUKAP369QPg1KlTPH78GIBmzZqRJ08egoODOXXqFLGxsTRp0oSyZcsSEhLC7t27iY2NTdbX+56zLYTIHD/99FPSV6NGjTLUVlhYGJMmTaJXr158/PHHeqrw/URERBAREUFCQgIVK1bkwYMHzJo1i/Xr1+Pi4sKsWbOIiIjIklratWtH/vz5ZXQ/nV7fXJaRfSFETiFhXwiRZj4+Pvj5+WXqev2AgAA+//xzpk2bxtOnT3FxceHJkyesW7eOESNGADBkyBAg8cbD6xsARYsWJU+ePGi1Wm7cuMHff/+NqakpHTp0oFixYjRp0gRTU9NMq1sIkXF//PEHI0aMYNSoUQwePDjD7X3//feEh4czd+5cPVSXMf7+/gDExMSQP39+LCwsmDBhAo8ePWLIkCF8//33lCxZkhUrVhAfH5+ptZiYmNCnTx/Wr1//xtGA4t1eh30Z2RdC5BQS9oUQaebh4QGg15H9W7du8eOPP7Jnzx4ANm3axIEDByhTpgxeXl5cvXqV8ePHo1KpOH/+PDt27MDR0ZGGDRuSkJDA1q1bWb9+PSNHjsTb2xsAT09PPD09AZg5cybe3t6yFl+IbO727dt069aNFi1a8MMPP2S4vUePHrFkyRK++eYbHB0d9VBhxrwO+xEREW+ExXz58rFgwQLu379PixYt+PLLLylXrhzbt29P2pQ0M7i5uREUFMS+ffsyrY/cJjg4GJCwL4TIOSTsCyHS7PLly9jb2yetmX9fcXFxrFmzho8++oiKFSsycuRIvvzyS168eMGRI0cAcHZ2xtHRERMTE9zc3KhTpw6QuP4e4Ouvv07a3bp///6sXr2aWbNm8e233yaNDgIYGRllqFYhROYLCgqibdu2FCtWjE2bNullec3YsWMpVKgQ48aN00OFGefn5wcknjKQUlh0cnJi7dq1/PPPP7i6utKtWzdq1arFiRMnMqWe8uXLU7t2bZnKnw4yjV8IkdPIp2AhRJp5eHhQo0aNDG/Ot2nTJr788ktiYmJo0aIFbdu2pWDBghQoUAAzMzMAjI2NuXfvHuXKlaNAgQLY2NgA8PTpUwA6dOjAmjVrWL16NVFRUfTq1YtBgwZl6HguIUTWi42NpVOnToSHh3P8+PGk/9Yz4q+//mLPnj1s2rQJCwsLPVSZcX5+fpiamiZN43+bihUrcvDgQU6ePMk333xDo0aNaNGiBXPnzqVy5cp6rcnNzY3Bgwfz7NmzbDH7IbsLDg7G3Nw82/ybEkKI1MjIvhAiTRRF4fLly3pZr//TTz8RExPDypUrOXToEI0aNUKj0XD79m06d+4MwPnz5/n999+BxIB/8+ZNANq3b59UT7du3dixYwdnzpxh6NChEvSFyGEURWHIkCFcunSJPXv24OzsnOE2ExISGDlyJHXq1KFHjx4ZL1JP/P39KVCgAJC2aeANGzbk4sWL7NixAy8vL6pWrUqfPn2SlivpQ/fu3bGwsGDt2rV6azM3k2P3hBA5jYR9IUSaeHl58fLlS72s12/YsCGQuJ6+SJEiVKtWje7du1OxYkX8/PxwcHAgODiYefPmUbFiRapUqcKzZ8/o3LkzHTp0AEiaXWBtbZ3u/l+vgw0LC8uy3a+FEMnNnz+fdevWsXr16qSlOhm1atUqbty4wZIlS7LsiNC08PPzw87ODkj7mm+VSkXnzp25efMmK1as4NixY5QuXZrRo0cnTSnPCGtra7p164a7uzs6nS7D7eV2wcHBsl5fCJGjSNgXQqTJ5cuXAfQysj9q1CiaNGlCuXLlqF69OmPHjqVHjx4oisLx48eZPn06ffr0oUiRIty/f5/ixYsze/ZsfvnlF72MqqhUKl68eEHVqlWpVatW0qZLQoiss2fPHiZOnMiUKVP47LPP9NJmSEgIU6ZMoV+/fpl+RGh6+fv7J92cTG9gNDY2ZsiQITx8+JBp06axatUqXFxcmD17NpGRkRmqa9CgQXh7e2fa3gC5iYzsCyFyGpWSmVu9CvEBiY3T8cgnnvtP47j/NA5vv3hiYnXEJ4CxEZiZqnGyN8a1mAmuxUxwKWqMmUnOud82duxYduzYka4ppF5eXpQoUeKtzyckJGBkZISiKEyZMoU5c+ZQv359Dhw4gJmZGd7e3kRHR1OpUiU9vIPk7t69S/369SlRogTHjh17r1kCQoj08/T0pF69erRq1YqtW7eiVuvne+GoUaNYtWoV9+/fx8HBQS9t6kuVKlUoUKAAx44dIzw8HCsrq/du68WLF8yePZuffvqJ/PnzM2PGDAYOHPheG5IqikK5cuWoUqUKmzdvfu+aPgSNGzemQIECbNmyxdClCCFEmkjYFyIDtFqF8zei2XMqnH/ux6JTQKUCtQq0KcyI1KhBp4CiJF5TqZQpHT6xpm4lczSa7DPdNCWffPIJBQsWZPv27e+8Ljw8nK1bt+Lu7s6FCxe4ceMG5cqVS/Zh/vHjxyxYsAAfHx8uXLjAixcvsLW1ZcGCBQwcODAz38obrl69yqeffkr16tU5ePBg0gaBQojM4efnR82aNbG3t+fUqVN62+zs7t27VKxYkVmzZjFx4kS9tKlP9vb2VKtWjePHjxMdHa2XJQaPHz9m6tSpbNy4kdKlSzN79mw6duyY7rYXLFjAlClT8PX1JW/evBmuK7eqUqUK9erVY/ny5YYuRQgh0iTnDCsKkY2ERmj5/VAo3Sb5MH1lUFLQh8Qgn1LQh8THX99e0ylw/WEsM34LotskH9YfCiU0Qps1byCdtFotV65ceeu0WEVROHPmDAMGDMDe3p7BgweTJ08etm3bRunSpVMctbOwsGDXrl3s27cPc3NzRowYwfnz57M06AN89NFH7N+/n/Pnz9OzZ08SEhKytH8hPiRRUVG0b98eRVHYu3evXnc1HzNmDI6OjowaNUpvbepLQkICgYGBqNVq8ufPr7e9BIoXL86GDRu4evUqzs7OdO7cmTp16nD69Ol0tdO3b1+0Wi0bN27US125lUzjF0LkNBL2hUin055R9J3hx7qDoYSEJ6Z63XvOj3m9H1JIuI71B0PpM92Xk1ej9FSp/ty7d4/IyMhkYd/X15e5c+dSunRpGjRowKlTp5g4cSJPnjzh8OHDdO3a9a075BcqVIi9e/dy4cIFvL29Wbx4MWXKlMmKt5NMgwYN2LFjBwcOHMDNzU02qhIiE+h0Ovr378+tW7fYv38/hQsX1lvbR44c4dChQ/zwww/ZcnbOixcvUBQFnU6XKRu8Va1alSNHjnDs2DHi4+P55JNPaNu2bdIpJqkpWLAgbdu2ZfXq1ciEz5QpiiIb9AkhchwJ+0Kk0atwLTN/e8GM34KIiNK9d8B/G50CkdEKs1YFMeO3F7wKzz6j/B4eHkDiKHhcXBy7du2iTZs2ODo6MnPmTGrVqsWJEyd4+PAhU6ZMSfN5zTVr1qRWrVqZWXqatW7dmvXr1/P7778zatQo+cArhJ7NmDGD7du3s2HDBqpWraq3duPj4xk1ahSffPIJnTp10lu7+uTn5wdAXFxcpobFxo0bc+nSJbZu3cqdO3eoVKkSAwYM4OnTp6m+1s3NjX/++YerV69mWn05WVRUFDExMTKyL4TIUSTsC5EGd71j6T/LjzP/RAOQWTHwdbtn/4mm30w/7jyOzaSe0sfDwwNnZ2dmzZpF0aJF6dy5M4GBgfz888/4+/vz+++/07BhQ71tsmUoPXv25Oeff+bHH39k1qxZhi5HiFxj06ZNfPvtt8yZM4eOHTvqte0VK1Zw7969bHfU3r+9DvvR0dGZPjKsVqvp1q0bt2/fZtmyZRw6dAhXV1fGjRvHy5cv3/q65s2bU6RIEVatWpWp9eVUr09tkZF9IUROkrM/mQuRBa7dj2HU4sDE0fwsmt2t00FktI5RSwK5ei8mazpNQWhoKCtXrmTt2rV4e3uzfv16evfuzfXr17l06RJDhgwhT548BqsvM3zxxRfMnj2bGTNmsHTpUkOXI0SOd+HCBQYOHEi/fv345ptv9Np2cHAwM2bMYNCgQVSpUkWvbeuTv78/KpWKsLCwLAuLJiYmfPnllzx8+JCJEyfyyy+/4OLiwvz584mOjk52vZGREf3792fTpk1ERWW/5WSGFhQUBCAj+0KIHEXCvhDvcMsrlgk/vSAuQdH7tP3U6BSIT1CY+FMgNx9l3Qi/oiicPHmSvn374uDgwNChQ4mOjmbAgAH4+PiwaNEiKlasmGX1GMKECRMYN24cI0eOZN26dYYuR4gc68mTJ3To0IGaNWvy66+/6n3kffr06Wi1Wr777ju9tqtvfn5+5M+f3yBrvq2trZk+fToPHz6kd+/eTJ48mVKlSuHu7p5sQ9KBAwcSFhbGzp07s7TGnOB12JeRfSFETiJhX4i38AmMZ/yyQBISFAy1fFtRQKuFb5YH8jwwPlP7ev78Od9//z2lSpXi008/5cKFC0ydOpWDBw+i0+kYNGgQJiYmmVpDdqFSqZg3bx6DBg3Czc2NPXv2GLokIXKc8PBw2rRpg6WlJbt27cLU1FSv7d+8eZNffvmFqVOnUrBgQb22rW/+/v7Y29sTFBRksLBYqFAhli1bxp07d6hXrx5ubm5UrlyZffv2Je1RUqJECT799FNWr15tkBqzs9fT+GVkXwiRk0jYFyIFOp3C3PXBxMVn/Yh+sloUiItXmLM2GK2ei4mNjWXHjh20bNkSJycnZs+eTb169Th9+jT3799P2llfo9Fk6hRZrVab7XbAV6lU/PLLL3Tq1Inu3btz/PhxQ5ckRI6h1Wrp2bMnT58+5cCBA3oPuIqiMGrUKIoXL87XX3+t17Yzg5+fHwULFsz0DfrSomTJkmzZsgUPDw/s7e1p37499evX59y5c0DiRn2nTp3iwYMHBq0zuwkKCsLU1BRLS0tDlyKEEGkmYV+IFOw5FcEtrzi02SR/anVwxzuO3SfD9dLe9evXGTlyJEWKFKFr166Ehoby66+/4ufnx9q1a6lfv37SdNvLly9ToUIFvZ6H/V/bt2+ndevWmdb++9JoNGzYsIFPP/2U9u3b8/fffxu6JCFyhPHjx3P48GG2bt1KuXLl9N7+/v37OXbsGIsWLcoRM478/f2xtbUFss808OrVq3Ps2DH++OMPIiMjqVevHh06dKBcuXLY2tri7u5u6BKzlddLMLLrJpBCCJESCftC/IdPYDy/7g4xdBkp+m3Pq/eezv/q1StWrFhB9erVqVy5Mps3b2bAgAHcunWL8+fPM2jQIGxsbJK9zsPDg+rVq2e09FRrO3bsWLbcFMrExISdO3dSpUoVWrVqleZzq4X4UP32228sWrSIpUuX0qJFC723Hxsby5gxY2jatClt2rTRe/uZwc/PL2lEOLuEfUicwdSsWTOuXLnCxo0b+eeff6hevTqFCxdmzZo1ydb0f8iCgoJkCr8QIseRsC/Ef/y291WW7bqfXjodrNz9Kh3X6zh+/DifffYZDg4OfPXVVxQuXJg9e/bw/Plzfvjhh3eOukVFRXHz5k1q1Kihh+rfrm7duiQkJHDp0qVM7ed9WVpacuDAARwdHWnWrBleXl6GLkmIbOnEiRMMGzaMYcOGMXz48EzpY9myZTx+/JjFixfniFFWRVHw9/fH3NwcyF5h/zW1Wk2vXr24e/cuixcvxtfXl4CAAHr06MGrV68MXV62YIjNFYUQIqMk7AvxL0GvEjhzLTrbTN//L60Ozl2P5kXIu0dbnj59yqxZs3BxcaFJkyZcvnyZmTNn8uzZM/bt20f79u0xNjZOtb9r166h1WozPeyXL1+ePHnyJK0ZzY5sbW35448/sLS0pGnTpknnZgshEt2/f5/OnTvz6aefZtqxlYGBgXz77bd88cUXlC9fPlP60LewsDCio6MxMjICsvcGb6ampnz99dc8efIEe3t79uzZQ4kSJVi4cCExMYY7BjY7kJF9IUROJGFfiH85eC6S7D5OpAIOnotI9nhMTAxbt26lWbNmODs7M3/+fBo1asTZs2e5e/cu48ePx8HBIV19Xb58GVNTUypUqKCn6lOmVqv5+OOPOXv2bKb2k1GFChXi2LFjxMbG0qxZM16+fGnokoTIFkJCQmjbti2FChVi27ZtScFW36ZMmYJGo2HmzJmZ0n5meH1jUKVSYWFhkTTCn53Z2NgwZcoUANq2bcs333yDq6sr69atQ6vVGrg6wzDkSQpCCPG+JOwL8T8JWoW9p8MNvvt+anQK7D0dQYI2sVBPT8+k6fk9evQgOjqa1atX4+/vz+rVq6lbt+57T3X18PCgcuXKWbIBVt26dblw4UK225X/v5ycnPjzzz/x9/enVatWREQkv/EixIckPj6eLl26EBwczIEDB5I2otO3a9eusWrVKmbMmJGjRlj9/f0BSEhIyFFhsVevXhgZGVG+fHlu375NrVq16N+/P1WrVuXQoUNJx/V9KIKDg3PUvzshhAAJ+0Ikuf4wllfh2TtovhYaoWPmD9v46KOP+Oijj9ixYweDBw/m7t27nDlzhgEDBmBlZZXhfjw8PDJ9Cv9rdevWJTQ0lFu3bmVJfxlRtmxZjhw5wu3bt+nQoQOxsbGGLkkIg1AUheHDh3PmzBl27dqFi4tLpvUzcuRIypQpw9ChQzOlj8zyemQ/NjY2R4V9Ozs7unTpwurVqylVqhTbt2/n4sWL5M2bl9atW/Ppp59+UCeUyMi+ECInkrAvxP/cexKH+n8D4J57u3NihRMXNtZPdl106BNOrHDixAonvK/8mPTrO3+NSbrmwoa6SY/739+d9Hjw05NJj4f4XHjvWhVdAht2nMXJyYn9+/fz7Nkz5s6dS+nSpd+7zf8KDQ3l3r17WRb2a9asiZGRUbZet/9v1apVY//+/Zw7d46ePXvKrtXig7R06VJWrlzJr7/+SoMGDTKtn127dnHq1CkWLVqUpv1GshN/f38sLCwIDQ3NcWHRzc2N+/fvJy2xqlWrFidOnODQoUO8fPmS2rVr06VLF+7du2fgSjNXVFQU0dHROe7vTwghJOwL8T/3nvz/6Kx96S4AxIQ95ZWfxxvXJYV3lRp7186ptvvYYxE6bdqPy3vssZgTK5yIDnv21mtUajXd+o1n9+7dtGnTJlPWx169ehUgy8K+paUlVatWzTFhH+CTTz5h+/bt7N+/n88//zzbL0EQQp8OHTrEmDFjGDduHAMGDMi0fmJiYhg7diytWrXKlKP8Mpufnx8ODg45cjf3Tz75hBIlSrB69eqkx1QqFS1btsTT05N169bh4eFB+fLl+eKLL3LtxqXBwcFA9t5cUQghUiJhX4j/ufM4Lmm9fgGXVmiMLAAI+NfIPEDAg8Tf2xX+GDPrIqm2GxP2FL87W/RbLGq8fDP3P18PDw8sLS31OlsgNXXr1s1RYR+gTZs2rFu3jnXr1jFmzJgPbh2r+DDdvHmTHj160KZNG+bMmZOpfS1evJjnz5+zaNGiTO0ns/j7++Pg4JAjp4Gr1WoGDhzI9u3bCQsLe+M5jUZD3759uXfvHvPnz2f79u2ULFmSqVOnJrv2XXLCTdLXYT+n/f0JIYSEfSGAqBgdL179/w7DRsaWFHBpBUDgowPotImj/qH+V4gO9QbAvkyXVNu1zFcWVGq8r/yINj5arzUHh2qJiMq8D0keHh5Uq1YNjUaTaX38V926dXn8+HGOGx3q1asXy5cvZ8mSJXz33XeGLkeITBUYGEibNm0oUaIEGzduzNTvEb6+vnz//fd89dVXWXrjUZ/8/Pywt7fPkWEfoH///sTExLBlS8o3rc3MzBg9ejSPHj1ixIgRLFy4kBIlSrBz5840ta9Wq4mPT5z9FhAQwPbt2/VWu74EBQUBMrIvhMh5JOwLAUTGJA/Nr6fyJ8SGEuR9HPj/UX6NiTUFirdMtV1Lu5LYu3YiLiqQ5zfW6LHiRCnVrS9ZuTnfa3Xr1gXIcaP7AMOGDeO7775j2rRpLFu2zNDlCJEpYmJikjal3L9/v142An2XSZMmYW5uzrRp0zK1n8zk7++Pvb19jpzGD1CkSBFatmzJqlWr3nmdra0ts2fP5sGDB3Ts2JESJUq8dS+T58+fc/ToUWbMmMGtW7eS9mFYsWIF3bt3x9XVlRs3buj9vbyv12E/J/79CSE+bJlzEK4QOUxcXPKp17aFa2Nm7UhM+DMC7u8mv3NTAh8dAKBgiVZojNN2VrJz9ZEEPNjH02u/4Fo/5VHfEyuckj12cWO9pF/bl+5C2UYLk9cdnzlTxl+8eMGTJ0+yPOw7ODhQvHhxzp07R5cuqc+cyG4mTZpESEgIX3/9Nba2tvTp08fQJQmhN4qiMGjQIDw9PTl16hSOjo6Z2p+Hhwfr1q1jxYoVmXacX1bw8/PDzs4uxx29929ubm506tSJGzduULFixXdeW6RIEX777be3Pv/8+fOktmJjY5k1axarV6+mTp067NmzB2NjYxRFwcLCQt9v470FBwdjbGyc6Te3hBBC3yTsCwGo1cnPoVepVNiX7oz35SUEPz2B//2dxMeEAGBfpmua2za3caRw+V743FjL02u/pniNTcGqSb+OjfQjNtIfq/zlUKtN/9dGsbfUneYy0uXy5csAVK9ePXM6eIecuG7/NZVKxQ8//MCrV68YMGAANjY2tG/f3tBlCaEXs2fPZuPGjWzZsoWaNWtmal+vj9qrWLEigwYNytS+MlNcXBzBwcFYWloCOXdkuE2bNhQsWJDVq1ezZMmS924nJCSE6dOnc/nyZezs7KhRowb+/v4sWbKEs2fP8vDhQ4yNjRkyZAguLi7ExsZiamqqvzfynl4vwVCpkn9WEEKI7Eym8QsBmBqn/APcvnRnQIWii+fhuVkAmOdxxtYhfSPezh99hcbYkoigmyk+X63znqQvh7I9AKjQfGXSY87VR6T4OpO31J1RHh4e5M2blxIlSmRK++9St25drl69SmRkZJb3rQ8qlYpff/2Vjh070r17d06cOGHokoTIsB07djBlyhRmzJhB9+7dM72/LVu2cP78eZYsWZIpp41klYCAAABMTEyAnBv2jY2N6du3L7///juxsbGpv+AtLly4wI4dOwAYM2YM+/btw9PTE0VR2LFjB1FRUVSqVImhQ4cCJAV9Q298mlOXYAghhIR9IQAbKzWaFP5rMLcphm3hWgBo4xPDZ+INgPQxschP0UoDM1Tjf2nUkMcyczbGunz5MtWrVzfIKEbdunXRarVcunQpy/vWF41Gw4YNG/jkk09o164dHh4eqb9IiGzq8uXL9O3bl549e2bJ2vmoqCjGjx9Phw4daNSoUab3l5lebzb6+oZFTg6Mbm5uvHz5kr179753G0ePHiU8PJzKlSvj5uaGtbU1lpaWWFhYEB4ejpWVFRMmTMDT0xO1Ws2aNYl73bz+WWSonfuDgoJkcz4hRI4kYV8IwEijwrmwcYrPvd6oDwCVGnvX9Id9gGKVB2Nkavter02Jk4NxpozsK4qCh4eHQabwA5QvX548efLk2Kn8r5mamrJr1y4qVqxIixYtuH37tqFLEiLdnj9/Trt27ahUqRKrV6/OkhuAP/zwA4GBgSxYsCDT+8ps/v7+wP+H1JwcGMuUKUPdunVT3ajvbRRF4dmzZwAUL16cvHnzotFo+Ouvv3j8+DEqlYo6derQrl07xo8fD8Dy5cvZsmVL0s8D9f/WrmX1SL+M7AshcqqcOzdOCD0r52yKt2882v8MHDiU6YrDO9bofzr0SbLHPu6dPKgamdpQf+A/qdZRvMYoitcY9c5rNGoo62ySalvvw8fHB39//yzfnO81tVpNnTp1cnzYB7C0tOTgwYM0bNiQpk2bcvbsWYoXL27osoRIk8jISNq1a4eRkRF79uzB3Dxtm5JmxLNnz5g3bx4jR47ExcUl0/vLbH5+fqjVauLi4rC2tk6azp9Tubm54ebmxpMnT3BySr6x7LuoVCpatWrF7t27OXv2LLt376Z27dpMmDCBFy9eYGNjw+TJk/njjz+4ePEiRkZGeHp60qdPH7RaLb169WLFihVYW1ujUqmSbqCoM2vzmn8JCgqS791CiBxJRvaF+B9XJ5NkQT+70uqgtFPmbFr0esq5ocI+JE7lv3DhgsGmbOqTnZ0df/zxBxYWFjRt2jRpWq8Q2ZlOp6Nv377cv3+fAwcOYG9vnyX9TpgwISn05Qb+/v4UKlSIly9f5oqR4a5du2JpaZk0vT69mjdvTrt27QgKCmLIkCFUqFCBy5cvY2RkRMuWLalfvz7Dhw8HEmd5/fTTT2zZsoVmzZphY2ODtbU1mzZt4vHjx6jVatRqNVqtNtNH+l9v0CeEEDmNhH0h/qeii+F3/E2PCplU7+XLl3FwcKBIkSKZ0n5a1K1bl9DQUG7dumWwGvTJ3t6eP//8k5iYGJo3b87Lly8NXZIQ7zRlyhR2797N5s2bqVSpUpb0ef78eTZt2sTs2bOxsbHJkj4zm5+fH/b29rkmLFpZWdGjRw/WrFmDVqtN9+uLFi3Knj17uHjxIr///nvSz5mCBQsyadIkNmzYwKNHj3B0dGTSpEkMHTqUzp07s3//fhYuXMjKlSvp3bs3VatWZciQIfj5+aHRaJKt6Y+JidHfmyZxGn9OXoIhhPhwSdgX4n+K2RtTvoQJKZzCl62oVYlT+J0dUt5jIKMMuV7/tZo1a2JkZJQrpvK/5uzszNGjR/H19aV169ZEREQYuiQhUrRu3TrmzJnDDz/8QNu2bbOkT51Ox4gRI/joo4/o379/lvSZFfz9/XFwcMg1YR8Sp/I/ffqU48ePv3cbNWvWpE2bNsyZMwcHBwcaNGhA+fLlGTt2LAAdOnSgXr16AMTHx2NsbIy5uTmVKlXi22+/xd7ent9++42SJUvyyy+/oNPpUBQlaUr/3Llz6dy5Mzdu3Mjw+42JiSEyMjLX/P0JIT4sEvaF+JeODa3RGfaEn1TpFOj0qXWmtK0oCpcvXzboFH4ACwsLqlatmqvCPkC5cuU4fPgwN2/epFOnThk6wkqIzHD27Fk+//xz3NzcGD16dJb1+/vvv3P58mWWLFmSJWuws0puG9kHqFWrFuXKlWP16tUZbqtDhw74+PiwcuVKVqxYQWBgIC4uLrRp0wYHBwcg8di/Z8+esXHjRo4fP07Xrl25e/cu8+bNIzo6mh9++AEvL6+k0f3o6GhCQ0PZvXs3n3/+eYZH+YODg4GcfZKCEOLDlXt+ogqhB7XLG2NmnGDoMt7J2kJN/SoWmdL2o0ePCAkJMXjYh8Sp/Lkt7EPiXgj79+/n9OnTfPbZZyQkZO9/b+LD4eXlRceOHalTpw4///xzlh29GRERwcSJE+nWrRv169fPkj6zip+fHw4ODrlqN3eVSsWgQYPYvXs3QUFBemnTysqKQYMGMWrUKLp160aVKlWSnnv27BmTJ0+mT58+TJ06lTJlytCuXTscHR2pXr06jx8/5uDBg0nXP3nyhMWLF3PkyBFmzpyJmZlZhvZ/ef0eZRq/ECInkrAvBHD37l3Gjx9PieLFuH12CYqSPTeGU6kSR/Uz48g9SFyvDxh8Gj8khv3Hjx/j6+tr6FL0rmHDhmzfvp09e/YwZMiQLD9GSoj/Cg0NpW3bttja2rJz584s3TV+zpw5hISEMH/+/CzrMysoioK/v3+uG9kH6NOnDwAbNmzQW5umpqYsXLiQmTNnUqBAgaTHHz58yMmTJwFo06YNdevW5cCBA/Tq1Yvr168D4OrqCsCpU6do0qQJlSpVolixYjRv3jypnfe9sSoj+0KInEyO3hMARMfoePg8jvtP//f1LI7IaIX4BAW1GkyMVNjnM6KMkwmuxRK/ChcwyrKRn8wQHh7Otm3bcHd35/z58+TNm5fevXvTp+8Alh0wwedFAtlpM3i1GgrnN6Jns8zbuMrDwwNnZ+ds8aGmbt26AJw7d46uXd9+9GFO1bZtW9auXUufPn2wtbVlwYIFOfq/J5FzJSQk0L17d3x9fblw4UKWjmA+fvyYhQsXMm7cuHQf5ZbdvXz5kvj4eAoVKpSrRvYhMfi2b9+e1atXM2LECL1+7zIyevOjqaOjI9HR0ajVanr27EnPnj2ZNWsWy5YtIzg4mGrVqtGyZUt0Oh379u0jLCwMf39/PD09KVOmDKGhoeTJkydpeYiiKOmqV0b2hRA5mYT9D5hOp3Dlbgy7T4bz960YFCVx5FilIsWQG/BSy02vWF5vwGtnraZdA2ta17Ukv23O+KekKArnzp3D3d2dbdu2ERUVRbNmzdi6dSvt27fH1DRxh/tJ+WMZNj/AwNW+SVFgYv98mTaqD4lhPztM4QdwcHCgePHiuTbsA/Tu3ZtXr17x1VdfYWdnx5QpUwxdkvgAjR49mmPHjnHkyBHKlCmTpX2PHz+efPny8c0332Rpv1nB398fSJyirtPpclXYh8SN+lq2bImHhwc1a9bMlD4URaFQoUJ06dKFX3/9lc8++4xly5ZhYmJCSEgIkPhvCODPP//kyJEjRERE0Lt3b3r27AlA1apVyZ8/P/v376dQoUKoVCq0Wi1qtTpNoT8oKAgjI6Ncc0KEEOLDkjMSmtCrmDgd+89EsPtkOP7BWjTqxCAJif//rhnF/z5pJyRcx++HQvn9UCj1qpjTrYkN5Ypnz+PrfH19Wb9+Pe7u7jx48IDixYszYcIE+vXrh6OjY7LrSzuZ0quZDZuOhr3zzyOrqFTQo6kNZZ0z789Xq9Vy9epVpk+fnml9pFduXbf/b8OHDyckJISpU6diZ2fHl19+aeiSxAdkxYoVLFu2jBUrVtCkSZMs7fvUqVPs2LGD9evXY2VllaV9ZwU/Pz+ApCURuS3sN23aFEdHR1avXp1pYV+lUmFtbc2KFSvo1KkTf/75J5GRkaxfvx6dTkezZs3o2rUr0dHR7Nixg4cPH1KkSJGkEx1+//13vL298fb2ZuXKlVSoUIEGDRqka5T+9bF7MvNKCJETSdj/wNx8FMuctUH4v9QmhVhtBqaqv965/tw/0Zz2jKbDJ1Z83sEWc1PDbwcRFxfHwYMHcXd359ChQ5iYmCSNDnzyySep7vjcp1UebnrFcuNhrEF36FeroIKLKf1a58nUfu7evUtkZGS2WK//Wr169di8eTORkZFYWloaupxMM2XKFEJCQhg+fDi2trZ89tlnhi5JfAD+/PNPvvrqK77++mu++OKLLO1bq9UycuRIatasmWv/vb8e2X8dEnNb2NdoNAwYMIDFixezaNGiTP8e3bRpU5o2bYqXlxfbtm0jMjKSUaNGAXDkyBH++usv4uPjadOmDY0aNQJ4Y7bUokWLCA0NRaPRMH/+fEaMGJGmkx9y234LQogPi+ETmcgSMXE6ft4RwtcLAwgI0ep9tPr1DYO9pyMYMMuPf+5n7KibjLh16xZjxoyhaNGidOrUiYCAAH766Sf8/Pz4/fff+fTTT9P0A97EWMXsoQUo6WiCoU6CUqvBpagxs4cVyNTp+5A4hV+lUlGtWrVM7Sc96tati1ar5dKlS4YuJVOpVCoWLlzIgAED6NevH/v37zd0SSKXu3v3Ll27dqVZs2YsXLgwy/tfs2YN165dY+nSpbnqqL1/8/Pzw8bGhoiICCD3hX2AAQMGEBERwfbt27OszxIlSvDixQv27dtH8+bNCQ4OZvPmzfj6+lKqVCnc3NwAWLJkCc+ePaNgwYIMHTqUixcvMmzYMHQ6HQsWLODWrVtp6u/1yL4QQuREufMnrHjDi5AEhszxZ+eJcCDl9fj6oigQ9ErLqCWBbDoSmmW7jIeGhrJy5Upq165NhQoVWL9+Pb179+b69etcunSJL774Altb23S3a26mZuGIgpRzNkGdxTP41Coo42TCwpGFsDDL/P9UPTw8KF26dLZal1iuXDlsbW1z/VR+SAz8K1eupH379nTt2jVp92kh9C04OJg2bdpQtGhRtmzZkmxDtMwWGhrK5MmT6d27N7Vr187SvrOSv78/Dg4OSRu85c2b18AV6Z+zszONGzdm9erVWd53mzZtAPD29ubcuXPExsbSvn17qlevTmxsLDNnzgSge/fujB49mtKlS9OmTRsURcHPzy/pJkxqZGRfCJGTSdjP5XxexPPlDwH4vkjIsrXnr6e8r9oXym97XmVa4FcUhVOnTtGvXz8cHBwYOnQo+fLlY8eOHfj4+LBo0SIqVqyY4X4szdX88HVBmtZMPNs+s5ftvW6/cQ0LFowoiJV51vxnevny5WyzOd9rarWajz/++IMI+5C4C/WmTZuoX78+bdu2TToKUQh9iYuLo1OnToSGhrJ//36D3Nz77rvviIiIYO7cuVned1aKjo6maNGiBAUFYWtrm+U3VbKKm5sbZ8+e5d69ewbpv1q1aly+fJkpU6YwcOBAAGbNmkVoaChlypShZcuWuLi4ALB48WIAatasibGxcZraz20nKQghPiwS9nOxFyEJjFocyMswbYbW5WfElj/DWXcwVK9tPn/+nO+//55SpUrRsGFDzp8/z9SpU3n69CkHDx6kc+fOej8j2tREzTf98jN7aAHyWKkzbZRfrYI8lmqqFjiFk8lRzEyy5j/RuLg4rl27lq3W679Wt25dLly4gC47nYOYiUxNTdm9ezcVKlSgRYsW3Llzx9AliVxCUZSk6cx79uyhePHiWV7DgwcPWLp0KRMmTKBIkSJZ3n9W+vnnnzl27BgjRozg9u3bhi4n03To0AE7Ozvc3d0NVoODgwOzZs1KOmpvzpw5AHTs2JEqVaoAsHv3bv7880/MzMyoUqUKlSpVSlPbQUFBMo1fCJFjSdjPpWLjdIz9MZCQMK3Bz4pffyiMg+fSNl3ubWJjY9mxYwetWrXCycmJ2bNnU69ePU6dOsX9+/eZOHFilnxwrF3RnHXTCyeN8utrqenrdhrXsGDdjMKsWjKczz77LMvC3o0bN4iLi8t2I/uQGPZDQ0PTvL4yN7CysuLgwYM4ODjQtGlTvL29DV2SyAUWLlyIu7s7q1atom7dugapYezYsTg4ODB27FiD9G8IpqamODg4GLqMTGNmZkbv3r1Zu3Yt8fHxhi6HPHnycPToUfr370/Dhg2xt7cHEjfoAyhdujTdunXDxMQkTTeRZRq/ECInk7CfS7nvD+V5YILBRvT/a/m2EPyDE1J8LjIykubNmzNv3rxkz924cYNRo0ZRpEgRunbtSkhICL/88gt+fn6sXbuWBg0aZPlxONYWiaP8G2cVplsTGyzNE/tPb/B/PTvA0lxFt8bWbJhVmIn982NtoaZWrVoAHD16lAoVKvDFF18QEBCgz7fxBg8PD4yMjJJGQLKTmjVrYmRkxNmzZw1dSpbKmzcvR48exczMjKZNmybt7C3E+9i3bx/jx49n0qRJ9OnTxyA1HDt2jH379jF//nzMzc0NUoPIHIMGDSIwMJCDBw8auhQAmjRpgru7Ow0bNgRg2bJlnDt3Djs7O5o0aZK0W39qm0PGxsYSEREhI/tCiBxLpWTVDmoiy9x8FMvXCzMvGL4PjTrx+LiFIwqi/tcc+Pj4eFq3bs2ff/6Jra0tAQEBREVFsXnzZtzd3bl8+TIFCxakb9++DBgwgHLlyhnwXaQsLl7h1NUo/r4Vze3HsfgHa5OeU6sS1+ArCm8c32efT0PZ4qbUKmdGw2qWyXbaHz9+PIsWLUKrTWxLo9FgYmLC/PnzGT58uN7fw6BBg7hy5Qqenp56b1sfatasiaurKxs2bDB0KVnu8ePH1KtXj/z583Py5Ens7OwMXZLIYa5du0a9evVo0aIF27ZtM8ju9wkJCVSpUgU7OztOnz4tZ5bnQjVq1MDe3j5bniaya9cu3NzcyJs3Lxs2bODjjz9GUZQ3/h3qdDq8vLwoWbJk0mO+vr4UKVKEAwcO0Lp1a0OULoQQGZI7d4v5gMXG6ZizLgi1CoOeDf9fWh388yCWA2cjaNfAGkj8wdqvXz+OHTsGwKtXr2jSpAkeHh7Ex8fTqlUrdu/eTevWrdO8kY4hmBiraFrLkqa1Es8YjojW8fBZHM8C4omNV4hPAGMjMDVW4VjImJKOJqluuleyZMmkoA+JZ1JHR0ezadOmTAn7Hh4e1KxZU+/t6kvdunXZs2ePocswiOLFi3P06FEaNGiQdGMss8+zFrmHv78/7dq1o3Tp0qxbt85gx9ytXLmS27dvJx3xKXIfNzc3vvzyS3x9fSlcuLChy3lDp06d6NSpE2fPnuXjjz8GSBb0t2/fTq9evejfvz8zZszA0dGR4OBgABnZF0LkWDKNP5fZfzYC/yBttgr6/7Zyzyti4nQoisKoUaPYvHnzG7v1X7lyhRkzZvDs2TP27dtHhw4dsnXQT4mVuZoqrma0rW9Nl0Y29GxmQ5dGNrStb00VV7M07a7/75GF10aMGMHx48f1Xm9UVNT/sXfWYVGlfx++Z2hEEAQJAxNMbAyMtQW7GzvW7i4UO9Zc17V7BbuwuwOxE0URCUGQrpnn/YOX+S0r9sCAnvu6XNiZc57nM8HM+TYPHjzIkvX6qTg5OeHn58fbt281LUUjlCpVCi8vL+7du0fr1q1JSEjQtCSJbEBcXBwtWrRAoVBw4MABjTmJwsPDmTp1Kj169KBixYoa0aAphBCZNoJW03Tq1Ak9PT02bdqkaSmfpEaNGuneLpfLadWqFUuXLuXgwYPY2dkxbtw4Xr58CSDV7EtISGRbJGP/J0KpFOw5E0VWvqyIjRecuRVLnz59WLZs2Uf3x8XF0bVr15+6mdHX8G9jP1euXABUrVo1Q+pcb9++jUKhyPLGPvDLjOBLD0dHR/bv38+5c+fo1q1bmswPCYn/IoSgZ8+e3Lt3jwMHDmi0872bmxsJCQnMnj1bYxo0hUwm+2UyGUxMTGjbti3r1q3Llg4OXV1dBg8ejK+vL2PHjmXlypV07twZQMqmkpCQyLZIxv5PxO2naevFsyIyGew9E8XOnTs/uk9LSwshBDt27NCAsqxFvnz5sLOzo1u3brx8+ZL27dszcODADIls37x5Ez09PUqXLq32tdWFtbU1hQsX/qWNfYC6deuyc+dO9uzZQ//+/bPlBbVE5uDm5sbOnTvZunWrRqPpjx8/ZuXKlUyaNEnVFf1XISIign/++YctW7Zw9+5doqOjiYmJ0bSsDKVPnz74+vpy7tw5TUv5bnLmzImbmxvPnz9X/e04OjqyYcMGyckqISGR7ZBq9n8i9p2NQi5H46P2PocQ8PxNEtfvvsPUIILAwEACAwN5+/YtgYGBBAcHU6tWLU3L1DhyuZwnT56o/v/PP/+kTJky9OrVCy8vL7VGim7cuEG5cuWyfLmEk5PTL2/sA7Ro0YL169fTvXt3TE1NmT9//i8TOZT4Ov755x/c3NyYNWsWrVu31qiWkSNHUqBAAYYPH65RHZnNnj17mD17Nv7+/igUCkaNGkXevHl58eIFQ4YM+WlrwGvWrEmxYsVYt26dqhN+dsXKyooGDRpw//59qlevTq9evVi0aBFz5syhadOm0ueuhIREtkCK7P8kxCcquXIvLksb+qloyeHc7Xisra2pUKECTZo0oW/fvkydOpWVK1dm6UZxmiJ37tysW7eOY8eOsXr1arWufePGjSydwp+Kk5MTt2/f/ukjY1+Dq6sry5YtY+HChcyZM0fTciSyENeuXaNHjx5069aNCRMmaFTLkSNH8PLyYuHChejr62tUS2aQOrP93LlzTJkyBW9vb969e0d0dDSFChXCx8eHGTNmcOfOHYCfMjNHJpPRq1cvdu3aRUREhKbl/DBhYWFYWlqyc+dOrl+/Tp48eWjevDm1a9fmypUrmpYnISEh8UUkY/8nwfdN0meb8imS4/G/s5Zbe1pxYV0Zzq4uxuUt1fA50JnXd9YAEPjYkzOrbDmzypZrO+oilP9LV7u1uyVnVtlye38H1W2393dQHX/mr0KcX1uSq9vr8Oj0aKLe3fu0FiU89pMajH0rzs7O9O/fn1GjRvH8+XO1rBkREcHTp0+zjbGvUCi4fv26pqVkCYYMGYKbmxuTJk1i1apVmpYjkQV4/fo1LVq0oGLFiqxZs0ajkcekpCRGjhxJnTp1aNmypcZ0ZCapxv6xY8d49OgRs2fPpkWLFiQmJlK8eHFVL5bUDu8/o7EP0L17d5KSkn6KkrzQ0FBVc77KlStz6tQpjh49SmRkJNWrV6d169Y8fvxYwyolJCQkPo1k7P8kPH2dyKeu65Liw/He04rnl2cSGeyNUpmEYa5CyGRyIgKv4XvZ/aNzYiN8CXqy66v2lsl1MbYoi7ZuTuI+vCToiSe39rTk7cNPf9E/9U9CmVVHBmRhFi5ciJWVFa6urmqpHfT29gagUqVKP7xWRlOyZEly5colpfL/iylTpjBs2DAGDRr0U1xYS3w/UVFRNGvWDAMDA/bu3Yuenp5G9axcuZJnz56xZMmSXy7dOdUZ279/f1WfAjMzMxITEwGyfMnUj2JtbY2Liwvr1q3TtJQfJiwsLE3JhUwmo1GjRnh7e7Nlyxa8vb0pVaoU/fr1+2WnxUhISGRtJGP/J+Hp60Tkn7ieenphKtFhDwHIV6YXNXr64NjhONW6XqJGj9sUr7Mw3fNe3lyKUvHlCLxejjxUbLOP6q7XqNjmAPo58yGUyTy9MJmY8PQj0AmJgoB3yV/34CRUGBkZsXnzZq5du8b8+fN/eL0bN25gZGSEvb29GtRlLHK5nGrVqnHx4kVNS8kyyGQyFi9eTPfu3XF1deXw4cOaliShARQKBV26dOHly5ccOnSIPHnyaFRPaGgobm5u9O3bFwcHB41qyUxSnRra2intkG7dusW9e/cwMDAgIiJClZWk6dcnM+jTpw+3bt3Cx8dH01J+iH9H9v+NXC6na9euPHnyhEWLFrFnzx6KFi3KxIkTf4ryBQkJiZ8Hydj/SXjmn4ginXr9pIQPvPNNMQCMcpekqNMUtLT/VzuprWeMdfF2H51nZF6KhOgAAu5v+SYdxnkcKOo0DQChTCbw0cdd91N5EZD0TWtLpODk5MTYsWOZNm3aD19I3bhxg4oVK6KlpaUecRmMk5MTV65ckToi/wu5XM6aNWto1qwZbdu2zdZdsCW+j/Hjx3P48GF27txJqVKlNC2HqVOnIoRg5syZmpaSqaR+jqY2phs6dCgPHjxAV1eX6dOns2fPHgoXLkyBAgWAlL/dnxUXFxesrKyyfXQ/LCwsXWM/FT09PYYPH46vry8jR45kyZIlFClShMWLF5OQIJUrSkhIaJ6f95vmFyMmLv3OfHERLxEixTAysa6MTJbykt/z6vu/evtVtgQ+9kxzXqHKI5HJtXnlvZLkxOhv0pLL+n8N9mLCn33yuNiEbNBNMIsyffp0SpQoQbdu3X7oguLmzZvZol4/FScnJyIjI3nw4IGmpWQptLW12b59O05OTjRr1oxbt25pWpJEJrFu3ToWLlzI4sWLcXZ21rQc7t27x+rVq5k6dSoWFhaalqMRunfvTps2bXj8+DEfPnzgw4cP7Nu3D7lczpQpU7C2tta0xAxHW1ub7t27s23bNuLj4zUt57sJDQ39qskJJiYmuLu78/z5c9q1a8fYsWOxt7dny5YtknNaQkJCo0jG/k9CUvKX699TDX0Aw1yFMcpd8pPHGpgUxLp4e5Li3+N/Z+03aRHiy0a8DEhMSqs5ISGBXbt20bx5c9avX/9Ne/5q6OnpsWXLFp48ecLUqVO/a43IyEjs7e2pV6+emtVlHI6Ojmhra0t1++mgr6/Pvn37KFmyJI0bN5aaRv0CnD17lgEDBtC/f3+GDh2qaTkIIRgxYgRFixZl8ODBmpajMfT09Fi7di2rV6+mW7duNG/enM6dO/P333/TvXv3bJNJ9aP06tWL8PBw9u7dq2kp30ViYiKRkZGfjez/FxsbG/766y/u379PxYoVcXV1pUKFCnh5ef20DRklJCSyNpKx/5Mg/0TBvmGuwshkKRcWH4L+F+0rUm0CJRss/+yaBSsOQ66tj/+dNSQlhH+1lg+B/+uWnsO0WLrHCEDr/zXfuXOHYcOGYWlpSbt27Th48CDXrl376v1+VRwcHJg5cyYLFizgwoUL33y+sbExx44do3HjxhmgLmMwNDSkQoUKkrH/CYyMjDhy5AiWlpY0aNCAV69eaVqSRAbx/Plz2rRpQ+3atVm+fHmWaYLXvn17li9fjq6urqalaITk5GSmTp3KxYsX6du3L4sWLeKvv/5i69atdOzYkfDwr/8uze7Y2dlRs2bNbJvK//79e4Cviuz/l+LFi7N7926uXLmCiYkJLi4u1K1blxs3bqhbpoSEhMRnkYz9nwRdnfQv9LT1jLEo0gSAqHd3eXl9cZqRep9Dz8iKvKW7o0iKJu6D31edExlyl+eXU+o0ZTKtdPsBpHLn9g3Mzc0pV64cK1as4MOHDymatbWxtLT8qv1+dUaPHk316tXp3r07UVFRmpaTKTg5OUnG/mcwMzPj+PHj6Orq0qBBA4KDgzUtSULNhIeH07RpU8zNzfH09Mwy3d1lMhm9e/emQYMGmpaiMd69e4e7uzvbt28HwNzcHCsrK2JjYxkzZgxz5szRsMLMpXfv3pw6dYoXL15oWso3ExoaCvBNkf3/UrVqVc6dO8ehQ4cIDQ3F0dGR9u3b8+zZp0scJSQkJNSJZOz/JFjn1uZTcR27mjPIkbsEAH63lnJhQ1lueDrjs7/jF9e1LT8QbV3jzx6TEBPCrd0tuby5Krd2Nyc+6g0yuTZ2tWaRw8zuk+fFRQWoPOep84khJTLi7u6OjY0NlSpVolmzZvTr14/p06ezevVqDh48yM2bN3n79i3Jyb92R38tLS02bdpESEgIo0aN0rScTMHJyQk/Pz9pzNFnsLGx4cSJE0RHR9OoUSOpO/RPRFJSEu3btyckJIRDhw5hamqqaUlp0NLSyjJZBplJQkICERER+Pn5AXw0+jAsLIxly5axc2dK09pfpY67bdu2GBsbs2HDBk1L+WbCwsKA74vs/xuZTEaTJk3w8fFh48aNXL16lRIlSjBw4ECCgoLUIVVCQkLik2hrWoCEeihuq4vP0/h0O/Lr6JtSsfU+3tzbyDvfQ8RGvCA23BddQwvM8tfGvFAjzAs1JPTl8XTOzUX+cn15eX3RJ/cWykQiQ3zQ0jHEwKQgJlYVyVemBzktynxW84QRnenergp9+/b9qIP477//joWFBW/fviUwMJBbt25x6NAhgoOD0zgGZDIZlpaWWFtbY21tjY2NTbo/LS0ts0z0S92kdv7t378/LVq0oEmTJpqWlKE4OTkBcOnSJdq1+3TmyK9O4cKFOX78OLVq1aJp06YcP34cQ0NDTcuS+AGEEAwdOpSzZ89y4sQJihVLv0xKIvO5cOECDRs2VI3VO3HiBG3atMHIyAhra2siIyMRQlC0aFENK81ccuTIQadOndi4cSPTp0/PVv0K1BHZ/zdaWlp0796dDh06sGLFCmbPns2mTZsYNWoUo0ePxtj484EVCQkJie9BJqSOIT8F52/HMn1NqKZlfDVWubXYPjMvkHIB+9dffzFmzBhiYmIAuHr1KlWqVPnoPIVCQUhICIGBgSpHQOrPf/8eFBSUJnIik8mwsLD4rEPAxsYGS0vLbFlrKoSgadOm3Lp1i/v376vt4iSrcubMGfT19alWrZqmpWR5rl27Rr169ahZsyb79+/Plu9viRSWLVvGsGHDWLNmDX369NG0HBVCiF8ymv9vdu7cSadOnQDQ0dEhKSn90bKTJ09mxowZKBSKbGX4/gg3btzA0dGRI0eOZImJEV/L33//ze+//05SUlKGjEkMDw9n3rx5LF26FCMjI6ZMmcKAAQOkz2gJCQm1Ihn7PwlBYcl0npI90prlcqhWSouHJ4cSHh7OkydPPkrJfvHiBYUKFfruPRQKBaGhoZ91CLx9+5agoKCPSgHMzc0/6RBI/d3KyuqjNE1NExgYSOnSpalTpw6enp4/9cW3EILk5OSfNltD3Zw6dQoXFxdatmzJ9u3bNW5kxCbH8/RDAE8+vOHphzdEJEYTn5wIMtDX0sVUNyfFTPJib5IPO5O8GGrra1RvVsDLy4umTZsyYsQIFi5cmOn7p2fQh4eHZ7kyAk3h7+/Pq1evWLt2LZs3b6ZFixY4Ojri7+9PdHQ0ERERlCpVisGDB5M3b15Ny81UhBCULVsWOzs7du3apWk5X83s2bP5448/ePfuXYbu8+bNG6ZPn86GDRuwtbVl1qxZdOjQIUMcDBISEr8ekrH/kyCEoMOkt4RGZP06QBlQyPAC6xZ1Tfd+PT29TJvLq1QqCQ0N/axDIPW2/0ZqcufOna4j4L+36etnnqHi6elJ+/bt2bp1K126dMm0fSWyPnv37qVt27b07t2b1atXZ7oz6ENiDEf8r3Po9TX8Y0IQgAwZMhko//M1pCWToxQCgUAGFDDKQ9MCVXHJVxlj3RyZqjsr8ODBA6pVq0bt2rXZt2+fRpw1SqUSuVzOuXPn2LVrF5cvXyZv3rw4ODgwcOBAbGxsMl1TViLVGXLgwAE2b97MkCFDqF27NnFxcQAYGBhoWKFmWbp0KaNHjyYgIEBV6pDVGTlyJF5eXjx69ChT9nv48CETJ05k//79lC9fnnnz5v3SzS4lJCTUg2Ts/0RsP/qBdQc/kNVfUT0dGeYRM9m6eU269xsbGzNt2jRcXFywt7fPEhFqpVLJ+/fv03UE/NdJkJiYmOZcU1PTzzoEUn+q62KwS5cuHD58mCdPnkhTDSTSsGnTJnr06MHYsWOZN29epuz5JMKfXX4XOBlwG4VQIvj2DyjZ//9XSyanYd4KtC5UE3uTfOqWmiV59+4djo6OGBsbc/HiRXLmzJnpGlJTzh8/fkytWrUICwtTzQy3sLBg2rRptGnTBgsLi18+GpmQkICWlhba2tokJCSQmJiYJgNJT08vS3ynZTZhYWHY2Ngwe/bsbNNMtnv37vj6+nLx4sVM3ffixYuMGzeOy5cvU79+febOnUvFihUzVYOEhMTPg2Ts/0SERyloPyEg3SZ9WQUtOTRxMmJYR1P69evH2rVrPzrGysqK8PBwEhISKFiwIC4uLjg7O1OnTh1y5MjaUT0hBOHh4V90CAQGBn6UvZArV64vOgSsra2/+ByEh4dTpkwZevTogbu7e7rHKJVKLl68iIeHB3K5HGtraxwcHChZsuQPlU9IZH2WLl3K8OHDmTNnDuPHj8+wfWKT4/nz4UH2v76ClkyOQqjngyl1rZa21fm9RDMMtbNWOY06SUhIoF69ejx79ozr169ja2urUT0uLi4cPXqUhQsX8uzZM1avXk3t2rVxd3dn/fr19OvXL91eK78aq1atYs+ePSiVSoyMjMidOze5c+dGS0uL/v37/7KfsR07duTu3bs8ePAgWzg8mjRpgo6ODvv27cv0vYUQHDhwgAkTJvDo0SM6duyIu7s7RYoUyXQtEhIS2RvJ2P/JcF8fyjnv2Cxt8K+dZEXhvLqqztIrVqxIc7+2tjbJycmULFmS3Llz8+rVK16/fo2enh61a9fG2dkZFxcXihUrli0uGNJDCEFERMQXHQJv375VpYGmYmxs/Nl+AtbW1jx+/JhDhw59Ml377NmzuLi4fORwcHZ25vDhw0RERODh4cG2bduIiYkhX7581K9fnw4dOmBhYQGkjEgMDw9X/b9E9mH69Om4ubmxatUqBgwYoPb1b4Y+ZbbPDsLiI1F+RyT/a5Ajw1zfhMnlOlPe/OfrcC6EoHv37nh4eHD27FmqVq2qUT23bt2icuXKVK5cmWvXrlGpUiW8vb25evUqL1++pFOnTqxfv54ePXpoVKemSC1zWLNmDVOmTCEkJCTd406dOkWdOnVUx/9KnDhxgoYNG3L58uVs0Vy1atWqlCpVinXr1mlMQ3JyMps2bWLq1KmEhIQwYMAApkyZkm1KISQkJDSPNHrvJ6N9fWNO34zVtIx00ZJDOTs9CudN6TQrk8lYtmwZgMrgL1OmDOfPn+fAgQN4eHhw/PhxkpKSKF++PLa2toSHhzN+/HhGjBhB4cKFVVH/3377LVuNFZPJZJiammJqakrJkiU/eZwQgsjIyE86At68ecP169cJDAxUTTJIxc3NjaSkpHQ7+165coX4+Hjatm3LzJkzefjwIbt27cLY2Jjg4GDGjBnD1q1bkcvlKJVKvL29OXz4MI8fP8bNzY3cuXNz8eJF6tatS5EiRdiyZQtVq1YlICCARYsWkStXLlq2bImDgwNRUVHExMRgaWmZbZ0zPxvTpk0jPDycgQMHUqlSJSpVqqSWdYUQ/PX4ENt9zyBHlmGGPoASQWj8B4Ze/ZOuRevRz97lp3p/zZ07ly1btrB9+3aNG/oAkZGRaGtrU7hwYebMmYO3tzd9+/bF0dGRMWPGoKWlpfos+5W78+/cuZOQkBD69OnD3r17SUpKomTJkjx48IDcuXOrIrO/mqEPUK9ePWxtbVm3bl22MPZDQ0M1PtlGW1ub3r1706lTJ5YvX86cOXPYuHEjY8aMYeTIkRgZGWlUn4SERNZHiuz/hKzaHc6u01FZrnZfT0eGeDkR76vHcHBwIG/evJibm5M7d25OnjzJmTNnuHjxomqOOkBERAQHDhzA09OT48ePk5iYSJUqVShTpgwJCQlcuHABPz8/9PX1+e2331RR/19tljFAVFRUGkdA8eLFKV26dLrG/vLlyxk2bBhFihRhyJAhlCtXjsKFC5MvXz42bdpEz5490dPTY+TIkUyePJm1a9cyZswYEhMTWbJkCUOHDlWNmqpUqRJ//fUXFSpU4OLFi9SqVQtAddyyZcsYPnw4lSpVYsSIEWzcuBETExPGjh1LpUqVSEpK4uHDh+jo6GBubo65ufkveSGc2SiVSvbu3UubNm3Usp5CKJl/x4Mjb66rZb1vpUn+KoxxaIeWLPu/d/bs2UObNm2YOnUqbm5uGtPxb6Pd19eXihUrEhkZiZ6eHrly5WLHjh28ePGCPn364OLiwqFDhzSmVdOkPldWVlbEx8fz8uVL7OzsMDU1ZceOHXTr1o1Bgwbx+++//9Kfb25ubixYsIDAwECN9J/4FkxNTZkwYQJjx47VtBQV79+/Z/bs2SxfvpxcuXIxbdo0+vbtK02mkZCQ+CS/7jfOT0yvZiZY59ZGnsUCK7+3yYWJQSLv3r3j1KlTbN26leXLlzN16lTOnDlD/fr10xj6kFLH7urqysGDBwkJCWHz5s3kyZOHzZs3s2XLFqytrRk3bhxjxowhOTmZMWPGUKxYMYoVK8awYcM4evToR2nwPys5c+bE3t6e3377jc6dO1OhQoVPXgD07duXlStXYmJiwujRo2ncuDEdO3bk9u3bPHjwAEhJYWzfvj0GBgY0a9aMGjVqAKjuf/36NZByQZTaRyAiIgITExPy5ctHgQIFVLcB3Lt3jwEDBnDixAkuX75MeHg4gYGBDB06lMaNG1O6dGmsrKxUmQKpJCQkcOjQIbZu3YqXlxdPnz79qAmixLcjl8vVZugLIVhw1wMvDRn6AIf9r7Ho3i6yu//61q1bdO3alfbt2zNt2jSN6VAoFMhkMmJjY7l+/TpFihShZ8+eQMrfZGRkJLNmzaJPnz7IZDLmzp2rOu9XJNUpkpCQgK2tLaampsTFxZGUlETFihXR0tLir7/+yvbvzx+lZ8+exMbG4uHhoWkpnyUpKYmIiAiNR/b/i5mZGQsXLuTp06c4OzszePBgSpYsiYeHxy//3pKQkEgfydj/CdHTlTOhR26UWeRzX0sOZYvp0aymEZs2bcLW1haZTIZSqSQpKUl1cfilC1sTExO6devGgQMHVIa/ubk5f/zxBzNnziQ6Oprp06ezbt066tevz/79+3F2diZ37tw0adKEFStW8OLFi8x4yFmG9FJphRAEBwfz+++/c+7cOR48eECrVq24fPkyf//9t8qYNzExwcTEBAAtLS2V40BPL6UhWmBgIJBi7KdOEggJCSE2NhYdHR1y5coFwNu3bwEwMjJi9uzZBAYGcurUKWxsbJgwYQKrV68mNjYWJycn6tevz5s3b7h//z4At2/fpk+fPrRr1w5XV1eaNGlC+fLlWb58eQY9YxKf41MXk2ufeHHY/3oGJu1/HQdfX2Xd06MaVvH9BAQE0Lx5c8qUKcPGjRs1GgFOTk4GUsaP9ezZk5s3bzJnzhxmzJiBvb09cXFxnDp1itKlS/Pnn39SunRplEqlRsYCZhXi4+MxNDRUOZj19PSIiIhg6tSpPHv2jFevXv3Szw9AgQIFaNiwoUbr4L+G9+/fA2Q5Yz8VW1tbNm7cyJ07d7C3t6dDhw44Ojpy+vRpTUuTkJDIYkjG/k9KqcJ6/N4ml6ZloCUH05xybHW8iIiIQF9fn02bNn1kNNjZ2X22dv2//Nfw37JlC3ny5GH69On07t0bHx8fhgwZwokTJ5g5cybx8fGMHDmSIkWKYG9vz4gRIzh+/PhHDep+BZKTk+nYsSMVKlRg7ty5eHt7o1SmdHQMDQ1FW1sbmUzGtWvXVH0Arl27xtOnTwEoVqwYAP7+/kBKw8DUUoG3b9+SlJREjhw5MDU1BVA1qmrVqhUdO3bE0tISe3t77t27x4kTJwAYPnw4Fy5c4Pjx4zx79ozBgwcD8Oeff7Jt2zbKly/PsmXLmDFjBubm5owZM4Y///wT+LQBKvHjHD16lIsXL3L79m0gfefR3fcv2Pz8ZGZL+ySbn53kfrifpmV8M7GxsbRo0QK5XM6+ffs0Opd9woQJuLi4sHnzZv7++290dHQoUKAA+vr6DBgwgN27d7Nz507Wrl2Ll5cXffv21ZjWrERycjLly5dHJpPh5+dHo0aN+PDhA+7u7iQmJqqyo371z6zevXtz5cqVTJtf/z2EhYUBkDt3bg0r+TxlypTh0KFDnD17Fi0tLerVq0fjxo25c+eOpqVJSEhkEaQGfT8x7eoZEx2rZItXpEb2l8shp6GcKjZnGDGkJyOGQPny5XF2dsbZ2Znjx4+jUCjQ1dUlICAAe3t75s2bR48ePb4pomViYkLXrl3p2rUrkZGRHDx4EE9PTyZNmkRCQgJVqlShXbt2LFu2jGfPnuHl5cXu3btZsmQJhoaG1K1bV1XrX7BgwYx7QrIIMpkMOzs7/vnnH3x8fFS3p2ZAlClThocPH+Lr60v79u1xcHDA29ubly9fYmNjQ/369QFUqfTv379XNQm6cOECkOIASM0KCA4OBlKcBCYmJqou1M+ePSM8PBxdXV2aN2+uWjM18+PKlStcvnwZSMkeyJMnD3Xq1OHOnTv4+/tz+fJlOnTokOUvxrIbQgguX77M3LlzOXz4MIaGhsjlcrZu3ap6nVKJVyQy8/b2DG/G9y3IZOB+exubao9BT+vjfhVZEaVSiaurK48fP+bixYtYW1trTMuHDx+YP38+QgjOnz8PQJcuXciTJw8KhULVV6NgwYKqpqipzsJfuRYdUrKX9u/fT0REBLlz52bRokUYGxvz+vVrrKysslTttyZp3rw5uXPnZt26dSxcuFDTctIlNDQUyLqR/f9Su3Ztrly5wp49e5g4cSLly5enS5cuzJw585e4rpGQkPg0UoO+nxwhBNuPRbLuwIdM3VdLDmYmWiwengdzY6WqfhH+N1ovlWXLltG2bVvGjBnDtm3bqFatGitXrqR8+fI/pOHfhv/Ro0dJSEjA0dGRdu3a0bZtW6Kjo/Hy8uLIkSNcvHiR5ORkihcvrurwX7NmTVXK+s9GTEwMAQEB+Pr64u/vT2xsLCVLlqRhw4YAXL16lYkTJ3L27Fkg5SK+bt26jB8/ntq1a6OlpcX8+fOZMWMGsbGxtG7dmoCAAG7dukVycrIqKmhiYkLJkiV59uwZ69ato0ePHqro8Lx585g9ezZRUVFcvXoVR0dH4H+Nrvbu3cvgwYNV5QL/pXr16mzZsuWjmdVjxozh2bNn6Y4ntLGxwcLC4pc3Sj7HjRs3GD58OFeuXEFLSwtLS0vevn1LwYIFuXbtGhYWFiqHzfIH+/F8eR6RRQz9VGTI6FC4NoNKNv/ywVmAyZMnM3v2bPbu3UuLFi00qiU8PJxLly4xadIkHj16RHJyMpaWlkyePJkOHTpgbm7O8ePHWbduHV26dPnIAfQrkvqZdffuXWbOnImdnR0GBgaYmZkRHx9PTEwMjo6OlCxZElNTU6mDOjBixAi2bdvGmzdv0m0iq2n27t1L69ateffuXbYx+FNJSkpi/fr1TJ8+nffv3zNw4EAmTZqU7R6HhISEepCM/V+E41ejWfJPOEnJAoUy4/crZ6fHxB65Mc+VkjwyZswYFi9erIoApZInTx4CAgLQ1k457ty5cwwaNIhHjx7x+++/4+7urqr9/hEiIyM5dOgQnp6eeHl5fWT4m5mZcfLkSZXx//btW3LkyEG9evVUxn9qw7lfBYVCQWhoKEFBQcTGxlKgQAHy5s2ruj8xMZF+/frh6emJTCajXbt2nD17llevXlGvXj0OHTpETEwMNjY2JCYmsm/fvjSGwaNHj6hWrRqRkZEMGDCAUaNGkS9fPp4+fUrp0qW5efMmzs7OvH//nkmTJmFnZ0dAQABv3rzB19eXQoUK4e7ujpmZWRrd7u7uXL58WTWV4N27d2nSZlMN2PQcAf/+mSdPnl+uvlahUNCwYUPOnDmDoaEhCxcupGrVqpw6dYq5c+cycuRIWrZsSYkSJXj5IRDXCws0LfmTyJCxvc548uWw0LSUz7JlyxZcXV2ZN29elon8KpVKypQpw6NHj8iXLx9v3rwBwNHRkYEDBzJ//nwePnzI0aNHVQ7CXxmFQoGWlhbbtm2jW7duGBgYIIRAoVCQM2dODAwMSEhIwNzcnNatWzNs2DAsLLL2+zKjuX//PmXKlGHXrl1qaxSqTtasWUP//v1JSkrKtt8DMTExLFmyhHnz5iGTyRg7dizDhw9XNdSVkJD4NZCM/V+IkPfJLNz2npuPMqZOXUsO2loyBrbNRdMaRmnqe58+fYq9vX2a421tbbl169ZHadhJSUksX76cadOmYWBgwPz583F1dVVbNDYqKopDhw7h4eGhMvwrV65Mu3btaNeuHba2tty7d09l+F+6dAmFQkHJkiVVhn+NGjWyZDQio0lvfrZCoSA8PBw9PT0eP37MrVu3sLKyomXLlgQGBlK7dm3CwsLYs2cPtWvXTnPu7NmzWbVqFQEBAejo6GBsbEx8fDzv3r1DX18fBwcH7t+/T7du3fj999+xtrbGwMCAq1evUrJkya8asZiUlERwcLDK+A8MDEzze+rP4ODgNE4BuVyOpaXlZx0C1tbWWFpaqpxV2Z2bN29Ss2ZN5HI5CxYsoHfv3qrsloIFCxIcHIy+vj5Xr17lWPJDdvtdQikywXv4HchlctoXqpWlo/uXLl2ibt26dOnShXXr1mWZ2fRhYWGsXbsWgBYtWrBhwwbWrl1LeHi46pjGjRtz5MgRTUnMUqRmunh6etKrVy9VrxNjY2MiI1PK6PT19VU9Yjp37szWrVs1pjerULVqVczMzLLk+2ju3LksWLBAVbufnQkNDWXWrFmsXLkSc3Nzpk+fTq9evX6a7y0JCYnPIxn7vxhCCI5eieGvPRFExSqRy/jhrv1aclAooXJJfUZ0MsMqd/pfILVr1+bixYuq/7ewsODEiROUKVMm3ePfvn3L6NGj2bFjB05OTqxcuZKyZcv+mNj/kGr4p0b84+PjVYZ/27ZtKVSoEBEREaqov5eXF4GBgRgZGVG/fn2V8Z8vXz616vqV2Lp1K0eOHOHevXsoFAocHR3ZuHEjkFJOMGbMGC5duvTReWfPnqVWrVpq05GcnExISMhnHQJv374lODg4TYaKTCYjT5486ToC/n2bpaVllp2FnJSURGRkJL6+vtSoUQNjY2OOHz9OhQoVAJg/fz7jx49XleDMW7yAE/bviFNk7RGIhtp6HGjgliVr9/38/HB0dKREiRKcOHFC487D9Bx5qURGRnLr1i02bdqEh4cHNWvWZOXKlRQtWlQV1f6VSX3unj9/Tvv27cmXLx/Dhw9HqVTy+PFjlixZgpmZGSVKlODAgQMYGBiwYcMGGjVqpGnpGmXNmjUMGDCAV69eZbnv0NGjR3Pw4EGePHmiaSlq4+XLl0ydOpVt27ZRrFgx5syZQ6tWrbKMk1FCQiJjkIz9X5TEJMH527HsORvFY79ElcH+tcjloFSCnq4M52o5aF4rJwWtP2/I/PPPP3Tq1AkDAwP27dvHuHHjePHiBfv27aNOnTqfPO/MmTMMGjSIJ0+eMHjwYNzc3NSS2v9foqKiOHz4MJ6enhw5coT4+HgqVaqkivgXKlQIIQR37txRRf2vXLmCQqGgTJkyqsaDTk5OWdaoy47cvXuX8+fPc+fOHT58+EDOnDmpWrUqnTp10kjtq0KhICQk5LMOgcDAQIKCgtLMHJfJZFhYWHzWIWBtbY2VlVWmGn5KpZI9e/bw4MEDJk6cSJUqVfDx8WHQoEFMmzaNpUuXsmbNGkJCQlTjEgs0q8j8u1l7TnYqE8p2xCW/o6ZlpCEyMpLq1asTFxfHtWvXskQtbarBevDgQQ4dOoS3tzedO3emSZMmFC1aVJVZFRwcjFwux8LC4rMOgl+JVIfH9OnTmTVrFocOHUpjyI8ePZpjx45x4cIFFi9ejLu7O9u3b6djx44aVK15IiMjsba2ZsKECUyePFnTctLQo0cPnj17lq6jObvj4+PD+PHjOXbsGFWqVGH+/PlqdZxLSEhkLSRjX4Ln/omc9Y7lsV8CT14lEhP/6beETAY25tqULKSLQzF96lY0xED/69LrExIS6N69O/369aNu3bpERkbStm1bzp07x6ZNmz574ZOYmMiyZcuYPn06OXLkYMGCBXTr1i3DLjSjo6NVEf9Uw79ixYoqw79w4cJASjOrEydOqKL+wcHBGBsbq6L+jRs3TlPnLvHrkNrz4HMOgdR//25YCSkdoD/nELCxscHKykotDSQTEhIYN24cy5Yt49ChQ1SqVImRI0dy/vx5oqOjiYiIQCaTYW1tzaRJk/j9999pumM0ETmSkWXxRocyZJQ1K8zy6oM0LUVFcnIyzZs35/Lly1y5coUSJUpoWhLJycloa2vj4+ND/fr1VTPGARwcHBg0aBBNmjQhT548UupvOqQ+f61atWL//v2MGDGCkSNHYmZmRkREhCpD7cKFC/j7+9O5c2d27dpF69atNS1d4/Ts2ZNz587x/PnzLNU4tVmzZshkMg4cOKBpKRnGqVOnGDduHLdu3aJJkybMmTPnk5mWEhIS2RfJ2JdIgxCC4PcKfN8kEhsvSEgSaGmBrrYMSzNtiuTTwUBPfV/IiYmJ9OnThy1btrBw4UJGjhz5WQP+zZs3jB49mp07d1KjRg1WrlyJg4OD2vSkR3R0dJqIf1xcXLqGv1KpxMfHRxX1v3r1KkqlkrJly6qi/tWqVcsyUX+lUqm6SM1KF1nfS3aNMiqVSsLCwj7rEEj9PSkpKc25ZmZmX2w0aG1tjb6+/mc1XLt2jXr16mFlZcWyZcsoX74848aN48CBA8TExGBvb0+fPn3o3r07MbExuPosJUko0l0r4q4/9yfvAgG2rk7kb/f/UxYUSu6O20nUkyD0LHJSfkU33p17wrszj4h+EYIyIcXhUeHP7hjmT9t0MeLOa97sukGMXyjJ0QnoGOuTs7g1BTpVI0fBz0fF9bV0OdZ4NnJZ1niPDx8+nBUrVnDkyJEs19yuZs2aXLp0iX79+uHr68vp06dVfSyaNm2Kq6srzZo1+2mnlHwvqZ8948aNY8GCBRgbG1O6dGlsbGx4//4958+fJzk5mZcvX7J27VpmzZrF5cuXqVq1qqala5yLFy9Ss2ZNTp48Sb169TQtR0W1atUoUaIE69ev17SUDEWpVLJr1y4mTpzIixcvcHV1ZcaMGb9cQ2IJiZ8ZydiX0DhCCCZNmsScOXMYNmwYixcv/qLxeerUKQYPHsyzZ89Uqf2pc90zkujoaI4cOYKnpyeHDx8mLi6OChUqqAz/IkWKqI59//49x48fV0X93717h4mJCQ0aNFBF/TNrnnZMTAy2trb89ddftG3bVnX78ePHiYmJwcXFJdtfwKd2Tf4ZHBfpIYQgLCzsiw6Bt2/fkpiYtpbe1NSU/Pnzs3r1ahwdHdN9jnbv3k27du2AlH4a7969A8De3p6uXbsihGDZsmVYlrQl1+ian9X6Ys1Z3h64jUxbi3KLO5GjkAX+O6/xautlkEHpWW3JVSY/D90PEOHzCh0TQxJCUhqZ/dfYjwsIx3vwFkSyAm0jPfTymBD7OhSRrETHxADHTf2QaX3+Nd/+2wTyG2m++/nq1asZMGAAK1euZODAgZqWA/wvBX3fvn20bt2ali1bsnv3bgoWLEhoaCh2dnbcu3cPpVKJg4MDPj4+mpacZYmKiqJHjx7s3bs3ze3a2toMHz4cNzc3mjZtir+/P2fPnsXGxkZDSrMOQghKlChBhQoV2L59u6blqLCzs6NFixYsWJB1J46ok8TERNauXYubmxsfPnxgyJAhTJgw4aNpNxISEtkPydiXyDKsWrWKwYMH07p1a7Zs2fLFaGRiYiJLlixhxowZGBkZsXDhQrp06ZJp0d2YmBhVxD/V8C9fvjzt27f/yPBXKpV4e3tz5MgRvLy8uHbtGkIIypcvj7OzMy4uLlSpUiXDUmRToye3b9+mXLlyqts/fPhAmTJlKFq0KCdPnszWhnJycjKhoaFYWVlpWopGEUIQHh6eriMgNDSUsWPHUqpUqXTfawcPHmT+/Pncvn0bPT09qlevzqhRo4iLi6Nly5YkJSVh06AMhYZ8PgKnTEzm9vBtxPm/x7CgOcWGNODuuJ2IZCU2LSpQuE/KVIaEsGh0cxkScuYRz5YeBz429kPOPOLp4qMAlF3YkZz21rzadhn/f66BXEbV7b+jnePzjqpp5btSP2+Fb3oe1U1gYCBFihShd+/eLF++XKNa0iM1Bd3b25v79+/j6urK4MGDqV+/Pt27d8fMzIzFixfTokULqSnfZ3j//j1nz57l+vXrvH//Hj09PRwcHOjduzeRkZGcPXsWc3NzqlWrJj2H/8+CBQuYMmUKgYGBmJqaaloOkJI1NW7cOMaNG6dpKZlKdHQ0ixYtYuHChWhpaTFhwgSGDh2KgYGBpqVJSEh8J5KxL5Gl2LdvH506daJy5crs37//q774/f39GTVqFJ6entSqVYuVK1dSunTpTFD7P2JiYtJE/GNjYylfvrwq4v/fEXGhoaGqqP/Ro0cJDQ0lV65cNGzYUBX1t7S0VJu+JUuWMGHCBCIjIz8qIzh9+jT16tXjjz/+YPjw4WrbUxPs2LGDTp06aVpGtuBTZQ+hoaEqI0VfXx9LS0tmzpzJtGnTcHR0pP6snpyNeoRM+/OOoejnwdwZ/Q9CoUSuq4UyUYFhfjPKLemCXDetoyH45INPGvtxb8PxHvT/kf2c+uhZGBP7OhS5ng623apj06TcZ3Voy+S0K1SbgSWbfeUzkzEoFAqePHmCnZ1dlql7T30PJCcnM2TIEG7fvs2ZM2coU6YML168ICwsDE9PT5YuXcqePXs+Gp8q8WkUCgUKhULjUxayA8HBweTLl48//viDwYMHa1oOycnJ6Orq8vfff9OnTx9Ny9EIwcHBuLu789dff2FpaYmbmxvdu3fPMp9dEhISX0/2DeNJ/JS0bNmSU6dO8eDBA2rUqMHr16+/eE7+/Pnx8PDg+PHjBAUFUa5cOUaOHKmab5wZ5MiRg3bt2uHh4UFISAienp4ULVoUd3d3ihUrRvny5Zk9ezbPnj0DUhqwde7cmS1bthAUFMS1a9cYNmwYfn5+9OzZEysrKypVqsSUKVNUHf9/hBs3blCuXLl0+wXUrVuXYcOGMX78eB4+fPhD+2iSs2fPcujQIU3LyDZ8KgPG3NwcOzs7bG1tVQ6n1JGX169fJ0lLiZb2lyOSRkUtyd8hpV5fmagAuQy7kY0/MvS/hIGNKaXdW6NjYkByVDwxL0IQyUr0chthmD/3F88XQHRy3DftmRFoaWlRokSJLHOxrFAokMlkhIaGsn//flatWsX+/fvx9/dXlYGMHj2awYMHq5yREl+PlpaWZOh/JZaWljRt2pR169ZpWgqQ0nhXCJElpmRoCktLS5YvX86jR4+oWbMmffr0wcHBgf379yPFCCUksheSsS+R5ahevTqXL18mNjaWatWqcefOna86r0GDBty9exd3d3dWr16Nvb0927dvz/Qvphw5ctC2bVs8PDx49+4dnp6e2NnZMWvWLOzs7D4y/LW0tHB0dGT69Olcu3aN4OBgtmzZgp2dHX/++SfVq1cnT548KudASEjIN2u6ceMGlStX/uT9c+bMoVChQri6un7UBC67cPjw4Z9yTFJWoHnz5ixbtgxra2tOnD2NUvl1czrj3kb873+UgviQb3fAJYRF82zpCZI+xGE/1oVqnoOxaV6e2NdhPHTbR+L76M+eL4QgQZE13tNZqYFkasnOoEGDaNeuHZ06dVJlHqSO4dqwYQPJycm4urpiaWn51a+7hMS30rt3b3x8fPD29ta0FEJDQwHInfvLzsSfnaJFi7Jjxw5u3ryJjY0NLVu2VDXylJCQyB5Ixr5ElsTe3p4rV65gaWlJzZo1OXXq1Fedp6enx/jx43n06BFOTk506dKFOnXq8ODBgwxWnD6Ghoa0bduWnTt38u7dO3bt2pXG8C9XrhyzZs3i6dOnqnMsLCzo2rUr27dvJyQkhCtXrjBo0CCePXuGq6srVlZWODo6Mm3aNK5du/bFqH9ERATPnj37rLFvYGDA5s2b8fHxwd3dXW2PPzOpVq0ar169IiAgQNNSfipSDbzBgwdz5swZ8trYoPwKB1ropWe8O/sYAL08xgA8X3mKxPCYb9o/8PAd4gMj0DLUxaKmPVr6OuSpWzJFW2IykY/efvZ8mUyGPBOM7H87FbO6UZyavv/q1SvOnTuHTCZj//79dO3aleHDh9OgQQOmTJmCs7MzY8eOzbafCZmJEIK4OM1nkGRXUhvWrl27VtNSCAsLA/ilI/v/pWLFipw4cYJjx44RExNDjRo1aNmyZbbOBpSQ+FWQjH2JLIuVlRXnzp2jevXqODs7f1On3gIFCrBr1y6OHj3K27dvKVeuHKNHjyYqKioDFX8eQ0ND2rRpk8bwL168OHPmzMHe3p6yZcvi7u7OkydPVOdoaWlRtWpVZsyYwY0bNwgKCmLjxo0ULlyY5cuXU7VqVSwtLenatSvbtm1TRST+za1btwCoVKnSZ/VVrlyZKVOmMGvWLK5fv67eB58JODk5AUgRBzUjl8tVhqydnR06Mi34grGfGB7D8z9THHSmlQpRdkEHtHPqkxwZx/MVJ79pf0VsQsrPuETiAsKBlH4AKn16Xx5lKVdmvLGflJREfHw84eHhJCcnZ/h+P0JqhsGjR48wNDTE0NCQ+Ph43rx5w5o1a1ixYgXJycls3LiRuXPnoqenh1KpzNYNPDOayMhIDA0N2b17N3FxcZQtW/arndQSKRMLevbsyfbt2zXuNEn9HpWM/bTIZDIaNmzIrVu32LZtG3fu3KFMmTL06dOHN2/eaFqehITEJ5Aa9ElkeZKSkujbty+bNm1i3rx5jBkz5pvSYRMSEli0aBHu7u6YmpqyaNEiOnTokGVSamNjYzl69Cienp4cPHiQmJgYHBwcVM39PtUUKzk5mWvXrqlG+3l7eyOTyXB0dMTFxQVnZ2cqVqzI/PnzmT17NhEREV+8WE9KSqJ69epERUXh7e2NoaFhRjzkDKNo0aI0adKEpUuXalrKT0dqNHjN4yNseXYS8Zk/nwcz9hF+4yXaOfWpsKIbumZGhF58yuN5hwEoOqQBVg1L83LjBcIuP0MRl0RSRCwAehY5kWnLsWlaHpvm5Ym485r7U3aDALm+DvpWJsS+DgOlQC+PMRX+7I6W3qfr4IVCib/HdeJP+mJra0vBggVVP1N/t7W1JWfOnN/93ISEhDBq1Cju3bvH27dvadasGQ0aNKBjx47fvWZGkdpJf9OmTfTs2ZOKFSuybds2Ll68yPr167l8+TKQUo7022+/MW3atC86CiXg8ePHlChRgnPnzqneV8eOHaNhw4aalpZt8PX1pWjRomzZsoWuXbtqTMe6devo06cPSUlJWabHRlYkISGB1atXM3PmTKKjo1W9f6T+HhISWQvJ2JfIFgghmDp1Ku7u7gwZMoQ//vjjm8cWvXr1ihEjRrB3717q1KnDihUrKFmyZAYp/j7i4uI4evQoHh4eKsO/TJkyKsO/ePHinzw3KCiIo0ePcuTIEY4fP86HDx+wsLDAwMCAHDlycOHCha+qQXz06BEVKlSgX79+2c5o7t69Ow8ePODmzZualvJTkpyczKV3D5l8a+Mnjwk6dk8Vvbcf64JFzf85q54s8uLd2cdoGehSfnlXXm+/Ssjp9NNA83eqim3nagCE3/IjYN8tYvxCSY5JQNc0B7nKFaBAx6roWXzZSG8YVQieR+Dn54efnx+vXr3i9evXafpTmJmZqYy0QoUKMWTIEAoUKPBFB5lSqaRq1aqqmta3b1PKCqpUqcLcuXOpXbv2F/VlNkqlknLlynH//n3WrFlD7969gZSxce3atePKlSuqYwcMGMDixYs1JTXbcObMGerWrcvTp0+JioqiYsWK3Lx5k4oVK2paWraiTp06QMrzqSnmzZvHvHnzeP/+vcY0ZCciIyNZuHAhixYtQk9Pj0mTJjFo0KAvjk+WkJDIHCRjXyJbsXr1agYOHEjLli3ZunXrd81+9fLyYsiQISrjf+rUqRgZGWWA2h8j1fBPjfhHR0d/teGfnJzMlStX8PLyYuHChSQlJSGXy6lSpYoq6l++fPlPGjJLly5l+PDhnDhxgvr162fUQ1Q7f//9NwMHDiQiIiJLvqY/A8Fx4bQ9NVPTMr6JPfWmYmGQK81tCoWCoKCgNA6A1J+dOnXC1dX1q9LWR44cyZIlS+jVqxdLly6lTJkyvHnzhp49e9K1a1fy5MmTpUbWCSGIjY1VTT7p0aMHc+fOxdTUFB0dHXr27Mndu3ext7fnn3/+wdDQkFevXknNyr7Ajh076Ny5M5GRkVy5coVGjRrh5+eHra2tpqVlK7Zu3Uq3bt149uzZRyNrM4uxY8eyd+9eVRNdia8jMDCQmTNn8vfff2NjY8PMmTPp2rXrNwdmJCQk1Itk7EtkOw4cOEDHjh2pUKECBw4cwMzM7Msn/Yf4+HgWLlzIrFmzyJ07N4sXL6Zdu3ZZJrX/v8TFxXHs2DE8PT05cOAA0dHRlC5dWmX4lyhRIt3zQkJCsLS0ZNWqVejq6nLkyBFOnDhBZGQklpaWNG7cGGdnZxo2bIipqanqPKVSSYMGDXj69Cn37t3LNml5Dx48oHTp0pw6dYq6detqWs5PiRACl2OTs8Q4u6/BRCcHBxvOUPvfthCC0NBQmjRpwsOHD3n9+jWzZ89m8eLFdO7cmXXr1lG9enUKFy7Mxo0byZEjh1r3/1FGjx6titi3bt2aNm3aEBkZybRp03B0dGTnzp1UqFCBuLg4Dh48SJkyZTSsOGuzePFipk6dSnR0NNu3b6dLly5ER0dnudc9qxMXF4e1tTUDBw5k9uzZGtHQq1cvHj16lCbDReLrefr0KZMmTWLXrl2ULl2auXPn4uLikmWvryQkfnakbjsS2Y7mzZtz+vRpnjx5gpOTE69evfrmNfT19Zk8eTKPHj2iUqVKdOjQgQYNGvD48eMMUPzjGBgY0LJlS7Zt28a7d+/Yt28fDg4OLFy4kJIlS1K6dGnc3Nw+6ox748YNABo1akSvXr3YtWsXoaGhnD17lh49euDt7U3Hjh0xNzenRo0azJ49m9u3byOTydiwYQORkZEMHTpUEw/5uyhRogS5cuWSmvRlIDKZDAezQshlWf/rQy6T42BWKEMuMmUyGdra2oSEhJCcnMzQoUNZvHgxTk5OrF69mh07dnD79m3Mzc2/qu43szv4T5s2jS5dugCwZ88eevTowZAhQwgJCaFatWpERkby4sULcuTIQbFixTJVW3YkKCgIKysrIKWbu76+frbreZIVMDAwoEuXLmzcuFFjjS5DQ0OlTJYfwM7ODk9PT65evUru3Llp2rQpv/32G1evXtW0NAmJX5Ksf7UmIZEOVatW5fLlyyQmJlK1alV8fHy+a52CBQuyb98+Dh06xMuXL3FwcGD8+PFER39+drcm0dfXp0WLFmzbto2QkBD27dtHuXLlWLRoEaVKlUpj+N+4cYPcuXNTsGBB1fk6OjrUrl2buXPncvfuXfz9/Vm9ejV58uRh7ty5VKhQARsbG6ZPn063bt3YsmULu3fv1twD/gbkcjnVq1fn4sWLmpbyU9OsQFWUImuPlwNQCiXNClRV+7qptf6mpqaUKVOGxMREtm/fTt68eZk9ezY3b95k6NCh5MqViwEDBqCnp/fZtby9vTEwMKBYsWI0aNCAPn364O7uzpYtW7hw4QL+/v5fHLH5reTMmZMlS5awZMkSqlatSlJSEgULFqR9+/aMHz+epUuXkpSUxMCBA6Xa268gMDAQa2trIMVYNDc3lyKZ30nv3r0JDAzk6NGjGtk/LCxM6sSvBqpUqcKZM2c4cuQI4eHhVKtWjbZt26aZOCQhIZHxSGn8Etma4OBgmjZtypMnT9i9ezcNGjT47rXi4+OZP38+c+bMwdzcnD/++IM2bdpkmwu2+Ph4jh8/joeHBwcOHCAqKgojIyMsLS3Zv38/pUqV+uIaiYmJXLp0CS8vL44cOcKDBw+QyWRoaWkxduxY2rdvj4ODwzc/J4mJiejq6n7vQ/smFi1ahJubG+Hh4VKtYAahEEranpxBaEKkpqV8ljz6ufCoNxktNWYhBAQEMH36dBo2bEi7du04c+YMo0aNUjkca9asyYULFwDYuHEjrq6un1xLCIFSqeTs2bM8evToo/4B/x6lqa2tTf78+T85USBfvnzo6Hx5DOF/USqVJCUl8fjxY8zNzTEzM2PHjh306dNH5VSV+DINGjTA1NQUDw8PBg0axOXLl7l9+7amZWVbypcvT8GCBdm7d2+m721vb0+zZs1YuHBhpu/9s6JQKNi+fTuTJ08mICCAPn36MG3aNJWDTEJCIuOQjH2JbE90dDTt27fnxIkTrF+/nm7duv3Qei9evGD48OEcPHiQBg0asHz58izVYOtriI+P59ixY3To0AFIGZFTsmRJVY3/1xj+AK9fv8bDw4NJkyahUChQKBTY2Njg7OyMs7Mz9evXx8TE5LNrrF69moMHD5KQkEDdunVp1arVZ5sL/ihCCC5evEiRIkWwsbHJsH1+dbY8P8max14IsuZXiAwZA0o0oXMR9fVuiI+Pp3r16vj4+FCrVi327duHvr4+u3btYteuXRw4cAC5XI6dnR0DBw5k8ODBP7RfTEwMr169Uhn//20kGBQUpDpWLpeTN2/edB0BRYoUoUCBAl/l/Prw4QO7d+/m9u3b9OnTh7Jly/7QY/hVKF26NHXr1mXZsmV06NCB9+/fc+LECU3LyrasWLGCESNG4O/vryqPyCzMzc0ZNWoUEyZMyNR9fwXi4+P5888/mTVrFvHx8YwYMYIxY8Z88TpCQkLi+5GMfYmfgqSkJAYMGMD69euZPXs248eP/+GI/MGDBxk2bBhv3rxh9OjRTJo0KVs1W3r9+jW2trbs2rULXV1dPD092b9/P5GRkZQoUSKN4f+l5+rAgQO0aNGCUaNGAXDkyBEePXqEtrY2J0+epGbNmul2Lj979ix169ZFLperapK1tLTo1KkTixcvzrBUydS9vqabusT3EZ4QRdtTM0lUaqau9kvoyXXYVX8KuXTVN5Wha9eubN++nR49erB69eo0kfSIiAhu376NUqmkcOHCFCpUSG37for4+Hhev36driPAz8+Pt2/fkvoVL5PJaNSoEQsWLKB06dIoFIpPGv9CCKKjo8mZ88tjDSVS+LeBWK9ePfLkycOOHTs0LSvbEh4ejrW1NTNmzGDs2LGZtq9CoUBHR4fVq1fTt2/fTNv3VyMiIoL58+ezZMkSDA0NmTx5Mr///vtnS54kJCS+D8nYl/hpEELg5uaGm5sbAwcOZNmyZT+cxh0XF8e8efOYO3cuefLkYcmSJbRq1SpbpPbv3r2btm3bEhAQoIpwJyQkcOLECTw8PFSGf/HixWnXrh3t27f/rOHfu3dvPDw8uHv3LoUKFcLPz49jx47h6ur6yRGIixcvZvTo0bRr1441a9bg6enJ7NmziYqKwtfXl5iYGM6ePcv58+cpUqQIzs7OlCxZMsOeEwn1stfvEovvZ81+DmPKtKO5bTW1rXf58mWaN2+OQqHA29ubQoUKkZCQgJ6enmo0XVYb95iYmIi/v38aB4Cfnx+6urrMmDEDKyurr3aICSGyxeeeJkhMTERPT4/169fTs2dPypYtS61atVi+fLmmpWVrOnfuzK1bt3j8+HGmvfdS6/V3795N69atM2XPX5mAgADc3NxYt24dBQoUYObMmXTu3Fly1EtIqBHJ2Jf46Vi7di0DBgygWbNmbN++/ZOG6Lfg6+vL0KFDOXLkCI0aNWL58uVZvkP1hAkT2Lx5MwEBAenen2r4p0b8P3z4oDL827VrR+nSpdNcYEVGRlK2bFny58/PmTNnvsqRcvToUfr06cOHDx8YPnw4rq6uGBsbExYWRnR0NGPHjuX8+fNpzmnRogULFizQ2Ixlia9HKZQMvfIn98P9UGSRhn1aMjllzQqzpOrvajUQLl68SK1atbC2tubcuXNp3p+pRsmFCxfIkyeP2vbMCA4fPkzTpk05cOAALi4uyOVyhBBfvLhOHcf54cOHT/YN+FVTcVOzqLy8vGjcuDF58+alX79+TJs2TdPSsjWnT5+mXr16XLhwgRo1amTKnk+ePKF48eKcO3eOWrVqZcqeEvDo0SMmTpzIvn37KFu2LPPmzaNhw4aSg1FCQg1IrjOJn44+ffqwf/9+jh8/Tr169QgLC/vhNYsUKcKhQ4fYv38/T548oXTp0kyePJnY2Fg1KM4Ybty4QeXKlT95v56eHk2bNmXTpk0EBwdz6NAhqlSpwrJly3BwcKBEiRJMmTKFu3fvIoTA2NiYjRs3cvHiRf74448v7p+YmEjjxo3ZsmULv/32G/PmzaNu3bps3bqVkiVLMm/ePM6fP4+RkRETJkzgjz/+wN7env3797Ns2TLi4lLmuN+5c4fx48fz9OlTtT03EupBLpMzsVwntTbA+1F05FpMKNtRbReJDx484MmTJ1hbW5MzZ04CAwNV5T0Au3btYs+ePSQnJ5OYmKiWPTOKxMRERo4cSd26dWnatClaWlrIZLIvGvpCCHx9falbty4VKlQgKiqKgwcPMnbsWFq0aEHZsmXJlSsXpqamlCtXjpYtWzJs2DD++OMP9u7di7e3N+/fv+dnjS2k9k6wsrJCCKHqxi/xY/z2228UKlSIdevWZdqeqU0xpdF7mUuJEiXYu3cvly5dImfOnDRu3Jj69eurxgdLSEh8P1JkX+Kn5fr16zRt2hQzMzO8vLzUVkMbFxfH3LlzmTdvHpaWlixdupQWLVpkKQ+0UqnEzMyMMWPGMGnSpG86NzExkZMnT6pS/SMiIrCzs6N9+/a0a9eOTZs2sWLFCm7dukXp0qU/uc6hQ4c4duwYc+bMwcjIiNOnT9OqVSuio6M5ceIEzZs3JzY2lhEjRjBv3jy0tbVZsGABkydPRldXlzNnzlCpUiUGDRrEqlWrqFatGhs3bqRYsWK8f/9emmOdhTgZcBu321s0LQMAtwqu1LUpp5a1njx5Qq1atahVqxZubm7MmjWLPXv2kJCQgJWVFWXLluXYsWMAeHp60qZNG7Xsm1H88ccfjB49Gh8fH8qUKfPD6ymVSoKDgz/qFfDv31OddgBGRkZpMgL+mxlgYWGRpT5Hv5b9+/fTsmVLgoKCMDQ0xNjYmH/++UfVIFXi+3F3d2fOnDkEBgZibGyc4ful9qcJCgrC0tIyw/eT+BghBIcOHWL8+PE8fPiQ9u3bM2vWLCnbT0LiO9HWtAAJiYzC0dGRy5cv07hxY6pVq8aRI0eoUKHCD69rYGCAm5sb3bp1Y+jQobRq1QpnZ2eWLVuWZb6Mnj9/zocPH6hUqdI3n6urq4uLiwsuLi4qw9/T05MVK1bg7u5OsWLFMDY2ZuDAgR+l4P+bmzdvsnLlSnbs2EGzZs2wtbVVjQ/bt28fsbGxmJmZUbFiReRyOfHx8RQsWBClUklMTAy5cuUCUlI5ISXKkxptWbJkCe7u7rRu3ZrFixdToECBb3+SJNRG/bzliUqK1Xj9/qgybdVm6CuVSrZt28a7d+8oV64cJUuWZPTo0YSFhXH79m2CgoIICgrC2NiYGTNmZHlD/927d7i5udG/f3+1GPqQ0gDT2toaa2trqlat+tH9qVHu9BwB586dw8/Pj+joaNXxBgYGn3QEFCxYEEtLyyxZyxsUFIRcLsfc3JzXr18DSJF9NdGjRw+mTZvGzp07M6VhXmpk38zMLMP3kkgfmUxGs2bNcHFxYfPmzUydOpUSJUrQr18/pk6dKjlhJCS+EcnYl/ipKVq0KJcvX6Zp06bUrl2bXbt20ahRI7WtffjwYfbv38/w4cMpVaoU48aNY/z48RqPON+8eRPgu4z9f/Nvw3/16tWcOnUKDw8Pdu/ejZ2d3WebdnXu3JmkpCS2bt3Kpk2bVLfXrVuXkiVLYmNjw9u3b4mOjkYul5OQkMDNmzdRKBTY2dlhbGzM27dvefLkCQYGBpQqVUp1Afbw4UMAgoOD0dXVBcDFxQVIGdlka2v7w80ZJb6NVgWdAFh8fzcyyPSBfOpuyDdu3Dju3LmDg4ODKjumfPnyrFu3jlOnTnH//n2sra0pW7Ysdeuqb7xfRjF16lRkMhkzZszItD1lMhkWFhZYWFikW1IkhCA8PDzdSQLXrl1j586dREREqI7X1dXF1tY2XUeAra0tNjY2Gvm7DwwMxNLSEi0tLSkNXM3ky5ePRo0asXbt2kwx9sPCwjAxMUkzaUNCM2hpadGzZ086duzIihUrmD17Nps2bWLUqFGMHj1amhYiIfGVSGn8Er8EMTExdOjQgWPHjrFmzRp69Oih1vVjY2OZPXs2CxYswMbGhqVLl9KsWTONpaSOGDGCAwcO4OvrmyHrJyYmcufOHcqXL4+29pd9hjdu3ODSpUvkyJGD1q1bY2RkRM+ePfnnn38oW7YsQ4cO5eHDh2zdupXg4GD69evHX3/9xfr16+nTpw8VKlTgzz//xNHRkRcvXtC4cWNevXrF8OHDmTdvHs+ePcPe3h5I6dkQGhpKWFgY48aNo2HDhl+lUUI9nHnrw5w7/5CoTM7wpn1ymRx9uQ4TynXkN2v1zYPv168fa9euRVdXl4IFC3L06FEKFCiQJaPKX8Pdu3cpX748ixYtYvjw4ZqW8018+PDhI0fAv3+mGtcA2traFChQ4KPsgNSf+fLly5DPggEDBnDjxg1u3bqFl5cXLi4u+Pv7ky9fPrXv9SuyZ88e2rRpw7179z5bOqYOxo0bx+7du3n+/HmG7iPx7YSHhzN37lyWLl2KsbExU6dOpV+/fiqHv4SERPpIV8ASvwQ5cuRg3759DBw4kJ49exIQEMDEiRPVZowbGhri7u5O9+7dGTJkCC1atKBJkyYsXbqUIkWKqGWPb+FLzfl+FF1dXSpVqvTVz1/lypU/0jN9+nRCQ0M5efIkvXv3Vt3u6OjIsGHDgJRu/pDSvMfa2hqAq1evEhAQoGoGBqjKCXR0dNixYwf6+vpERERw6dIlXFxciIuL4+jRo5ibm1O5cmX09fV/6PFLfJo6NuUobVqQuXc9uP7ucYbskZo54Ghuz7iy7THXV28X+ObNm3Ps2DH8/f0JCAhg3759uLq6qjJLlEpltjH8hRAMHz6cYsWKMWjQIE3L+WZMTExwcHDAwcEh3fujo6N59erVR46Ahw8fcuTIEYKDg1XHamlpkTdv3k/2DcifP/93GQ6BgYFYWVkBqBrCSpF99dG0aVMsLCxYt27dVzWH/RHCwsKk1y6LYmpqyrx58xg8eDDTpk1TNQGdNWsW7du3zzafyRISmY1k7Ev8Mmhra7N69Wry5cvH5MmT8ff3Z8WKFWqN9BQrVgwvLy/27dunSu0fP34848aNU8sIwK8hOTmZ27dv07Jlywzd50cdJXZ2dhw/fpxr165x6NAhAgMDqVGjBo0bN1ZdOMfExAApY/8sLCwA2L59O3FxcZQuXZqyZVOiuSdPngTAwcGBmTNn0rhxY7y9vZHJZBw4cIBBgwYRFRVFZGQk2tratGjRghEjRlC9enVAmiGubiwMcrHQsS9H39xkyf09xCoS1JLan7qGgbYeI0q3oVHeimp93e7evYu5uTlNmzalUKFC9O3bl6tXrzJq1Cjev39P//79yZs3b7a6qNy3bx9nzpzh8OHDP2VqspGREaVKlaJUqVLp3h8XF8fr168/6hvg6+vLqVOnCAwMVE0JkMlk2NjYfDIzoECBAul+jgcFBan6IISGhpIjR45M+7z/FdDV1cXV1ZWNGzcyd+5c9PT0MmwvaZJC1id//vysX7+ekSNHMnHiRDp16sSCBQuYN28e9evX17Q8CYksh5TGL/FLsn79evr164eLiwv//PNPhtTYx8TEqFL78+XLx7Jly2jatKna9/kv9+7dw8HBgbNnz1K7du0M3y8jSI2cenp6qjpau7i48P79e65evYqWlhadOnVi/fr1xMbGUqJECQIDA/nzzz/p0aOHKnLv6enJtGnTePz4MYULF6ZQoUK8efOGJ0+eMHDgQFasWKHa09fXlwIFCvyUBpEmiU2O50SAN54vL/AqOhgtmfyb0/tTzyloZEm7QrWon7cChtrqveC/efMmjRo1wsXFhQkTJlCyZEnevXvH0KFD2blzJwCurq6MHTuWkiVLqnXvjCIhIYGSJUtiZ2eHl5eXpuVkSRISEvD39093ksCrV6948+YNSuX/3q+WlpYfZQRMmzaNVq1asXjxYubMmcPWrVvx8/PT3IP6RqKjo9HR0clQI/pHefToESVLlsTDw4N27dpl2D41atSgcOHCbN68OcP2kFAvFy5cYNy4cVy5coWGDRsyd+5cypcvr2lZEhJZBsnYl/hl8fLyom3btpQpU4aDBw+qIsfq5smTJwwZMoQTJ07QrFkzli5dqrYxgOmRWuf+4cOHbN/AJiIigtWrV7N582asra1RKBScO3eOHDlyMGPGDEaMGMGZM2eoV68eJiYmHDt2DEdHR9X5HTp0YO/evWhra3Po0CFVI7XFixdTvnx56tSpw4EDB9i7dy9nzpwhMjKSChUq0Lt3b1q2bClF576DVEfNf1PdhRDcC3/JEf8b3Hv/Av+YUAQCGTLkMhkIQVJyMnKZHJmWXHVf/hzmOJgVxiW/I6VNC2ZIBoZCoaBLly54eHhgYmJC7dq1GTFiBLVr10ahUDBlyhTmzp0LwO7du2nVqpXaNWQE8+bNY9KkSdy7d48SJUpoWk62JCkpiYCAgHQdAX5+frx+/RqFQqE6Xl9fH7lcjrOzc7rZAZkxPu5LCCFQKpUkJyejp6fH5MmTmT17NoULF2bXrl2q8qisRvXq1cmZM6dq3GVGUKJECZydnVm8eHGG7SGhfoQQ7N+/nwkTJvD48WM6d+7MzJkzKVy4sKalSUhoHiEh8Qtz48YNkSdPHlGsWDHx/PnzDNtHqVSKXbt2iXz58gl9fX3h5uYm4uLiMmSvAQMGiJIlS2bI2p9CqVRm+B4xMTHC29tbtGrVShQvXlwcO3ZMCCHEmDFjhEwmE87OziIoKEh1fFBQkHBychIymUz89ttvQgghkpKS0uj18fERRYoUETKZTBQpUkQULlxYyGQyoa+vL7Zu3SqEEEKhUGT4Y/uZ6NGjhxg4cKCIjo7+7HFxyQni3vuXYteL82L9k6Ni1cODYuzhZaJgl+qi2bTe4k6or4hLTsgk1UK8evVK9OzZUxgYGAgdHR1Rq1Yt4eHhobp/3rx54vfff880PT9KYGCgMDIyEkOHDtW0lJ+a4OBgAYgZM2aILVu2iJIlS4p8+fKJ+vXri2LFigldXV1BSvWJAESuXLlEuXLlRMuWLcWwYcPEH3/8Ifbs2SO8vb1FWFhYhn+Wprf+4MGDhZaWlihQoIDqezA+Pj5TPte/hXXr1gmZTCb8/PwybA9zc3Ph7u6eYetLZCxJSUni77//FtbW1kJHR0cMHTpUhISEaFqWhIRGkYx9iV8eX19fUaxYMZEnTx5x48aNDN0rKipKjB8/Xujo6IjChQuLQ4cOqX2PSpUqCVdXV7Wv+yViY2OFEJlnHKca7q1atRIymUyMHDlSxMfHq+6PjIwUzZs3FzKZTLRt21Z1e3Jysur+kSNHCplMJnLkyCGOHDkihBDi4sWLQk9PTxgbG4vg4OBMeSw/CydPnhSA2LBhw3ev4eHhIeRyuRg4cGCmGBve3t4iMjJSCCFEXFycGD9+vMiVK5eQy+WiYsWKYuXKlSIxMTHDdaibXr16CTMzMxEWFqZpKT819+7dE4C4dOmSEEKI2rVriy5duqjuVygU4u3bt+Ly5cti+/btYs6cOaJ///6icePGonjx4kJfXz+NMyBnzpyiTJkyomnTpmLw4MFiwYIFwtPTU1y/fl2EhISo5W9iw4YNwt3dXXh4eIi4uDjRpk0bIZPJRPny5UVERMRnz1UqlSI5OVn179+f96naPD09xZAhQ8Tq1au/6PT7FqKiooSRkZGYPn262tb8NwqFQsjlcvHXX39lyPoSmUdMTIyYPXu2MDY2Fjlz5hQzZswQUVFRmpYlIaERJGNfQkIIERISIqpUqZLG6MtIHj16JOrXry8A0aJFC/Hy5Uu1rBsfHy90dHTE8uXL1bLet6BUKsWoUaPEtGnT0hjdmYG/v794/fr1R7enGvP58+cXO3bsEAqFQsTExAghhHjx4oVo3LixkMlkqn958+YVbdu2FTKZTJiZmYkLFy5k6uPIzsTHxws7OztRo0aNH3b4rFmzRgBi8uTJalKXPoMGDRJFixYV27ZtSxP9cXd3V70ncubMKZYsWZKhOtTNrVu3hEwmEytXrtS0lJ+eEydOCED4+voKIYQoVaqUGDZs2Fefr1QqRXBwsLh27Zrw8PAQ8+fPF4MGDRJNmjQRpUqVEkZGRmmcAYaGhqJEiRLC2dlZDBgwQMydO1fs2LFDXLlyRQQGBn7WGZCUlCRGjhwpjIyMVO/vPn36iGrVqgmZTCbq1asnhBCibdu2Yty4ceLFixfi+fPn4tWrVypn7teQmm1laWkp3r1799XnfQ29e/cWtra2GeJUDgsLE4DYtWuX2teW0AyhoaFi5MiRQldXV1haWoo///wzWzpvJSR+BMnYl5D4f2JiYkTz5s2FlpaWWLduXYbvp1QqhYeHh8ibN6/Q19cXM2fO/OHU/uvXrwtAXL16VU0qv43Q0FBhZWUlnJ2ds0QKaEJCgujYsaPqwrZAgQKicOHCws/PT8TGxooKFSoImUwm2rRpIzp37iwsLS1Vx+bPn1/s3btX0w8h2+Du7i60tbXFvXv31LLe/PnzBSAWLVqklvX+jVKpFAEBAarXunjx4mLp0qVpnG6lSpUSWlpaImfOnOLFixdq15BRKJVKUaNGDVG6dGlV9otExrF582YBqIxhS0tLMXPmTLWtr1QqRWhoqLh165bYvXu3WLx4sRg6dKho3ry5KFu2rDAxMUnjDKhZs+Yn1zpz5oyQyWRCV1dXNGvWTEydOlUULVpU6OjoCJlMJrp37y4iIyNVfxfNmjUTNjY2QiaTiSFDhgghhJg2bZoYMmSImDhxoli7dq24evXqR9kAkZGRwsfHR5Xt8F8UCoVISkpSZVl9C5cvXxaAOH78+Def+yWePn0qAHHmzBm1ry2hWfz8/ES3bt2ETCYTxYoVE56enlniGkVCIjOQjH0JiX+RlJQk+vfvLwDh5uaWKV8GUVFRYuzYsUJbW1sULVpUeHl5ffdaK1euFNra2hnWD+BrOHz4sACyTCpkWFiY2Lx5s3B2dha2traidu3aqvt+++03IZPJxKhRo0R8fLyIi4sTly9fFgMGDBBdu3YVjx490pzwbISvr6/Q19cXY8aMUeu6EyZMEIBanW///pu+d++eKFasmJDJZCJ37txi8uTJ4t69e+Ls2bPC2tpajB8/Xvj4+Kht78xg586dAhAnTpzQtJRfgvnz5wsTExMhRMp7S0tLS6xatSpTNYSHhwsfHx+xf//+T2amJScni8mTJwuZTCYqVKig+mw7fvy4ygEwbdo08ezZMyGTyYSOjo4wNTUVzZs3Fy1atBDLli1L4yD797+BAweqvnNiY2PF/PnzxbRp01TGvlKpVFs6v1KpFCVKlBDt27dXy3r/JtWRoC6HpUTWw8fHRzg7OwtAODo6So4diV8CydiXkPgPSqVSuLu7C0D07ds306JjDx8+FHXq1BGAaNWq1Xc1IerZs6coX758Bqj7Nvr16ycMDQ3Fs2fPNC0lDQqFIk26to+PjyhVqpSQyWSiUKFColevXmL58uVi7dq1qrTc/54/ffp0cebMGSkV8P9RKpXCxcVF5M+fX+01kUqlUvz+++9CLpcLT09Pta6dWs7x4cMHUa9ePZWBU7ZsWWFubi50dXUzvIeHuomNjRUFChQQzZs317SUX4YRI0YIe3t7IUSK0Q2o/b2qDuLi4kSPHj2ETCYTnTt3Vhnnx48fF0ZGRkJbW1ts2rRJnDx5UshkMmFlZSX+/PPPNGuEhoaKQ4cOiUePHonLly+LWbNmiTx58giZTCamTZsmhEiJoJYuXVrIZDLRqVMnIYQQN2/eFDKZTJQoUULs379fzJkzR4wcOVJs27ZNhIaGfvNjWbhwodDV1f2ucz/HgQMHBCDevn2r1nUlsh6nT58WlStXFoBwdnYWd+7c0bQkCYkM439zkSQkJACQyWRMmjSJDRs2sGHDBlq2bElMTEyG71uiRAlOnTrFP//8w7Vr1yhRogSzZs0iISHhq9e4ceMGlStXzkCVX8eiRYuwsrKie/fuacZSaRq5XJ5mxKKDgwNLly6ldevWBAcHs2HDBoYOHcry5cvR0dFJc64QAj8/P1atWkWdOnUwNzenTZs2XLt2LbMfRpZi3759HDlyhKVLl2JkZKTWtWUyGStWrKBDhw507tyZ48eP/9B6CoWCjRs3Mnz4cPr06cOOHTswNjbm5MmT9O/fn+TkZO7fv09YWBijRo2iUqVKanokmcPChQsJDAxk4cKFmpbyyxAUFIS1tTUAoaGhAOTOnVuTktJFX1+f+Ph4IGWcYOrn8tOnT4mJiUFbW5uCBQvy/PlzAMqWLasaVZqUlARATEwMjx8/ZvPmzfj4+JA7d27s7OwAePHiBQBhYWFoa2ujo6ODg4MDAP7+/gD4+vrSt29fJk6cyB9//EH37t1ZuXIlkPL5+rV069YNIQRbt279oefkv4SFhQFZ8/WTUC916tTh2rVreHp68vz5c8qVK4erqyt+fn6aliYhoX407GyQkMjSHD16VBgZGYnKlStnamf2yMhIMXr0aKGtrS2KFSsmjh49+sVzoqOjhVwuF2vWrMkEhV/m4sWLQiaTiTlz5mhayleRlJQkrl69Knbv3v3Z1G2FQiFu3bol3N3dRa9evX7puuioqCiRP39+4eLikqElL4mJiaJJkybC0NBQXL58+bvX6dy580cpyP379xcJCSkj/jw9PcX69evF9u3b1SU903jz5o0wNDQUo0eP1rSUX4rffvtNdOzYUQghxJUrVwQg7t69q2FV6TNhwgQhk8mEhYWFWLBggdi/f7+oVKmSkMlkwtzcXPj6+orhw4cLmUwmXF1d04wyff78uWjatOlHfz9yuVzIZDJVU8Ljx48LW1tboaenp5rKMX/+fNXUkxEjRog7d+6ITp06qUoKvieLrU2bNqJMmTJq/dxZsGCByJkzp9rWk8geJCYmilWrVglLS0uhq6srRowYofasEQkJTSIZ+xISX+DWrVvC0tJSFClSJNPT0u/fvy9+++03AYg2bdqIV69effLY8+fPC0Dcvn078wR+gXHjxgkdHZ1sV/f8LfzKTX7GjBkj9PX10y15UDcxMTGiZs2aIleuXN+Vcjlp0iQhk8lEqVKlROfOnUXdunVVBku/fv0yQHHm0rVrV2FhYfHF0WkS6sXe3l6MGDFCCCHEoUOHsnQaeFhYmGjSpInqfW9hYSFMTExUDUkjIyNVBv2YMWNUIymFEGLTpk3C2tpayGQysXjxYnHz5k0xbNgwYWFhIWQymaqR5rZt24S5ubkwMTFROakHDBggZDKZcHFxUfUKmDlzpmrc35UrV775sRw5ckQA4vr162p4ZlIYP368KFSokNrWk8heREVFiRkzZggjIyNhbGwsZs+erSr3kpDIzkhp/BISX6BChQpcuXIFLS0tqlevzvXr1zNt71KlSnH69Gm2b9/O5cuXKVGiBHPnziUxMfGjY2/evIm+vj6lSpXKNH1fws3NjRIlStCtW7dvKkfITshkMk1L0Aj379/njz/+YNKkSRQuXDjD9zM0NOTgwYMULlyYhg0bEhAQ8NXn3r17l9WrV6tS9rdt28aKFSvo168fcrmcffv28fjx4wxUn7FcvXqVrVu3MmvWLExMTDQt55ciKCgIKysrIGun8QOYmZmxdOlSNm7cyNSpU/H09KRv377kzp0bAwMDcubMyYULFwDQ09NDT09Pda6FhQWxsbEAvHr1ioCAAGJiYlTlALa2tgCEhIQQHx+PkZGR6nlJTfEvUqSI6rl5+/atau0cOXJ8pDU8PJxWrVoxYsQIli5dyr59+/Dx8SE8PBwhBA0bNiRfvnysW7dObc9PaGgo5ubmaltPInthZGTElClTePHiBT169GDatGkULVqUNWvWkJycrGl5EhLfj6a9DRIS2YV3796JatWqCUNDQ3Ho0KFM3//Dhw9i5MiRQktLS9jb2380eqhTp06iWrVqma7rS9y5c0fo6OiIcePGaVqKhJpQKpWiZs2aws7OTsTHx2fq3iEhIcLZ2VlER0d/dVbF+fPnVaMX/50yfPz4cWFsbCxMTEzE06dPM0pyhqJQKESVKlVE2bJlv2uUmcT3ExsbKwCxefNmIURK4zhjY2MNq/o+UsuRzp07J9auXZtuxDw1Qi+TyYSZmZkoW7as6v9Tx71OmjRJ5MiRQzg4OIjAwEAhREr2g0wmEzNmzFB15U/NMKhTp066mRAvXrwQjRo1Evb29kJfXz/NeEFjY2NRpkwZUaxYMaGjoyNmzZoldu3aJW7cuCHevXv33dlWrVq1Eo0bN/6ucyV+Pnx9fUXnzp0FIOzt7cWePXt+6Uw+ieyLtkY9DRIS2Qhzc3NOnTpF586dadGiBX/99Rd9+vTJtP2NjY1ZtGgRPXv2ZNCgQTRs2JB27dqxePFi8uXLx40bN3Bxcck0PV+Lg4MDM2fOZMKECTRt2pQaNWpoWlKWRQiRLTIFNm/ezIULFzh58mSa6F9mYGFhwYEDB4AvZ1UkJiaiq6uLvr4++vr6fPjwgfXr19OtWzeKFi2KlZUVycnJ5M2bFy0trcyQr3a2b9/OtWvXOHv2bLZ9DNmVoKAggDSR/ewaGdbWTrkcrFWrFrVq1Ur3mAULFtCzZ0/8/PzInTs3RkZGDB48mICAANVz8OTJE2JjY0lMTFQ9F76+vkDK366+vj6QkgEAKdkG6WWjFCpUiKNHjwIpn4shISH4+fnx6tUr1c+HDx/y7Nkz3Nzc0mS7GRoaUrBgQQoWLIitre1HPy0tLdP97AgNDVVlKEhIFC5cmG3btjF69GjGjx9P69atqVq1KvPnz6dmzZqalich8dVIxr6ExDdgYGDArl27GDp0KH379sXf35/p06dnqoFWunRpzp49y/bt2xk9ejTFixdnzJgxPH/+PMt2Dx89ejQHDhzA1dWVO3fukDNnTo3oSEpK+qjLflbi3++jrGr4v3//ntGjR9OpUyfq1aunEQ2phsnnSEhIYOLEiZibm9OjRw/s7e25c+cOK1euxMfHh+LFi7N7927i4uLo3bt3ppQiqJuYmBjGjx9P27ZtqV27tqbl/HIEBgYCpOnGn12N/a/ByMgIR0dHHB0dVbfduHEjzTGzZs2iRYsW6OjooK2tTUxMDEZGRiQmJmJkZISWlhZJSUncvn0bSCkXMDQ0/Oy+MpkMS0tLLC0tqVKlSpr76tevT2JiInv27EnjCEj9eenSJbZt20ZkZKTqHH19fWxtbT9yBLx+/Ro7OzuUSiVyuVTlKpFC+fLlOXbsGCdPnmTcuHHUqlWLZs2aMXv2bEqXLq1peRISX0QmxDfMO5GQkABSDLF58+YxYcIEevXqxV9//aURI/LDhw9Mnz6dZcuWoVQqWb9+PT179sx0HV+Dr68vZcuWpUuXLqxevTrT93/8+DHe3t506NDhmyKgycnJPHv2jPfv31OtWjWNXARmJcN/wIAB7Nixg8ePH6uMnKxI+/bt2bVrF1ZWVty/f5/Y2FjatWv30ajE3r17s2bNGg2p/DGmTp3K/Pnzefz4MQULFtS0nF+OPXv20KZNG0JDQ8mdOzetWrUiMTGRw4cPa1paluC/n1upzta4uDiWL1/Os2fPqFSpEv379//uPXbs2EHnzp158uSJagxgekRERHzkCPDz81P9/v79e9Wxurq65M+fP40j4N+/29jYfJXDUeLnQ6lU4uHhwaRJk/Dz86N79+64ubmRP39+jepKTBK8CEjkyetEnr1O5MXbJOLilSQmC7S1ZOjryshvqYO9rS52+XUpml+XHAaSQ+tXQTL2JSR+gC1bttCrVy8aNGiAh4eH2ueMfy1Dhw7lzz//RKFQ0L59exYvXkzevHk1ouVz/P333/Tv35/Dhw9neslBXFwcJiYmLFmyhIEDB37VOUIIFAoFdevW5cKFC+TNm5c2bdowZcoUcufOna4BfufOHby8vAgMDMTZ2ZmGDRuq1UGgyajTtWvXqFatGkuXLmXIkCEa0fA1jBw5kiVLltCgQQM8PT15+vQpd+7cQalUsnv3bkxNTdHS0qJWrVr069dP03K/i1evXlG8eHFGjhzJrFmzNC3nl2TlypWMGDGChIQEZDIZNWvWpHDhwmzatEnT0n4Z4uPjsbGxoV+/fsydO/e714mMjMTU1JT+/ftTqlSpNI4APz8/3r17pzpWS0uL/Pnzp+sIsLW1JX/+/Fk6g0zix0lMTOTvv/9mxowZREZGMnToUCZMmICpqWmmaVAoBTcexrPvbBQ3H8ejVIIMkMtBofz4eLkchEj5B2Bvq0ur2kb8VjEHujpZI5ggkTFIxr6ExA9y4sQJ2rRpg52dHYcPH8bS0jLTNbRu3Zrw8HB69erFmDFjiI6OZtq0aQwbNgxdXd1M1/MphBA0adKE27dvc+/evUxPea1atSqFCxdm+/bt33SeUqnk8uXLeHp64uXlxb1799KtVf/w4QOVKlVS1agC5MuXjz59+tC/f3+1vzcUCgVaWlqZEvlPTk6mcuXKyGQyrl+/nmUjW6dPn6ZRo0bkzZsXX19fDh8+zLhx43jy5AlmZmZ07NiRyZMnq2qMsysdO3bk/PnzPH36VGNOxl+dKVOmsGnTJl6/fg1AiRIlcHFxYdGiRRpW9msxZMgQPD098ff3/24jOyIiAlNTUzw8PGjXrt1H98fExPD69euPMgJSf6aWdADI5XJsbGw+2TegQIECmd7rRCJjiIqKYtGiRSxcuBAdHR0mTpzI4MGDMTAwyLA9Y+KUHLwQzd5zUbwLVyCXgzId4/5LyGWgFJDDQEZTJyNa/ZaTPGZZ83td4seQjH0JCTXg4+ODs7MzhoaGeHl5fTadMCMoUKAAHTt2ZP78+URERDBt2jRWrFiBvb09K1eupE6dOpmq53MEBgZSunRp6tati4eHR6amp48aNYpdu3bx6tWr717jc5H1K1eu4OTkRJ48ediwYQNHjhxh3bp1xMfHc+HCBZycnIiOjubt27cULVpUrRH6jDb8ly1bxvDhw7l69Wqamt2sxq5du2jfvj1VqlShb9++/P777+TLlw8nJye2bt1KoUKFuHTpUrY29i9cuECtWrXYuHEj3bt317ScX5Y+ffpw9+5d1ThWCwsLRo4cyYQJEzSs7NfCx8eH8uXLs2/fPlq0aPFdazx//pxixYpx+vTp7/q+jI+Px9/fP11HgJ+fHwEBAfz7ctva2vqTDQRtbW2/2MdAImsRHBzMjBkz+Pvvv7GysmLGjBm4urqqvWnqjYdxzNscRniUEnVab3I56GjJGNg2F01rGGWZskEJ9SAZ+xISasLPzw9nZ2fevXvHoUOHqFq1aqbsGxwcjJWV1UcRiTt37jBo0CAuXbpEp06dWLhwITY2Npmi6Ut4eHjQoUMHtm3bRufOnTNt371799K6dWv8/f3Jly+f2te/ffs2jRo1IiEhgbVr19KkSRPCwsL4+++/GTp0KKdOnWLVqlX4+vqSkJBA/fr16devn9qdMcnJyWhra6suLn/0i/vt27cUL16cLl26sGrVKnVIzDCePHlCrVq1ePfuHVpaWtSoUYMNGzYQHR1NuXLlKFmyJIcOHaJAgQKalvpdKJVKKleujJaWFlevXpUaiWmQJk2aoK2tzf79+1EoFOjq6vLXX3/Rt29fTUv75ahUqRI2NjaqSR3fyrVr16hatSp37tzBwcFBzepS0r7fvHnzyb4Bb968QaFQqI7PkydPuo6A1J+aanIr8XmePXvG5MmT8fDwoFSpUsyZM4emTZv+8HdwdJySVbvC8boSg0yGWg39/1LOTo+x3XJjlVuK8v8sSMa+hIQaef/+Pc2bN8fb25udO3fSrFmzDN/z0KFDNGvWjJcvX37UpEupVLJlyxbGjBlDXFwc06dPZ+jQoVminrBLly4cOXKEe/fuZYjhnR6pjpF//vmHDh06qHXtVAP79OnTTJkyhStXrlC2bFnGjx9Phw4d2Lx5M3369CE5ORlra2uio6OJiorCzMyMlStXql3Pf3UplUqSk5O/q6yjU6dOnDp1iidPnmRqTeL3cuPGDf744w9+++03WrduTXJyMk2bNsXb25vly5czaNAgTUv8btavX0/v3r25dOkS1atX17ScX5qKFStSqVIlVq9eTVhYGObm5uzevZvWrVtrWtovx6pVqxgyZAj+/v7f1Tj08OHDNG3alICAAI04xZOTkwkICPhkA8HXr1+TlJSkOt7MzCxdR0Dq77ly5cr0xyDxP27cuMG4ceM4c+YMNWrUYN68eel+XsfFxX0x5f9VYBKjl4UQHqlAmQkWm5YctLVluPU1x7FUxpUjSGQeUkhAQkKNmJmZceLECZydnWnZsmWmdJ2/ceMGuXPnTnc+sFwup3v37jx9+pQePXowduxYypUrx9mzZzNc15dYsWIFhoaG9OrVC+X3FJx9B5aWlhQtWpRLly6pfW0fHx8mTZpEnTp1OHbsGH///Te+vr7079+f+/fvs3btWlXd+7Zt2/jw4QODBw/m/fv3zJs3jxcvXgBw//596tatq7aO3qm19XK5HLlcrmo6+OHDh6963k+cOME///zDwoULs4WhD1C5cmW2b99Ov379uHXrFk5OTnh7ezNgwIBsbehHRkYyceJEOnXqJBn6WYDAwMA0Y/eAn3r0XlamU6dO6OjofHdzxNTXL3fu3OqU9dVoa2tja2tLrVq1cHV1ZcqUKaxbt45Tp07x/Plz4uLiePPmDRcvXmTbtm2MGjWKihUrEhMTo+pL0rJlS8qVK4epqSm5cuWibNmytGjRgqFDh7J48WL27NnDrVu3CAsLQ4rzZSyVK1fm1KlTHD16lKioKJycnGjVqhWPHj1SHbN69WosLCy4f//+J9d5+jqRwQuDiIjKHEMfUpr7JSYJJq16x1nv2MzZVCJDkXI0JCTUjIGBAR4eHgwfPpwBAwbw5s0bZsyYkWE1UDdv3lQ1TvsUuXLlYvny5fTu3ZuBAwdSp04dOnfuzMKFCzU2Ps3U1JQNGzbQqFEjVq1alWlGmJOTU4YY++fPn2fOnDns3r2bfv36UaZMGfLmzcurV684cuQIFy9eBKBz586qWdE1atRg586d+Pj48OLFCwoXLsyWLVs4e/YsYWFhFChQgDJlyhAVFYWBgcEPN8VLPV9LS4scOXIgk8lQKBS8e/cOY2Pjj+pEExISGDRoELVq1aJbt24/tLcmSEpK4ubNm7x+/ZohQ4awdOlSTUv6IWbPnk1kZCTz5s3TtJRfHoVCQUhIiKr3Q1hYGCAZ+5oiV65ctG3blnXr1jFu3Lhv/r4NCwvDyMgoyzbO09LSIm/evOTNmxcnJ6eP7lcqlYSEhKTbQPDUqVP4+fkRG/s/wy1HjhyfHC1oa2tLnjx5pLrtH0Qmk9GoUSMaNGjAjh07mDx5MqVLl6ZXr16MGjWKCRMmEBMTQ4cOHfD29v7ovffybSKjlgQTlyAyzdBPRQhQCJi5LhRdbXOqO0g9JLIzkrEvIZEBaGlpsWzZMvLnz8+4cePw9/dnzZo1ak+fF0Jw48YNBgwY8FXHlytXjosXL7Jp0ybGjh2Lvb09bm5uDBs2TCO1vw0bNmTgwIGMGTOGBg0aZEpjw9RGbdHR0WrtYt6oUSMeP37M1q1bGT16tOr2ChUq8O7dOwwNDdHR0SFnzpwYGBgQFxeHEEI10im1lMHT0xOApk2bqsYnrlixgpkzZ9KlSxdmzJihFgfNvw1/c3NztLS0UCgU+Pn5oaOjQ/78+Zk/fz4vX75k7969Wf7CTwiBUqlM0xBJR0eHSZMm0bx5c4oXL65BdT+Or68vf/zxBxMmTND4TGeJlEiwQqGQIvtZiN69e7N161bOnz9P7dq1v+nc0NBQjUX11YFcLsfKygorKyuVM/nfCCEICwtLt4HghQsX2LJlC1FRUarjDQwMKFCgwCcnClhZWUn9Qr4SuVxOly5daNu2LatWrcLd3Z2NGzeqejQ8fvyYSZMmsXDhQtU57yMVjFoSQlxi5hv6aRAwfU0oS0dZUqJg1nSESXwZydiXkMggZDIZY8eOJV++fPTo0YOgoCA8PT3V2ljn9evXvHv3jsqVK3/1OXK5nJ49e9KyZUsmT57MkSNHGDFihNo0fSvz58/nxIkTuLq6cvHixQwf6ebk5IRCoeDatWvUq1dPbeuWKlWKv//+G3d3d/bu3cupU6cwNTXF1dUVGxsbjh8/zr1793j27BmQ0khu27ZtQMpIwHz58vHw4UP8/PwwMTGhXLlymJmZAeDt7U18fDw+Pj6quk03NzcKFixIt27dfvii69+Gv62trcrwd3BwYODAgZnWU+F7EUIwbNgwnJ2dady48UeOiTJlymTY3mHxkTz58Ia3saEkKJJRCAU6cm30tXQplNMKO5O8GGrr//A+Y8aMIU+ePIwdO1YNqiV+lKCgIICPjP3Uv1mJzKd27doULVqUdevWfbOxn9pz4WdFJpNhbm6Oubk5lSpV+uh+IQQRERHpNhC8du0aHh4ehIeHq47X1dVVOQPS6xtgY2Oj9k702R09PT2GDx+Oi4sLpUqVUpVSKJVKFi9ejIuLC3Xr1kUIwR/b3xMZq/yukXrqRJAynm/2hjDWTbZGVydrO/0l0kcy9iUkMpjOnTtjaWlJ69at+e233zh8+LDaxn7duHEDIN0v7y9hamrKypUriY+PV41tS4+4uDjOnTtHeHg4LVu2VPv82Bw5crB582acnJyYO3cukydPVuv6/6V48eKYmppy8eJFtRr7qeTJk4f+/fvTv39/kpKSVNkcEydOZNCgQcybN489e/Ygk8l4+vQpAF27dsXIyIjt27cDUL58eVWWw4MHD7h58yZ6enrUr1+fAgUK4Ovri5ubG5Ay/1lHRwcLCwsaNWr0w69PquGvra2Ni4sLzs7O9O/fn5cvX+Ls7IyzszNlypTJUpH+pUuXsnz5cipUqJDhuqISYzkWcJMb757yMOI1EYnRAMiQIf/X3kqhRAAywNowN6VMbalpWYaaVqXRln/bRfCZM2fYu3cv27dvl0ZyZRFS56qnfpaHhoZiamqa4c5KiU8jk8no1asXM2fOZPny5ZiYmHz1udk9sv+jyGQyTE1NMTU1pXz58ukeExkZ+ZEj4NWrV9y5c4f9+/erHF6Q8v2RP3/+TzYQzJcvX5ZoFKwJlixZkmbyAqQ4W1q3bs3z58+562fApbtxGlL3MUolvA1NZuOhCPq1yh59eyTSIn0rSUhkAvXq1ePChQs4OztTrVo1jh49ir29/Q+ve/PmTfLmzftDad36+p+OOsbHx9O/f3+2bt0KpKSaz5w5U+2zvatWrcqECRNwc3PDxcWFChUqqHX9fyOXy6levXqG1O3/Fx0dHdXc+1atWiGTyfjzzz85f/48hoaGlCxZkk6dOtGvXz8gpRkegIODg2o03KlTpwgICMDKyko1zvHYsWNASnRl/PjxREenGJyzZ89m/PjxQEq04Ecj/qn616xZQ8+ePZkxYwbjx48nb968ODs74+LiQr169TA2Nv6hfX6EI0eOMGrUKMaMGUOPHj0ybJ8nH96wz+8SxwJukaxMuVAT/C+/UiBQpNP0SgBvY8MIjgvnRIA3uXRz0MrWiWYFqmJhkOuL+yoUCoYPH0716tXp2LGjuh6OxA+SGtm3tLQEUozFnzkynF3o3r07kydPZseOHV9d3gYpkf3UsimJ9DE2NqZMmTKfzJSKiYnh1atXH/UNePToEUePHlX9zUDK93DevHk/2Tcgf/78WbZ/wo9y6NChdBskfvjwge69hiAvNh8ZkJVaKAoBO09GUbOcISUK/Zyvy8+MNHpPQiITef36NY0bNyY4OJhDhw5RrVq1H1ov1dDau3evmhSm5c6dOyovf6dOnfD09CQ5OZlevXoxe/Zs8uTJo7a9EhMTqVq1KgkJCdy6deuzTogfZc6cOcyZM4fw8HCNpBqGhYXx+PFjChYsqLrADA8Pp02bNpw9e5aOHTuydetW5HI55cuX586dO9StW5eNGzeSL18+nJ2dOXbsGIULF2bw4MHkz5+fq1ev0qhRI0qXLs3OnTu5cOECJiYmNGnShKZNm37XyL3/Eh8fz4ULF/Dy8uLIkSM8efIEbW1tatasqTL+S5YsmWlR/3v37uHk5ESdOnXYs2dPhryWQbHvmXfXg5uhT9GSyVGIH8+rlJPy/LQpVJN+xV3Q1/r0a7N69WoGDBjA9evXv6lcRyJjmTNnDgsXLlQ15uvVqxePHz/m8uXLGlYm0axZM4KCglSZb19D5cqVqV69erZv4pmViY+P5/Xr1+n2DfDz8+Pt27cqI1gmk2Ftbf3JBoK2trZqzzLMLMLDw3n79i3x8fFp/j179oxIgxacv6el8fT99JDLwa6ALn+OVU9mqkTmIRn7EhKZTHh4OC1atODGjRvs2LGDli1bftc6SqUSU1NTxo0bptEJpgABAABJREFUx8SJE9UrkpS0sidPnlC3bl0MDQ15/vw5Dx48oFOnTty/f5/Tp0/z22+/qXXPBw8eULFiRQYPHpymWY26SW3gdPv2bcqVK5dh+3wtqVH4v//+WxWNcnJyIjQ0lCdPnpAjRw5+//135s+fj6+vLyVLliQpKUkVcU+N4J8+fZqZM2dy7ty5NOsXLVqUlStX0qBBA7XqfvHiBV5eXnh5eXH69Gni4uLInz+/Kv2/Xr16am2C+G9CQkJwdHQkV65cXLx48Zv2+ZqsByEEB15fYfmD/SQLhVqM/P8iQ4algSlTynfGwazwR/dHRERQrFgxmjRpwsaNG9W+v8T3M3ToUE6fPq0am9W8eXMADhw4oElZEsC+ffto1aoVPj4+lC1b9qvOOXPmDBcvXmTKlCkZrE7iUyQmJuLv75+uI+DVq1f4+/unGRebJ0+eTzYQtLW1zbDvnowiNl5Jm3EBJCRlbbPs7wlWFM3/48EDicxDSuOXkMhkTE1NOX78ON26daNNmzasWLGC33///ZvXef78OZGRkd9Vr/81PHnyhOLFizNlyhRGjx5NiRIlWL9+Pbt372b//v1UrFiRly9fEhwcjBDih7MUIKXJ3axZsxgzZgzNmjX75iZLX0vlypXR0dHh0qVLWcLYTzU8u3btioGBAevXr6dYsWL4+PgAKR2+U+eqnzx5kqSkJIoXL07NmjWRy+WqTvSrVq1SRRYnT56MnZ0dZ8+eZf369aoIJMC7d+/w9/endOnSPxTxL1y4MIMGDWLQoEHEx8dz7tw5VdR/9erV6OjoUKtWLVXUv3jx4mqJ+sfHx9OyZUsSEhI4ePDgN1/URUVFsWTJEkaOHJluw8zwhCime2/BO+z5D2v9HAJBSFw4gy6voEPh2gwo3jRNPf+MGTOIi4tj9uzZGapD4tsJCgpK03slNDQ02098+Flo0qQJlpaW7N69+6uN/dq1a2doNpnEl9HV1aVIkSIUKVIk3fuTkpIICAhI1xGQOmI1OTlZdXzu3Lk/2UDQ1tb2m3o6ZAYnrsdkeUNfSw4HLkQzsrPUiDQ7IUX2JSQ0hFKpZOTIkSxdupQJEyYwa9asbzKEtm3bRteuXQkLC1N7B+hXr17h5OTEuHHjGDJkCHv27KFfv35YW1uzceNGKlasyNChQ9mzZw9BQUFoaWlRq1YtFi9e/MOdzxUKBXXr1uXVq1fcvXs3w+rBq1WrRqFChVRN8bIaSUlJnDt3jmnTpiGTydi2bRu2tra4uLhw9OhRBg0axJw5c1SGrre3N+3atePly5e0aNEiTWnHqVOnqFWrFjo6OowYMYIrV65w+/ZtdHV1cXZ2ZsiQIdSsWVPVX0AdPH/+XBX1P3PmDPHx8Sr9zs7O1K1blxw5cnzzukIIunXrxu7duzl37hyOjo7fvMadO3eoVasWlSpV4vDhw2ku8oPjwhlyeSUh8REZEs3/FDKghmVppldwRVdLmydPnlC6dGnc3NwyJHNH4seoWbMmBQsWZMuWLQDY2dnRsmVL5s+fr2FlEgBPnz6laNGiyGSyr/5MS0hI+GnrxH8FFAoFgYGB6WYG+Pn58fr1axISElTH58qV65OOgIIFC2JqaqrWkrS4uDgSExPTdTIIIeg5IxD/4OQsVaufHjrasHtePowMpNGL2QUpsp+FSUhU8iIgCb/AJOISBInJAm0t0NWWYW2ujV0BXUyMpNEm2RW5XM6SJUsoUKAAo0aN4s2bN6xdu/arI603btygSJEiGTLqKSgoiKSkJIYNG8azZ8+YMWMGzs7ObNu2jatXr3Lr1i1WrFiBrq4uuXPnxszMjFOnTlGlShU2bNhAhw4dvttw1NLSYuPGjTg4ODBixAjWrVun9scHKWnyqTPtsyI6OjrUr1+f+vXrExsbi6GhIYGBgRw9ehSAKlWqpDGW379/r6p3bNiwIZDS8MfIyIh69eoRGxvLn3/+ydKlS5HL5dSsWRN/f3927drFgwcPOHDgwCcjKt9D0aJFGTJkCEOGDCEuLo6zZ89y5MgRvLy8WLVqFbq6utSuXVsV9bezs/uq98vs2bPZtm0b//zzz3cZ+gBly5bl4MGDNGrUSNWLQltbm5C4CH6/tIz3CVGZauhDSjOmi8EPmHhzPXMr92bUqFHky5ePkSNHZqoOia8jKChI1TATpAZ9WY1ixYp98/ePZOhnb7S0tMiXLx/58uWjRo0aH92vVCoJDg7+qIGgn58fJ06cwM/Pj7i4/3XBNzIy+mxmgIWFxTe9x8aPH8/atWtZtGgR/fv3T3OuX2ASr4OTP3N21iEpGS7fjaNhlW931ktoBimyn4VQKAXXH8Rz0SeWhy8T8A9ORvn/r45MlvIPgeo2gNwmWpQoqEvF4vrUc8whedqyKf/88w+urq7Url2b3bt3f1U028nJifz58/PPP/9kiKZz584xaNAgHj58iIGBAQkJCRgbGzNs2DCWLVum6j0wZMgQ6taty5QpU5g1axYNGzZk//79P3zhtH79enr37s3+/ftV9bDqZO/evbRu3Rp/f/8sP0f+34SEhHDmzBmqV69O/vz5VbdHRkaSP39+oqKimDt37kfz2C9fvszIkSO5fv06ZcqUYdu2bZQuXZpZs2YxZcqUj7IBMpJnz56pDP+zZ8+SkJBAoUKFVFH/OnXqpDtiztPTk/bt2zN9+nSmTZv2wzqOHDlCixYt6Ny5M0tWr+D3y8sJinuf6Yb+v5Eho4TMkr+bjsPT05O2bdtqTIvEpzEyMmLGjBmMHDmS5ORkdHR0WLt2Lb1799a0NInvRJ2ZTRLZDyEEoaGhn2wg6Pd/7J1nWBRXG4bv3aV3UEBREUTF3mLHGnuPsfeCmtg1aqyxa4yxlxhb7CX2jr2CoFixAiKKoNJ73935fvCxCREUZGFB574uEmHOnHm3zZ7nvO3VK1XnGwB9ff0sCwja2dlhbW2doTZMs2bNVPV0mjZtyvbt27GzswPAxT2O33dF5Nljiwxy58GJtG4u9fu5om9SKsPxlMRwXt1ZTdiri6QkhKClY4RhkYpUaPYb+ia2GcbKZNClsRFjeoqh/IUF0bNfAIiKVXDmZhzHrsURFqVAJgXFf9aagpD281/CoxXc9ErE9WEiG45E0aaeIZ2bGOFQUiyeUZjo3bs31tbWdO3alaZNm3LmzJmPttOTy+Xcv3+f77//Ps9satq0KY8ePWL+/Pns2LEDhUJB+/btiYuLIzIyEmtra3r06KHaQa9atSoGBga4u7vz4MED6tWrB6Tl/n9Om8EhQ4Zw+fJlhg8fToMGDbC0tFTr40vPgXdzc6NXr15qnTsvsbKyytReExMTpk2bphLvwcHBtGzZEnNzc+rXr09ISAg+Pj5AWhX7atWq4ejoqIoMSU1NJS4uLl+KGpUrV47x48czfvx44uPjVV7/06dPs379enR1dWnWrJnK61+uXDnu3LnDoEGD6N27N7Nnz1aLHe3bt2fXrl307duXiCbmxBTTQqlBoQ9pefxPhfc0Hvs93bp106gtIpkTFxdHfHy86h4dEZG2SBc9+4UbUeh/3UgkEiwtLbG0tMy084kgCERGRma6EeDh4cH+/fuJiopSjdfR0cmwAXD//n3VMVdXVypWrMiKFSv44Ycf8AlIyXTtnx+kJEZw93AXkmLfIJHqYGBqj4BATPA9kuODPxD7CgU8e5WS/4aKfDaiZ1+DpKQK7DoTzf4LMSizEPM5Jf1mUaeSHpP6WmBlIe7nFCYePXpEu3bt0NLSwsXFhYoVK2Y6zsvLi+rVq3Pt2jWaNGmS53aFhIQQGRmJo6MjV65coUWLFhgaGuLh4UHlypWJjIxk27ZtTJ48GYBnz57h6OjItGnTWLp0KbNnz1blnucEpVLJ1KlT8ff35+DBg2pfjJUrV4527dqxZs0atc6rKUJCQli4cCEbNmxAoUjrBd+pUyeOHz/O2bNnad++PWZmZkybNo3bt29z4cIF4uLiEASBdu3a8ddff6n6hmuC9A4Q6bn+165dIyUlhdKlSxMaGkqpUqW4efOm2lNXZuxYxo0ib9U6Z24QBAEdqRZ7mk+nuIHoPSlo+Pr6Ur58eS5fvkzz5s15+vQplStXxtXVFScnJ02bJ5JNRE++iLqJjo7OtICgv78/9+7dy/ScsmXL0tL5Ot4BqR8cc9/tRFJsILY1fkQhTyDY9wQSiQzrcp1xaDgLqVQLpSKZ13fXE/ziOEmxQWjpmFDE7lsc6s9AR98Cf8+VvLqz6oO5izl2p+K3y/G+NoO3T/dgaF6e6p12o2uYtgZQKlIAAanswyhNHS04vaoUMqn4+SkMiEpQQ3i/Tmbx9nACQ+RqEfnppO8K3nuexOD57xjTw5x2DQ3FL7RCQtWqVXF3d6ddu3Y4OTlx8uTJTBePnp6eSCQSatWqlS92WVlZYWVlBUDFihWpW7cud+/e5eTJk9jb2/P333+zefNmAL7//nscHR3x9/dn+fLlALx79473799/NFohM6RSKb///jsPHjzAxcWF9u3bq/VxOTk54erqqtY5NYmVlRVr1qxh3rx5nDx5knv37tGzZ08grRiRpaUlCQkJ2NnZ8fPPPxMVFcWxY8c4evQoNWrU+EDo5/diWCKRUKFCBSpUqMDEiROJi4vDxcWFUaNGkZycjLe3NyVKlKB58+Yqr39u6wxEJsdyv1gkpJBWJa8AIJFIUCLw68P9rK4/Urx/FzDev38PoLqfpXe6ED37BRO5XM6tW7e4e/cuDx48wNramv79+1O5cmVNmybyhWFqakq1atWoVq1ahr8HBgZmSLuTyWQoFAp0dXWpUKEC/m8/FPr/5o3XVmTahsi09EiOf0/go20YWjhiU6kPj87+QETAFSQSGQYW5UmKDeT984PEBD+gdvdT6BoWw8C8LAmRad1ljIpWQirVRd/EFkEQCPE7BYCuUXEenuxPYuwb9E3tKF1zJNblumRqT4oc3obKKWWtnZunSySfEBO88xmlUmDbyShGLQ0mKFS9Qv/fKJSQlCKwbE8EP68NITJWkTcXElE7pUqVwtXVlWrVqtGyZctM86g9PT2pWLGiRvrIFitWjJEjRyKTyZgxYwYVKlRgwoQJeHt7Y2xszNixYwGYNGkSCoUCJycnBgwYoFoY//bbbzx69ChH16xataoqhUCdODk58fDhQ2JjY9U6r6YxNzdn4MCBrFq1SpWuUL9+febOnUtiYiK9e/emRo0azJ07l6ioKH766SdGjRr1wTwSiYQpU6Zw9uxZUlM/vhjJCwwMDNi3bx+JiYncvXuXJ0+esHDhQpKTk5k0aRJly5alfPnyTJgwgXPnzpGUlJTja6x7eoIEeXKBEfrpKAQl98NfcDbwjqZNEfkP7969A1C13gsLCwNEsV8QiY2NZdasWfTu3ZsJEyawfft2fvvtN1q0aIGbmxuAKgpKRCSveP36terfenp69OzZk9OnTxMbG8vRYydI+URtPl3DYjTod4N6fa+h83/Pe2SQG5FvPYgIuAJAjc77qNvzLPV6X0KqpUdCpC/BvsewqdSH8o0Xquaq0mYT33Q7hl3t8aQmhiNPjgYg4s015CkxaOuaEh/+jKcXxxHidzpLm+ITNZvyJpJ9RLGfj8gVAr/uCGeXSwyCAMp8+pzc90lm7O/BhEQUjkqfImle2HPnztG5c2e6devGunXrMhy/c+dOpjll+cWgQYPw8vKiY8eOJCcnY2pqSv369dm6dStNmzbFxcWFY8eOoaOjQ48ePVS73EeOHGH69OlUr149R5XwZbK0rhP6+vqoM/PIyckJpVLJrVu31DZnQcbZ2ZlDhw7RokULXrx4wZo1a/jpp5/w9vb+oCaCIAgEBgZy/Phx2rVrh7W1NUOHDsXFxYWUlPzJ15s5cybHjh1j3759VK9enUqVKjFp0iQuXbpEeHg4R48epXnz5hw5coS2bdtiYWFBx44dWb9+Pf7+/p+cPywphotB9zSep58VEmCv32W1vudFcs/79+/R09NTtdAKCwtDKpViZmamWcNEVKRXVf/ll19YunQpQUFBWFhY0LZtWypWrEhISAgrVqwAxFx9kbzH0dERZ2dndu/eTWhoKHv37qV9+/Zoa2uTkvrp+3tRu1Zo6Zog09JD3zgtQiAlIZTY4AeqMfeP9+TKhtLc3FkXpTxt4zsm+H5m06kQhH82ugzMy1K/3w3q97uBgXlZAIIe78zy3BS5+L1UWBDD+PMJhVJg4V9h3Lif+OnBakaphOAIOWOXBbNuijWW5uLLXhjQ1dVl3759lCxZkrFjx/LmzRt+/fVXUlNT8fLyYsiQIRq1r3z58pw4cYJnz56hq6uLhYWFarE7d+5cADp37sy3336LiYkJERERrF+/HplMRrVq1VResNevX1O6dOlsXVMmk6lV+FSoUAFzc3Pc3Nxo2bKl2uYtqOjo6PDdd9/x3XffERMTw927d0lNTaV+/foZqgZD2gK4ZMmSeHt74+XlxcGDBzl48CDbtm3D3NycLl260LNnT1q0aJHtdpE5YceOHSxZsoRly5bRqVOnD44bGxurHosgCDx58gQXFxfOnDnDhAkTGDNmDI6OjqoK/02aNPmgQ8SpAA+1261OBOBVXDCPI19R1cJe0+aI/J93795RrFgxlUgMCwvDwsJCtSkpojni4uI4deoUenp61KpVixMnTiCVSnF2dmby5MkULVqU8PBw2rRpg7GxMQqFQnzdRPKcokWLsmXLlkyPSbPhdtXS/adDk0Sa+RrexKrmB3/TMfh4YWNtPQskUh0EZQpGRSohlaV9lxsVqURC5AuSYgOzPFcqbpIVGkTVlw8IgsCKPRHcuJ+IpvbBFEqIiFHw06oQ1k2xxtRI/HIrDEilUpYvX06pUqX46aefCAoKYuTIkaSmpmrUs/9v/ltE8Pnz54SFhaGjo4OTkxNVqlQB4M8//+TmzZuYmJjQq1cvmjdvTlhYGN988w3m5ua4urpmqzicOr0wUqkUJycnVTjn14SJiQnNmzf/5DiJREL16tWpXr06CxYs4NGjRxw4cICDBw+yfft2zMzM+O677+jRowctW7ZUi/B3dXVl+PDhODs7Z6vPvEQioUqVKlSpUoUpU6YQExPDxYsXcXFx4cCBA6xcuRJDQ0O+/fZb2rVrR7t27ShpW4ojr9xQauyunD1kEilHX7uJYr8A8e7duwz1R8LCwsQQ/gJCSEgIM2fOpHz58hw+fJhXr15hYmLCmDFjKFeuHJCW5lSkSBGCgoK4ceMGzZo1Qy6Xo6UlLolF8h8drc9f0xhbVVf927bWKCztWwOgVMqJDHTFwCytpo1MS181Tin/x+kolWljZlOXyEBX4sKfoVSkpevFhT8DQN/ULmu7tUWxX1gQw/jzgQu34nFxj9f4klKhhHfhclbszbteniJ5w4QJE9i/fz8HDx7E2dlZ5R0viDg4OFCyZElSUlK4f/8+b9++xcXFheXLl5OSkoKTk5OqddzKlSuJiIjAz8+PgwcPcvjwYeTy/E03cXJywsPDQ8zbzAYSiYRq1aqxcOFCnj9/zsOHDxkzZgzu7u506NABa2trBg8ezJkzZz471P/ly5d07dqVhg0b8scff3zW5o6JiQnff/89mzdv5s2bNzx8+JBffvmF6Ohoxo4di729Pd/0+JbIlIJfq0EhKLn89gGxqfkfFSaSOe/fv1fl64Mo9gsSZcqUQalU8u7dO/T19enWrRuxsbE8efIESNuMnjx5Mvfu3ePq1auMGzcOQBT6IhpDKpVgavR5csy8RAMsSjUF4PHZ4dza9y239rfEdWtVvE4PUnnm9U1LI5GmFdN7cLIvdw9/p8rHt687GYlUh4RIXzz2NMJjTyMSIn2RSGSUrjU6y2sXNROdhoUF8e6Wx4RFyVn9d6SmzVChVMKNB4lcvRtPs28MNW2OSA7o2bMn1tbWtG7dGh0dHSIiIrCxsdG0WR+gra3N9OnT8ff35/Dhwxw/fpykpCSSk5MpV64cffv2pXTp0ty5c0dVrR9gxowZxMXFUalSJQ4ePJhl20F14+TkRGxsLI8ePaJGjRr5cs0vgXThX61aNebPn8/jx49VHv8dO3ZgZmZGly5d6NGjB61atcqWxz86OpqOHTtiZmbG4cOH1RIl8G87p06dSlRUFBcvXmRnwGUilQJk0TooyusNj2cdAgFKD3SiVI+6AAgKJV5T/ybW+z26lsbUXDeA0GvehF55RtzLEJTJaZtVtf4YhEGpD9vmhbu/IOj4PeJfhiAolOgUMca6VWXV/JmhEJR4R72htmX5XD8fIrnn3bt3NGrUSPW7KPYLFp06dWLdunXs3r2bHTt2oKenx6hRo5g3bx6xsbG8fZvWZlNbW5vHjx/j7e2No6Ojhq0W+ZqpYKfD7SdJn1W0u0rbTQTc+4PgFydIjAlApm2IgXlZLGybYmiR9r7W1jOnXKO5vL63nuS4d6QkhJKSEAqAqXVNanTei//tZcSEPESmpYd5yUbY152MqfWHqQEA5sZSLExEsV9YkAhi5Z88QxAEZvwRyp1nSaqWeAUBCWCoL2HHXBvMjcUPa2GjbNmyvH//HgsLC86ePUulSpU0bVKmyOVyrly5wqlTp1i7di1GRkYMGjSI33//HT09Pb777jtOnDhB1apV6dOnD+3bt2fVqlWEhISwZs0aypQpky+t3xITEzE1NWXlypWMHp31LrZI9hAEgcePH6ty/J8/f46pqWkG4f/f3HlIe7907NgRDw8PPDw8qFChQp7aOd79D+6Fv/jomJebr/L2xH0kWjJqrOiDob0lb/6+xevdN0ECVRZ1x6xqKZ4uPEHUg9domxqQHBIDZC72A4/e5dVf1wHQNjdAx9yI1OgEDEpZUGVBtyztkCJheIX29C/bIpePWkQd3L59G0NDQ1Xrtvnz52NiYsKECRM0a5gIAD4+PlSpUgVdXV2cnJwIDg7G29ubpKQkZDIZOjo6lClThtatW9O9e3fq16+f6fdMfrceFfl62X4qij1nYwqUVsgKiQQaVNVn4Y8frwcgUnAQxX4ecvVuPPO3hmvajEyRSqF5LQNmDhW9EYWJuLg4TE1NWbJkCbt27eLNmzecOHGCxo0ba9q0LHnz5g0DBw4kICCA7du307hxY/bu3Uv//v0B2Lt3L507d8bAwACAZ8/ScsW2bdtGamoqZcqUYdSoUXlaRKlBgwbY29uzd+/ePLvG10h64bx04f/s2TNMTU3p3LkzPXv2zCD8x40bxx9//MHZs2fzvFiiIAi0PTcjreXeR1CmyLk/YQ+JbyIwsCtKubGt8Jr6N4JciU2XWpQZlhY+mRweh46ZASFXnuG7+jzwodhPDo3lzvC/EBRKyoxoRvGONVRCQp6QgpZB1lEMUiQ0LlaVhbUH5/KRi6gLpVL5QVFLkYLDvHnz2LRpE+/evUMikSCTyShdujTlypVTdbmxtLTkwIEDhISEMGrUKPH1FNEYN70SmPVnmKbNyBZSKQxqb8qA9qaaNkUkm4hh/HnI/guxSCR8VlhOXqNUwuW7CfzwvZyiZuLboLBw//59lEolrVu3ZsSIEXTt2pVWrVqxe/duunfvrmnzMqVUqVJcuXKFp0+fUqlSJYKDg1XV+ocMGUKLFi0wMDBQeVGOHj3Krl278Pb2Vs3x+++/s379+kyrsqsDJyenHLUCLIykF6DKT5Hy78J58+bN48mTJ6pQ/127dmFiYkKXLl0wNDTkzz//ZMOGDfnSFeFdYsQnhT6AVEcLx5/a8nDyfhJehfFo+gEEuRKDUhbYDXRSjdMtYvTJucLcfREUSqR62sR6vydg359ItKSYVbfFfmgT+IjYVyLwNOp1lsdF8h9RGBZsZs+eTb169Th79izh4eGULVuW8uXL8/79e+Li4njy5Al2dnasXr0ad3d3SpcuTadOncTq/CIaoZK9boHVC/9FqYQqDh9G54kUXMRvqzzCJyAFn4CUAv3BlQCn3eI1bYZIDvD09ERfX5/KlStjamqKi4sL33//PT179mT16tWaNu+jpKcb3LlzhxcvXqCnp4ezs7Oqv7tEIuHMmTNs3rwZb29vTE1N+emnn+jevTtBQUF07doVFxeXPLHNycmJgIAA3rx5kyfza5rY2FjKly/PggULNCpSKleuzLx583j69CmPHz9m4sSJXL9+nT///BMdHR3c3Nw4ceIESUlJeWpHWFJMtscalbWmVK+0fHpligKkEsr/1BapTs42SRMD02q3KJNSCXPzQcfcEHlsEqFXn/Nk7jGU8o8XiIxMjsvR9UREvmYkEglt27Zl1apVbNy4kTlz5uDl5cW0adP4+eef+f7773F3d2ft2rVAWrFYEDdxRDSDmbGMRtX1kRWCt1+xIjKqlxPFfmGiELytCifHr8cW+A+tUoDj12KRKwrwjoRIBjw9PalZs6aqcrCuri67d+9m8uTJTJgwgSlTpqBUFuykrw4dOnDv3j02bdqUoSCeXC7n3LlzvH//Hh0dHf7880+WLVvGgQMH2L17N0WKFMmzPO6GDRsCfLEt+ObOncv79+8ZMGCApk1RUblyZXr37k1UVBSNGjVi2rRp3Lt3jy5dumBlZUX//v3zTPin/L+9UHZJfBv1zy9KgaSQ7G8WpCP863NZblxraq0fSLmxrQCIfxlCzLO3Hz1fLihQCgX7sy0iUtBQKpUYGBjw6NEjVWpYxYoViYqKYubMmdSqVYvGjRtz9epV/Pz8kEgkBf47VOTLpGsz4wKfsy+RwPfNjZFmUdhWpGBSwOVo4SQxScnF2/EF/kMLEBWnxOOR2NKpsODp6Unt2rUz/E0qlbJ06VJWr17N8uXL6devH8nJnw5R1iQ1atSgf//+qjx9QRDQ0tIiJiaG5ORkatasSa9evVSLrj59+nDr1i3s7e15//49Z8+eZdu2bdy4cUMt9lhbW1O2bNkvUux7eXmxevVqZs+ejZ2dnabNUREeHk7Hjh0pWbIkp06dUoX5P3nyhEmTJvHgwYMMwj+9q4M6UOagEWqYmy+hV58DoGtlAsCL9ZdIicxZVNS/Q/2Nylmn/b/8P+3bkoM/vYGgLMihYl8JgiAgljoqPKR76suVK0d0dDQymQxPT0+cnZ159eoVFy5coEGDBgCcOHFCk6aKfOVUL6dLCcuCnVarJYM29T+dtiZSsBDFfh7gE5BCav62Cv9sZDJ45FewhaFIGpGRkfj5+VGnTp1Mj48bN46DBw9y9OhR2rZtS1RUVP4amAvSC5WZmppm+L9UKkWhSAtvtrOz4+bNm/To0YP27dvj7OxM06ZNad++Pa9evcq1DY0aNfrixL5SqWTkyJGUL1+en376SdPmqEhJSeH7778nOjqakydPql5vSEv3mDNnDo8fP+bp06dMnjyZhw8f8t1332FlZUW/fv1yLfx1pNlbUKVExvPij0sAmNe2p/rvvdAy1kMek8iLdRdzdE2z6raqf8e9CM7wfwB9G7OPni+VSNCSirnEmkYikYgV2gsZCoUCPT09fvjhBxQKBYcOHaJz584ATJw4ETc3N2Qymep1FUP5RTSBRCKhd2sTTZuRJVIJtGtohLGB+PkobBTsLaRCis+bFO4f70XUWw/0TGxp0C+j9zEx+jUee5sAYF93EnbfjCM84CqBj7YRG/IQeUoc2npmmBarTanqIzAtVkt17rvnB3l+ZTIANTrvx7xE2o50ZJA7D070BqBC82XoGZdU/f4x6vdz5fnrsmp53CJ5y507dwCyFPsA3bp1w8rKii5dutC4cWNcXFwoWbJkfpmYawYNGsTRo0c5f/48o0ePZurUqVhaWqKvr8+9e/f49ddfcXNzw8TEhKlTp3L27FnOnj1Lx44dOXz4cK56JTs5ObFz505iY2MxNjZW46PSHNu2bePmzZtcuXJFLT3r1YEgCIwcORIPDw8uX76Mvb19lmMrVqzI7NmzmT17Ns+ePVNV9d+7dy/GxsZ06tSJHj160LZtW/T09LJtg5F29sb6rr2APCYRLWM9yo1tiY6FEWVHteD5b6eJuP2S9+cfU6x1Ffy33yD8pi+KxH/SA57MOYJES4pNx5rYdK6JSaUSWNRzIOKWH76rzxN4yJPEoLQ8ftPqpTCpVOKjtujLxBxJTXP58mU8PT0pUqQIbdu2RV9fHxMTE7S1tTVtmshHSBfx06dPx9zcnKlTp1KvXj2MjIx4+vQpADo6OrRp00aTZoqI0K6BIec94njqn1KgooMlEjAzljKsi5mmTRH5DMTtmTzAJyCF4hXSKqMnxQQQ9c4zw/H3PkfT/iGRUqx8N17dWY3X6UFEBFxFIU9C39SO1KRoQl+6cP9Yd949z3mVcC0dI0ysaqp+JNK0hb5MO+PfpTIdfANSUCrFsMSCjqenJyYmJpQrV+6j4xo3boybmxsxMTE0aNCAx48f55OFuadmzZqsW7eOYsWKsWHDBuzs7FizZg2Q1ongypUrACQlJVG0aFGuXbvG6NGj8fHx4dq1a7m6tpOTE0qlklu3buX6cRQEwsLC+Pnnn+nfvz/NmjXTtDkqli1bxl9//cWWLVtwcnL69An/J134P3r0iGfPnjFlyhQePXpE165dsbS0pG/fvhw9epTExE+nJdkaWiOTfPzr7/25R0R6+gPgMPJbdCzSQheLNiqPZbO02hH+W66RFBxNamQCSe+iSY1KUJ2fHBqb9re4fyIQKvzcnpLdaqNjZkji2yj0rE0p1aselX757pM2lzctPJt2XxoJCQl06NCBvn37Mm/ePFasWMHz58+ZNWsWp06dUkUfiRRM0j311tbWhIaGEhwczIkTJ4iLi0NHR4e2bdty/vx5KlasyIsXLwDE11QkX0hKSuLZs2ecPn2aNWvW0KlTRyKe/l7gan4JAvw8oAhG+gXMMJFsIXr284Cn/ikULdMe2fXZKOQJBPscxaz4P97YYN80sW9u04DUpAj8PVcAYGJdk2oddqCta0pS3FsenOhDYvQrfK7PxKJUE3QNrbNtg7FlVb7pdkz1u/tuJ5JiAzG2rELNLn9nGJuUIhAUKqeUteidKMh4enryzTffZCvEsGLFiri7u9O+fXsaNWrE8ePHadq0aT5YmXs6depEq1atWLJkCe7u7vTs2RNIi2xISEjA1tYWhULBDz/8wJYtWzA0NEQul3Pnzh1GjBjx2dd1dHTEwsICNze3fGn/ltdMmzYNhULBsmXLNG2KihMnTjB16lSmT5+eq2KBFSpU4JdffuGXX37B29tb5fHft28fRkZGdOzYkZ49e6q8r/9FR6aFvVExXsRmXRSvWJuqFGtTNdNjjpPa4Tipner38hPbUH7ip72CUh0t7AY3xm5w42w8yn+QSaRUNCuVo3NE1MeECRMydAKRSqWUL1+ezZs34+/vT/v27cV2bQWc9JZ66XViKleuTNu2bWnTpg21a9fGzMyMdevWsXfvXlavXo2/vz+1atWibFkx8lFE/WzdupWZM2cSEhLyQQ0QBwdvft8yl7UHIjVkXUakEmhd35C6lT/8LhUpHIhbNHlARLQCLW1DLB3aAxDidwqlIi0vPvr9XRKjXwFQrEL3f7z8QJn609DWTctd1TOyoXStMQAoFcmE+J3OU5vDo8Vd7ILOnTt3PhrC/19sbGy4fv06tWvXpnXr1vz999+fPqmAoKenx9y5czl69Cj29vYZqiP379+fK1euMHjwYDw9Pbl69SoSiQQHB4dcXVMqldKwYcMvIm//5s2bbN26lcWLF2Ntnf1NwrzkwYMH9O3bl65du7Jw4UK1zevo6MisWbN4+PAhz58/Z+rUqTx9+pTvv/8eKysr+vTpw5EjRz7w+Fcyt/2kd7+goBCU3Dl5jYsXL+Z5W0KRjKSmprJv3z6srKxwd3cHwMLCAltbW0qUKIGfnx+6umKKRUEnPZR/1qxZbNmyhUOHDrFgwQJatmyJsbExcrmcR48e4eHhwffff0/v3r0ZOXKkhq0W+ZIJDg7+QOhLJBKOHz9OlyZGNKulj6bLg0ilYFdcm9HdzTVriEiuKBwrnUJGqjztw1vMMS2UX54cTdirtCJPwf8X9zIdYyzt25EQ5ac6z7hIpQzzGBX95/d/j8sLklPFMP6CzPv37wkMDMyR2AcwMTHhzJkz9OjRg969e7NixYo8sjBvSPfCSKVSBgwYgLm5Ob/99hv379/nr7/+4uLFi9SsWZOqVatSsWLFDOfK5fIcV812cnLCw8OjUIdwyuVyRo4cSe3atfnhhx80bQ6Q9v7t3Lkzjo6O7Ny5M88KYP1b+Ht7ezNt2jSePXtGt27dsLS0pHfv3hw+fJiEhAQqmNkWqlZ253YepVWrVpibm9OmTRuWL1+Ol5eXWBk+jwkPDyc+Pp4GDRpQr149AIoVS+uiIJfLSUlJARBfhwJO+j3HxMSEwYMH4+joiJ6eHr6+vmzbto0BAwawZ88eJBIJQUFBABgZGYlt+ETyhKFDh9K0adMMxT5lMhnDhg2jcuXKSKUSpg8uSu2KehoT/DIpFC+ixbLxVhiK4fuFGvHVUzOCIJCe/m5mUx8947TQy2CfoygVqYT4nQLAqkx7ZNr/CYn5zydakqnXKTuf+pzfGTL7PlMoFHh6ehIdHZ3j+UTUi6dnWt2HnIp9SCs8tHPnTqZNm8akSZP46aefCuUCpl69eqrQ9F69etG4cWMCAgJYvHgxs2bNokOHDhnGSyQSdu7cmaNrODk5ERsby6NHj9Rper6ydu1aHj16xIYNGwpEaHFiYiJdunRBoVBw4sQJDA0N8+W65cuXZ+bMmTx48ABvb2+mT5/O8+fP6d69O1ZWVuycuRqJUPCrqkuRUMG0FG8eveDhw4csWLAASPNQVq9eHRsbGwYOHMiuXbt4//69hq398oiLi0NLS4vAwECOHz8OpHULuXXrFu/evaN48eIAhfKe+rUilUpJTU1lyZIldO3alREjRvD333+TkJCAiUlaNfTt27dz9OhRsfOCSJ5w5coVfH19M2wS6ujoqO7vANpaEhb8YEnDqvqfsarPHVIp2BbTZs1ka8yMNb+OEMkdothXMxKJBC3ZP/8u5tgNgPCAK7z3OUxqUloOTrEKPQAwMPsn9Dg27EmGuWJD//k9fdy/NwjkyVGqf6fPmzbGIMd262in3UqUSiU3b95k3LhxFC9enLp167Jp06YczyeiXjw9PSlatCi2trafHpwJUqmUX3/9lXXr1rFq1Sr69OlT6MKBZTIZU6ZM4d69e3Ts2JG7d+8ydOhQQkJC+O677zIIW6VSybVr1xgxYkSOChTWrl0bbW3tQhvKHxgYyOzZsxk1ahS1a9fWtDkIgsCQIUN49OgRJ06coESJj1eczyv+Lfx9fHyYMWMGLx4/593lxwjygi3SlAh0s2+MRCKhWrVqTJ48mXPnzhEREcGFCxcYMGAAXl5eDBw4kOLFi1O9enUmT57M+fPns1WsUOTjmJqa0rlzZ+7evatqX+nu7s7o0aMBxAruhZTjx48zY8YMnj59iqGhIX379uXGjRusXLlSdRzETRwR9ZKQkMC4ceNo0aIF5cuXZ/ny5apjM2fO/CDtTkdbwtzhReneIq1DUF53hUzfVKhfRZ/VP1ljLgr9LwKJIMaeqZ3vpgQSE5/2BZEYE4DHniaAgEzbEEVqPPqmdtTvm1Y5PDb0EXcOdQSyLtAnlelSv98NdA2tSYjy59a+ZgBYlGpK5VbrAHhyYQwRb9LmrNf3GgamdhlsSi/QZ2ZT/4MCfQCj2odyYOdvXLt2jZCQELS0tJDL5QD89ddfDBkyRN1Pk0gOaN8+rf7DmTNncj3X0aNH6du3L3Xr1uXYsWOYmxfOXCxPT08iIiKoU6cOFhYWqr8rlUoiIiJo0KABCQkJWFlZcevWrWy3nvP09KRatWqFMg+3Z8+eXL9+nefPn2NmZqZpc5g7dy7z5s3j0KFDdOvWTdPmfMA5L1cWBhzRtBkfxUhLj2Ot5qEr+3gB1eDgYC5evMiFCxc4f/487969Q1dXl8aNG9O6dWtat25N1apVxR7iOUCpVCKVSnF1daV79+6EhIRkON69e3eWLl2KnZ0dgiCIXuBCQPrrtHLlSiZNmkTr1q3ZvXs35ubmyGQyIiMj6dq1K1paWpw5c6bAtCwVKfx4eHgwaNAgAgICWLJkCWPHjkUikdC9e3du376Nt7e3KnUxMx69SGLJjnDeRyjIC+UmlYK+joQJfSz4traBeD/7ghDFfh4weU0I958nkf7E3j/ei6i3Hqrj9nUnYffNONXv/ndW8+r/FfmlWvroG5ciIfoVgjIFJFIqNFtK8f9HAgA8Pj+K0CwK9lk5dKRy6/Uf/P1jYl8igffXv+Pp4/uZzjl27Fhat26Ng4MD9vb2OepnLZJ7BEHAysqKUaNGMW/ePLXM6ebmRufOnSlevDguLi6UKvVlVfoODw9n5MiRHDyY1rZyxIgRbNy4MVvnpi/wCxvnzp2jbdu27N69m379+mnaHPbv30+fPn1YtGgRM2bM0LQ5mSIIAs43VuAX8xYlBe+rUIqE3g7NGFmxU47OEwSBJ0+eqIT/tWvXSExMxMrKilatWql+bGxs8sjyL4d0cejv78/x48d5+vQpgiBQvnx5+vbtS4kSJQrtPeNrJP218vf3x8HBgUqVKvHo0aMMwsbX1xddXV1sbW3F11Yk1yQnJzNv3jx+++03ateuzc6dO3F0dFQdVyqVJCQkYGRk9Mm5klKU/HUimiNXY0EAdXTNlklBoYRG1fWZ0McCCxPRm/+lIYr9PGDL8Sj+vhCD4v/RX++eH+T5lclpv0ikNOjnip5xxnDW8NdXCHy0jZiQhyhS49DSNcOsWG1K1RiBabFvMoxVKpJ5ff9PQl6cICnmDQB6JqWwLtsZ25ojkco+3In+mNgvZa3F6vEG/PDDDxw4cACJRPJBHlF6ESKJREKJEiVwcHDI9KeweokLMq9evcLe3p4TJ07QqVPOFv0f4/nz57Rt2xa5XI6LiwtVq2beZqwwc+HCBfr06UN4eDi9e/dm06ZNGBsba9ostZOUlESVKlWwtbXl0qVLGt+R9/DwoFmzZvTs2ZMdO3Zo3J6P4RXhz+ibazVtxgdIkGCmY8ie5tMx/m99lxySlJTEzZs3OX/+POfPn+f+/bSN3SpVqtCqVStat25NkyZNPupV+tpIb9W2ceNGvLy8mD59OiVLliQ0NJQiRYoglUoJCwvDyMhI3AAvZKQL+BYtWiAIAlu3bsXe3h5vb2+ioqKIjY2laNGi1KhRQ9OmihRyHj58yMCBA3n27Blz587l559/Rksr913Pw6MVnLkZx/FrsUTEKFWCPbtIJWkbBfq6Eto1NKJzYyNsi4ntt79URLGfB1y/n8DczWGaNiNbyKTQsq4hUwcWAeDs2bMMGjSI8PBwFAoFOjo6xMfH8/79e/z8/DL9iYz8p16Aubl5lhsBNjY24g75Z3Do0CF69OjBu3fvVFWg1cW7d+/o0KEDfn5+HDt2jObNm6t1/oJAfHw8FStWJDw8HG9v7y/yfTh37lwWL16Ml5cXFSpU0KgtAQEB1K1bFwcHBy5fvlwo0iHWPjnOQf/rCAXMu7+0zjAaWFf69MAcEhISwqVLlzh//jwXLlwgKCgIHR0dGjVqpAr5r169+hf3OckJ6R79b7/9Fg8PDzw8PKhWrZrq7zt37uTvv//mt99+o0qVKpo2VyQHpG/k+Pn5ERMTQ82aNTl37hzr1q3jxo0bxMTEYGZmxpgxYxg7diyWlpaih18kR8jlcn777TfmzZtHxYoV2blzJ9WrV1f7dRQKAfdHibh5JfLMP5nAELnK2y+RpP0IAhnC/q0tZFS01+GbCvp8W9sAfV3xff2lI4r9PCA4Qk6fWW81bUa2kEhgTA9zujb7x9sZGRnJ6NGj2bdvH2XLlsXX1/ejc0RGRmYQ/y9fvlT9OzAwUBUloKenh729faYbAXZ2doVCFGiCqVOnsnfvXt68eZMn88fGxtK9e3euXLnCjh076NOnT55cR5P4+Piwb98+Zs2aVSAq1KsTX19fqlatyqRJk1i0aJFGbYmNjaVRo0bExMRw69YtrKysNGpPdklSpDDw6lKCEyMLRDi/FAmtS37DzBp98/xagiDw7NkzVcj/1atXSUhIwNLSkpYtW9K6dWtatWqlseKKmuLGjRuUKFGCNm3aEBERgYeHB+XKlVOJvl69enHw4EE8PT355ptvxJz9QsyBAwfo3bu36ndLS0sMDAx4/fo1s2bNYv78+aoNAhGRT+Ht7c3AgQO5c+cOU6dOZc6cOfm2vk1OUeIXlMrrd6kkJgukyAW0ZaCrI8XGUovypXQwMhDF/deGKPbziNFL3+P9OkUt+TR5iVQCBxaXwML0wy+xU6dOoaWlRdu2bT97/qSkJF69epVpRMDLly8zpAeUKlUqy6gAU1PTz7ahsPPtt99iZmbGkSN5V0gsJSWF4cOHs3PnTn7//XcmTZr0xS1c/fz8sLe3z7F3piAv4gVBoG3btvj4+PDkyRONhmErFAq6du3K1atXuXnzZqHzdj6JfMWYm+tRCEqNevhlEilFdE3Y3mQyxjr5/3omJyfj7u6uCvm/d+8egiBQqVIlVch/06ZN862FoqZIv09IJBKkUil2dnYUK1YMS0tLihcvzpkzZ3j9+jVBQUGq9nsihYv0jRtnZ2e2bdtGjRo18Pb2pnz58uzYsYNmzZoBEBERoVlDRQoFSqWStWvXMm3aNGxtbdmxYwf169fXtFkiIqLYzysuecazaFu4ps34KDIpNK6hz+xhlhq5vlKpJCgoKMv0gKioKNXYIkWKZLkRULx48QIrxnKLUqnE3NycqVOn5nmRM0EQmDVrFosXL2bcuHGsWLHii/Jk5FS0JyYmcu7cOZ49e0ZoaCimpqaMHj2aokWL5qGVOePgwYP07NmTkydP0rFjR43aMmXKFFasWMGpU6do166dRm35XG68f8zMO9tAQ3JfKpFiom3ARqfx2BgW0YAFHxIWFqYK+T9//jyBgYFoa2vj5OSkCvmvWbPmFxfibG9vT1RUFDExMWS1TGrQoAHXr1//ou6TXxvh4eG0bduWZ8+ecfr0aebPn8+VK1dQKpUMGzaMv/76CxcXF9q0aVOgN35FNMurV68YMmQIV69eZdy4cfz6669iDRSRAoMo9vOIlFSBHtODiE0o2D1aV060onq5gllcKCIiIsuNgKCgINU4fX19ypQpk+lGQOnSpQt16xxvb28qVKjA+fPnadWqVb5c888//2T06NF07dqV3bt3f1HFp7K7WDt//jwzZ87k7t27Gf5er149Vq5cSf369TWewxkTE0PFihWpU6cOx44d05gdAFu3bmXYsGGsWrWK8ePHa9SW3OLif4vFj/b/P+Ex/64rk0gx0TZkTYNR2Blbf/oEDSAIAt7e3qpc/ytXrhAfH0+RIkUyhPwX9u4eSqUSf39/AgMDad68OdWqVWPKlCkEBQURERFBdHQ0EomEwYMHU7duXU2bK5JLmjRpgqurKy9fvuTGjRsMGjQIZ2dnAgIC8PDw4ODBg7Ru3VrTZooUQARB4K+//mLixImYm5uzbds2vv32W02bJSKSAVHs5yFbjkex/3xMgQzll0igpJUW22cXTq94YmIi/v7+mW4E+Pv7k5qaCqSFYtra2mYZFVDQK7Pv3r2bAQMGEBERka+dDo4fP07v3r1VQvLffey/dMLCwhg0aBAuLi4AlC9fHltbW7y9vXnz5g1jxoxhzZo1JCUloaurq7HPz8SJE9m0aRNPnz6ldOnSGrEB4OrVq7Rq1QpnZ2c2bNhQKO8n6cjlcrp27crdyBdUnN4RBQIKIe83bCVIsDGwYGX9kRQ3KDyftZSUFNzd3VX5/nfu3EEQBCpUqKAS/s2aNctWS6mCSFRUFIsXL6Zq1aoMGDAAhUKBIAhqqaYtonnkcjlaWlps2LCB0aNHM2PGDKZNm0bFihVVDgULCwt8fHy+qu9Akezx9u1bhg8fzpkzZ3B2dmbFihWYmJho2iwRkQ8QxX4eEpegZOC8t0THKSmIz/KycVbUqvDleG3TUSgUBAYGZhkVEBMToxpraWmZ6SZAmTJlKFasmMaFy/jx4zlz5swniyTmBe7u7nTq1AkrKyvOnj2Lra1tvtugCc6fP0/btm2xsLBg/vz5dO/eHS0tLTw8POjatStt2rThxIkTGrXxwYMHfPPNNyxevJipU6dqzI4XL15Qr149atasiYuLC9rahbd1jyAIjB49mk2bNnHq1ClqNq3Hrw/2czc87z57gkKJRCrhu5INGV2tC3qZtE0tTISHh3P58mVVyH9AQADa2to0bNhQle9fq1atQhH2/t8ooOjoaBISEtDX10dLSwuJRIKurq4o/Asx6a9xXFwc1atXx9/fnydPnrB48WIOHjyIvb09K1asKLRpSSJ5x/79+xk1ahS6urps3rxZ42l0IiIfQxT7eYzH40Rm/BGqaTMyIJVABydDJvYtGDmh+YkgCISHh2e5EfDu3TvVWAMDg4+mB+SHsGnYsCGlS5dm3759eX6tzPDx8aFt27YkJSXh4uKSJ61jChr+/v44ODhQr1493N3dMxwrUqQI8+bN49tvv+Xx48e4ubkxZ86cfPX6KJVKGjVqRHR0NPfv39dYmkpkZCQNGjRAEAQ8PDzyNfIkL1i6dClTp05l8+bNDBs2DEi7X5wM8GDt02OkKOTqrdQvQGpYHM+WnSbRN5T27dvTo0cPOnXq9EV4hwRBwNfXVxXyf/nyZeLi4rCwsKBFixYqz78mo1Kyw+HDh5k1axYpKSmYmppiaWmJtbU1urq6tGvXju+//17TJop8go+lb6WnY/31119MmjSJiRMnYmdnx6VLl+jcuTOdOnVCW1tb4xv/IgWDsLAwRo8ezYEDB+jVqxfr16+nSJGvby0tUrgQxX4+8NuOMC7cTigQ4fwSCRQxlbF9dnEM9L6sgkrqICEhIUPrwH//vHr1CrlcDoBMJvtoeoA6wlblcjnGxsYsWrSIn376KdfzfS7v37+nY8eO+Pj4cPToUVq0aKExW/KLESNGcPDgQa5evUrp0qV5+vQpe/bsYdu2bVSuXJnIyEgiIiKIioriwIEDdO/ePd9s27JlC8OHD+fq1as0bdo03677b1JTU2nfvj13797l1q1blCtXTiN2qIu///6b3r17M2vWLBYsWPDB8dDEKI6+vsmx127EpiYiRfJZwl8mkaIQlJQytKS7fWPalazDoL4DOHToEOXKlcPHxwddXV3atm37RQl/SHvPeHh4qEL+PT09USqVlC9fXlXor1mzZgUitSpdAJ4/f54xY8bw4sWLTMf179+fnTt3qsLBRQof6RsBCQkJPH36FB0dHRwcHL74bhMiOefkyZMMHz6c1NRU/vjjD3r16qVpk0REsoUo9vOBuAQlzoveER6tQKnhen1SCfw+zoqajl9e+H5eI5fLefPmTZZRAXFxcaqxVlZWWW4EWFlZZctL8PDhQ2rUqMH169dp3LhxXj60TxIXF0ePHj24dOkS27Zto1+/fhq1J685deoUw4YNIz4+Hj09PSQSCWFhYUBaKy5BEDA2NiY+Pp558+Yxc+bMfLErLCwMR0dHOnbsyI4dO/Llmv9FEARGjRrFli1buHDhgqo9VWHlxo0btGzZkp49e7Jz586PfjZTFHKuv/fikP8NnkYFICAgAZQKJRLZh5unWhIp8v/n/GtLtXCyrkw3u0ZUtyijuo5cLqdXr16cPn2aHTt2EBQUxMGDB/Hw8EBXV5c2bdrQo0cPOnfu/MUIf0iLDPl3yP+rV6/Q0tKiQYMGKq9/7dq1NRLyny7eZ8+ezcKFCxk4cCCvX7/m2rVrNG/eHD8/P5KTk1mzZg09evQQe7AXcD63ir5YfV8E0lJ4Jk6cyLZt2+jQoQObN28W222KFCpEsZ9PBIWmMub3YGITlBoV/DOHFKFFncK/Yx0Tr8AnIEX14/82leQUgVSFgLZMgq6OBLvi2jja6lDOVofytjqYGuXdYkwQBEJDQ7PcCAgODlaNNTIyyjI9wNbWVuUh2rJlCz/88APR0dEFosBVamoqI0aMYPv27SxZsoSff/75i10Ibdy4kZEjR6oenyAIGBgYYGFhga2tLbVr18bR0ZHq1atTtWrVfPNGOjs7c+TIEby9vbGyssqXa/6XNWvWMH78+Azh7oWV58+f07BhQ2rUqMHZs2dzlBKRpEjhRcxblu5Yx53AZ9Rv3wy0JKQqFejItDHQ0sXBuDiOpqVwNC2JrZEVWtLM70HJycl06tQJd3d3rly5Qu3atQkICODw4cMcOHAADw8PdHR0Mgh/U1NTNT0LmkcQBPz8/DKE/MfExGBubs63336r8vzb2dnliz3pYr979+4cOXKE58+fs2DBAvbs2cO1a9fYtGkTAGvXrsXMzCxfbBL5fDTdOUWk8HLp0iWGDh1KZGQkq1atYsiQIV/sukfky0UU+/nIq3ep/LQqmNh4JYp8FPyS//9nSn8L2jbQvGj8XFJSBa7ejefI1Th8AlKAtEgFINMUif8eK1dKm67NjGn+jQG6Ovn7xR8XF5dlesDr169RKBQAaGlpUbp0aRwcHAgMDCQ8PJw///xTVTRQ06GFgiAwZ84cFixYwJgxY1i1atUX6dHy9PSkXr16ODo6UrZsWRo0aECjRo2oVq0aZmZmhIeH53uenpubG40aNWLDhg38+OOP+XrtdFxcXOjYsSMTJ05k2bJlGrFBXQQHB1O/fn0MDAxwc3P7LNH24sULKlWqxKxZs5g9e3au7ImLi6NVq1b4+vpy/fp1KlWqpDr25s0bDh06xMGDB3F3d/+ihT+kbSzevn1bFfJ/69YtlEolZcuWVQn/5s2b51mkQ7qnvmXLlly7do3w8HD69evH6dOnSUxMZNKkSWzcuJF79+5RtWpV0QNcwBEjL0RySkJCAlOnTmXdunU0b96cbdu2Ffj6IiIiWSGK/XzmXZicyWuCeR+uyJcK/VIpyKQwc0hRmtQ0yPsL5gFhUXIOX47llFsc8YkCEgmf9dyln2eoJ6G9kxHdvzXG0lzzeZapqakEBAR8sAlw9uxZUlNTVRsBAMWKFcsyPaBo0aL5tuDctGkTI0eOpEuXLuzZswd9ff18uW5+8vjxY8qXL4+Ojg5+fn5cv36d06dPc/36dcLCwnB3d6devXr5spBMTU2lVq1aGBgYcPPmTY0sXJ88eUKDBg1o2rQpx44dK9SL5/j4eJo1a0ZQUBAeHh6f3Wniu+++4969ezx//hwDg9zfXyMiImjatCmRkZG4urpm6sl+8+YNhw8f5uDBg9y8eRMdHR1at26tEv5foqc5KiqKK1euqEL+X758iUwmo379+qqQ/zp16qgtbz5dvHfo0AEXFxfi4uLo1q0b586do0+fPty6dUu1eWtvb6+Wa4rkHemvZ07u1eIGzteLu7s7gwYNIjAwkN9++43Ro0eLkSEihRpR7GuAxGQlW49HceRqHFJJ5l5pdVHJXodpg4pQ0qrwtcQSBIFzHvGsPRBJcqqg1vQHqRR0tCSM6WFOu4aGBe5LPSkpCWNjY1atWkW3bt2yTA8IDf2n04OxsXGWGwGlSpVSuzg7efIkvXr1ombNmpw4ceKLq0i7fft21q1bh5eXl6owI4BUKkWpVHL48GG6du2aL4vC5cuX8/PPP+Pp6UmtWrXy9FqZERoaSt26dTExMcHV1bVAFFH7XBQKBV27duXy5cvcuHGDmjVrftY8ly5domXLluzbt4/evXurzb53796panS4urpSrFixLMf+V/hra2vTunVrevbs+cUKfwA/Pz+V1//y5ctER0djampKixYtVC3+ypQpk+vrLFmyhG3btrF3716uXbvG5MmTVceqVq3KzZs3NR5tJaI+/l2sTxAE8bX9ykhOTmbu3LksXbqUunXrsmPHDsqXL69ps0REco0o9jXIQ98kft0eTmhkmudWXS9Eujd/xHdmdG1mjFRasIRsdgiNkrNsdwSeT5Py/Fq1K+gyuX8RrCw07+VP59atW9SvX59bt25Rt27dLMfFxMRkmR4QEBCA8v87JNra2tjZ2WW6EVCmTJnP9szfunWLjh07UqRIEc6ePZtvObX54U0fOHAgu3fvRiqVUrx4ccqUKUNycjJ37tyhQoUKbNiwgcaNG38g9tUt/gMDA6lQoQJDhw5lzZo1aps3uyQnJ9OiRQt8fX25fft2oQ5lFASBMWPGsHHjRk6ePPnZ/bPlcjk1a9bE1NSUGzduqH2zx9/fn0aNGlG0aFGuXr2arbaGgYGBKuHv5uamEv49evSgS5cuX6zwl8vleHp6qsS/h4cHCoUCBwcHlfBv3rz5Zz3+/36W161bh6enJ7q6uowePfqraEX6pZHZ/Tk9p18ul/Pw4UOSk5OpV69eoY5eEskZDx48YODAgTx//px58+YxZcoUscOGyBeDKPY1TGKykjNucRy9GsfbMDkyKZ+Vz58eoq6vK6GDkxFdmxlTvGjhvFE99E1ixh+hpKQK+VLbQCYFbS0Ji0ZaFpguBevXr2fixInExsaiq6v7WXOkpKTw+vXrTDcCXr58SWJiomqsjY1NllEBFhYWHxUzvr6+tG3bloSEBM6cOfPZntKPIQgCSqUSuVyOrq4uO3fuZNKkSZQqVYqVK1fmSQu6u3fvsnHjRurUqYOdnR02NjYYGBjg6+tL+/btadOmDadPn870XDc3Nxo2bKgWEdi9e3fc3Nx4/vx5vudmC4LAoEGDOHDgAFevXqV+/fr5en11s2zZMqZMmcKmTZsYPnz4Z8+zYcMGRo0ahaenJ7Vr11ajhf/w5MkTmjRpgqOjIxcuXMiRlzEoKEgl/F1dXdHW1qZVq1Yq4Z+dzYPCSnR0NFevXlWF/L948QKpVEq9evVUIf/16tX75EL+/fv3tGzZEgcHB0xNTbGyskJfX5+kpCSqVq1KzZo1sba21lihTBERkdwjl8tZsmQJ8+bNo3LlyuzcuZNq1app2iwREbUiiv0CgiAI3PdO5ujVWDweJ6pErkwG/0rZViGVAsI/KQAOJdKKz31bxwC9fC4+p05uP0lk1p+hKJV5m97wXySSNNE/b4QlDapqPv988ODBPH78mDt37uTJ/IIg8O7duyzTA8LDw1VjTU1Ns9wIKFmyJFKplODgYDp27Mjz5885cuQIrVq1Uqut/xXNv/32GzNnzkRPT4+TJ0/SvHlzkpOTP3tjJKvrxsTEYGxs/EG+XrNmzbh+/TqBgYHY2NhkOKZQKFiwYAG3b99mzZo1lC1b9rNtcHFxoX379uzdu5c+ffp89jyfy6+//sqMGTM0dn11cuDAAXr16sWMGTNYtGjRZ88TGRlJuXLl6NSpE9u2bVOjhR9y+/ZtWrRoQcOGDTlx4sRnvb//Lfzd3NzQ0tL6aoQ/pEVJpHv9L126RFRUFCYmJkyZMoVZs2Z9MD79fnPnzh3q1q2Ljo4OSqUShUKBvr4+hoaGpKSkYGxsTOvWrfn555/FUN8vHDF//8vk+fPnDBw4kLt37zJ9+nRmz56do44sIiKFBVHsF0BS5QL+b1PxCUjBNyAFv6AUEpKUpKQKaP2/rVwJKy0cbXUpb6tDuVI6GBkUXoGfzgOfJH5eG4JC+XkF+HKLhLRNlCVjrPimgmY9/JUrV6ZJkyZs2LBBI9ePjo7OciPgzZs3pN82dHR0sLe3V9UFuHHjBt7e3ixcuJAJEyagp6ee5/HUqVO8fv0aOzs7OnTowJgxY/jzzz+xs7PDxcWFcuXKfXBO+gIts4VaamoqUqk0x2GaqampaGtrs3HjRkJDQxkxYsQHnj1BEAgLC6NOnTq8e/eOqVOnMm3atBwXcEtMTKRKlSrY29tz4cKFfF9sHjlyhG7dujF79mzmzZuXr9dWN66urrRo0YLu3buze/fuXD2XEydOZMuWLfj4+ORLr+XLly/Tvn17OnXqxP79+3MVWvz27dsMHn8tLS1atmxJjx49+O6777544a9QKLhz5w7nz59HR0cn0/ah6feL+/fv061bN968eYNCocDGxoa3b98CoK+vr4qMatCgAZcvX1brRqNIwUEU+l8eSqWSNWvWMH36dGxtbdm5cyf16tXTtFkiInmGKPYLAS9fvqRChQqsXLmS0aNHa9qcPOH1u1R+XPKeFLmgEaGfjkSSFtK/Yao19jaa2eGNjY3F1NSUzZs34+zsrBEbPkZycjKvXr3KcjMgJSVFNbZEiRKULVs206iA7AqLRYsWsW7dOoKDgwEYN24c3t7eXLhwgSpVqnD37l1Wr16Nubk5nTt3xsDAIFs1CLKziEvP5UxJSSEsLIyiRYuqdv7fvn2LTCbD2to60z7OCQkJ/PrrryxduhQbGxtWr15Np06dsr1wnDNnDr/++iuPHj3C0dExW+eoi7t379K4cWM6derEvn37CnUlYm9vbxo2bEi1atU4e/ZsrkTZ8+fPqVq1KgsWLGDatGlqtPLjHD9+nG7dujF48GA2b96sFvHxX+Gf3mouXfhbWFiowfKCTWb3gPS/BQQEMGjQIIyMjFi/fj1JSUm8evWKBQsWEBERQevWrTl69CiRkZGsXbuWgQMHauhRiHwODx48wNDQMNON4n8jl8sZMWIEkyZNonLlyvlknUhe4e/vz5AhQ7h27RoTJkxg0aJFaumkIiJSkBHFfiGgV69eHDhwgAoVKvDs2TNNm6N2FAqB0Uvf8yIoVa0V9z8XmRTsbLT5c2oxZLL839G/fv06TZs25eHDh4Uud0ypVBIUFMTs2bPZvn07tWrVwsHBAX9/f/z8/IiMjFSNNTc3Vwn/mTNnUrly5Q9EpZeXFzVq1ADAycmJmjVrcuzYMcLDw0lMTKRNmzacOXNG5e0cNmwYfn5+PHjwgCFDhrBs2TJu37790SKHnyIqKorFixfz6NEjypYti7OzM35+fvTo0YMBAwawY8eOj24c+Pr6MnbsWM6dO0eHDh1YvXo1Dg4OH72mj48PVatWZcqUKSxcuPCzbf8cgoKCqFu3LiVKlODatWuFuq1icHAwDRo0QF9fH1dX11x7rjt06MCzZ894+vSp2qJWssvOnTsZNGgQkyZN4vfff1ert/Ht27ccOXKEgwcPcuPGja9S+Kcjl8vR0tJi0aJF/PLLL+zYsYMBAwaojq9bt45ff/0VNzc3Ll68yIgRI1i+fDkTJ07UoNUiOaV169aYmppy8ODBj45LSUmhZMmS9O/fnxUrVuSTdSLqRhAEtmzZwk8//USRIkXYvn07zZo107RZIiL5QuF113wlPHz4UPVl9Pz5c27fvq1hi9TPwUux+LwpGEIf0gok+gWmsv9CjEau7+npib6+PpUqVdLI9XODVCqlVKlSbNu2jS1btvDw4UNSUlK4du0aERERRERE4Onpyf79+5k8eTLVq1cnODgYLS2tD4S+Uqnk/PnzADg4OLB8+XLWrFnDgQMHSExMREtLC3t7e9UGgo6ODtu3b8ff3x9LS0uSkpJITk6mfv36/PHHHygyK37xCVJTU/n9999ZtmwZ586dY/369cyYMYPvv/8eW1tbXFxcSExM/KjwKleuHC4uLhw5coRHjx5RuXJl5s6dm6FA4r8RBIHRo0dTokQJZs6cmWObc0NCQgJdunRBKpVy/PjxQi304+Pj6dSpE4mJiZw5cybXQt/FxYUzZ86wbNmyfBf6kNYdYs2aNSxfvpxff/1VrXPb2NgwZswYrl27RlBQEKtWrSIxMZFhw4ZhbW1N27Zt2bp1a4ZaHl8q6Z/lN2/eAGnpLPfu3SMqOgov7ye4P/QkPDmGm/dvU8K2JIBG3g8iuSMsLCxb7WJ1dHQYMGAAu3btyhC1JlJ4ePv2LR06dGDEiBH07t0bLy8vUeiLfFWIYr8AIwgCEydOVIkgmUzG8uXLNWyVenn9LpW/TkZp2oxM2X4qGv+3+f/lnt5LvbC3fXF2dubEiRNcuHCBFi1aEBYWhrm5ObVr11YVStuyZQtXrlyhYsWKH5yvUCh4/fo1AOXLl6dKlSpA2mLcxMQEpVJJ2bJlVYtyXV1dxo8fz8uXL7l//z6LFy8mLi6OyZMnIwgC0dHRORb82trauLi4ANC0aVPs7e05e/YsISEhfP/994SFheHp6QmganOYGRKJhK5du/L06VMmTZrE4sWLqVy5MqdOnfpg7IEDB7h48SLr1q3LV7GtVCpVrYdOnjyZL/noeYVCoaBv3748ffqUU6dO5bpdYGpqKj/99BPNmjWja9euarIy54wdO5Z58+Yxc+bMPKvnUbx4cUaPHs3Vq1dVwj8pKYnhw4dTrFixL174p3/flv+mMiVbVcerSCQ/XFtJx0tzGO27lYAuRaizfTgbtD1YnHyeWhsH42Ubx98vr/Ew/CVyZc43FUXyn/DwcIoWLZqtsc7OzoSFhXHixIk8tkpEnQiCwN69e6lSpQr379/n1KlTbN68GRMTE02bJiKSr4hivwBz7tw5rly5ohIoCoWCQ4cOqQTQl8CmY1EazdH/GAKw8UhUvl83L9t55Tft27fn6tWr+Pn54eTkxMuXL7N9rra2tsr7ra2tTWpqKpAWFp+QkIBMJqNcuXL4+PgAULVqVVXFeD09PUxMTNDT06N9+/bUqlVLVZQvp5Qsmea927FjB3PnzgXg5s2bqvQCd3d3ALKTEWVoaMiiRYt4/PgxZcuWpVOnTnTu3Bl/f38AYmJimDhxIl27dqV9+/Y5tjU3zJ49myNHjrBnzx7VYyuMCILA+PHjOXXqFAcOHOCbb77J9Zx//PEHPj4+rFq1SuPFun755RfGjx/P6NGj2bt3b55e69/C/+3bt6xevZrk5GSGDx+OtbU1bdq0YcuWLV+M8FcKSm6FPmfKrc0cLe5P6bHNKdaxOrpliyLRyaQwogT0i5vxVHjP+qcnGOO+jm6X5rPN+xy3Ht/L1j1BRDNk17MPUKlSJerXr8+WLVvy2CoRdREaGkrPnj3p168fbdu25fHjx3To0EHTZomIaARR7BdgMssBTK8i+iUQHCHP0GawoKFUwu2nSbwLk+fbNSMiInj58iV16tTJt2vmNXXq1MHd3R2lUkmDBg24e/duts8tVaoUAB4eHuzatYtbt26xY8cO5HI5hoaG2Nvb8+TJEyAtFNna2hpI86SHh4czf/58unbtipOTE8WLF2fx4sUf9cBnxogRIyhRogQbN27EyMgISGv9l55iEBYWBpCjjYTy5ctz7tw5Dh06xP3796lUqRLz589nxowZxMTEsHr16hzZmFt27drFokWLWLJkCV26dMnXa6ubFStWsH79ejZs2KCWDZOwsDDmzp3LsGHDqF69uhoszB0SiYQVK1YwaNAgBg4cmGl0SF5QrFgxRo0axZUrV3j79i1r1qwhJSWFH374AWtra1q3bs3mzZtVn4fChEJQcuSVKz0uLWTK7c14hnmrjkm1ZJ8u5ImAQJqwj0iOZZvveSb57eSbeT0ZMG44f//9d6F8Xr5UEhMTSUhIyLZnH9K8++fPnycgICAPLRNRBydOnKBKlSpcuXKFAwcOsHfv3mxv7IiIfImIYr8AY29vj729PaampgCqImRfSpG+U65xFPSGNlIpnHSNy7fr3blzB+CLEvuQlnN/8+ZN7OzsaNq0KWfPns3WeWPHjqV9+/aEhIQwbtw42rZti4eHB5DmJbexscHbO21hXrx4cQwNDVXnXrt2jb179xIdHU2PHj2YOnUq169f5/nz56oogezQvHlzevXqxZYtW1i6dClGRkY8ePBAtYBIF5Q59fhKJBK6devG8+fPmTBhAgsWLGD9+vX07NlTtcmRH7i5uTFs2DCGDBnClClT8u26ecHBgweZPHky06dPZ8SIEWqZc86cOSiVShYsWKCW+dSBVCpl8+bNdO7cmR49enDt2rV8vf5/hf/atWuRy+X8+OOPFCtWrFAJ/4C4EEa5rWXl4yOEJEUBaeI/NwgISGRSDGuVxP9bAybuWYKVtRW1a9dmxowZXL16leTkZDVYL/I5pEei5EQA9urVCwMDA7Zv355HVonklujoaAYPHkyXLl2oV68ejx8/pkePHpo2S0RE44jV+AsBu3fvZsCAASQkJKgKmeWm13JBIFUu0H1aELEJBdSt/y+M9CUcWlISHe2835pYtGgRS5cuJTIyslC3O8uK+Ph4evfujYuLC1u2bGHw4MGfPOfZs2dcunQJX19fWrduzfHjx9m6dSvW1tYEBQVhaWlJREQEM2bM4JdfflG1Vjt48CDDhg0jNjaWHTt20LdvX9asWcOxY8e4ePEi2tra2bJZEATMzc2JiclYsFFPT4+RI0eyaNGiXBfoUiqV1KxZEz8/P+Lj4+nSpQurVq3Czs4uV/N+ilevXlG3bl0qVqzIhQsXVG0FCyNubm60aNGCbt26sWvXLrV8fh4/fkz16tVZunQpkyZNUoOV6iUpKYmOHTty+/Ztrly5opaUhdwQHBzM0aNHOXjwIFevXkUikdC8eXN69OhB165dsbS01Kh9/0YhKDnkf4M/n51CQMi1wP8UVqkGSF1ec+3YOUJDQzEwMKBZs2a0bt2aVq1aUbFiRY2niHwtPHz4kBo1anDr1q0cdWpxdnbm8uXL+Pn5fZHfz4WZixcvMnToUKKjo1m9ejWDBg0SP08iIv9HFPuFgI0bNzJq1CjkcvkXc/O68yyRn9eGatqMbPPraEvqVc77YmnfffcdsbGxXLp0Kc+vpSnkcjmjRo1i8+bNLFiwgJkzZ+b4fa1UKgkLC8PKyorNmzfz6NEj2rVrR7t27VRj4uPj6dmzp6rAnqGhIYaGhkRFRTFmzJgctS+rUKECr169olmzZtStW5d69erRrFmzDJEEkJZzn5iYqEonyC6bNm3ihx9+4Nq1awQHBzNx4kTCw8OZOXMmkydPzpNq3zExMTRs2JDExERu3bqVo5DWgoaPjw8NGjSgatWqnDt3TrXhkxsEQaB169a8fv2ax48fF9iNkLi4OFq2bImfnx83btygQoUKmjYJgJCQEFU7v3Th36xZM3r06MH333+vUeGfqpQz795urr33yrdryiRSdKRa/F5nOMo3MZw/f54LFy5w48YNUlJSKFGihEr4t2zZskBtjHxpXLp0SfWZKVOmTLbPu3nzJk5OTly4cIGWLVvmoYUi2SU+Pp6pU6eyfv16vv32W7Zt24atra2mzRIRKVCIYr8QsGLFCubOnfuBZ7Ews/dsNH+dilZLu73IIHcenOgNQP1+ruib/BMCHfX2Fq/v/0FsiBepSREAlG+yiBKV+6vGyFPi8L+9nKh3t0mOC0KRmoCukQ1WZTtiW+NHdPSMGNTelAHtTXNv7CdI7+e7ZMmSPL+WJhEEgYULFzJ79myePn2aaTV+dfD06VNOnjyJt7c3FStWxNramsGDByOVSomJicHAwCBb87x+/RoTE5MP2re9ffsWb29vZDIZ33zzDf369cPMzOyDUE+lUklSUhILFiygSJEiODg4UKZMGRwcHEhMTMTR0ZEuXbqwbds2IE3ALViwgBUrVmBnZ8fatWtp27atWp4TSNtw6dy5Mzdv3sTd3T3Pnv/8ICQkhAYNGqCrq4ubm1uuW+ylc+LECbp06cLJkyfp2LGjWubMKyIiImjatClRUVG4urrmuvuAugkJCVF5/K9cuQKQweNvZWWVb7YkK1KZ7rmVO2G+qjz7/EKKBJlUxtI6w6htWR5Ia3d548YNzp8/z/nz53n8+DEANWvWpHXr1rRu3RonJye1bGCJpPH333/Tu3dvoqKiVGmS2UEQBCpVqkT16tXZv39/Hlookh1u3rzJoEGDCAoKYunSpYwaNUqMuBARyQRR7BcCFixYwB9//MG7d+80bYramLMpFLeHiSjV8O77mNh/83Arfh6L0TO2JTE6rRL8f8V+YswbPPY0QirTxcDMgeT496qNAQvbZtTouIMGVfVZ+GPeelrevXuHjY0Nhw4dolu3bnl6rYLCtm3bsLGxoVWrVvn2JR0fH09QUBAODg5IpdJse/dTUlIIDAzEx8eH58+f8+zZM/z9/Xnx4gUGBgY8fvyYSpUq8fLlS5KSkj44X6FQcOfOHVq2bElc3D91IPT09EhNTaVr165UrlwZBwcH1U94eDhjx47l8uXLdO3alZUrV6pFyE2YMIF169Zx5swZWrdunev5NEVCQgLNmzfn9evXeHh4qC3tITk5mSpVqlCmTBnOnj1bKCKq3r59S+PGjZFKpbi6uuY4uiS/CA0N5ejRoxw4cEAl/P/t8c9L4S9XKvjl7nbcgp/mu9BPR4IEbamM1Q1GUcXc7oPjb9++5eLFiyrPf0hICPr6+jRt2lTl+a9cuXKheE8WVP744w/Gjx9PSkpKjp/HZcuWMXPmTN6+fSsWfdMQSUlJzJkzh2XLllGvXj127NhBuXLlNG2WiEiBRRT7hYBp06Zx6NAhXrx4oWlT1EbPGUGcXFefpNhAbGv8iEKeQLDvCSQSGdblOuPQcBZSqRZKRTKv764n+MVxkmKD0NIxoYjdtzjUn4GOvgX+nit5dWfVB/MXc+xOxW+Xk5oUiVRLn5SEUDz2NAI+FPvJCSEE+xzFplI/tHSMUMiTeHCiNzHB9wFoNNQLq6LmHP6tZJ4+J+mexFevXhU4z1xe8vLlS0qVKpXtHHpNkJycTP/+/Xn79i1BQUFERESQkJCAUqlES0sLuVxObGwsW7du5eXLl8yfPz/LXr6CIBAaGoqfnx9nzpxh4cKF1KtXD5lMhp+fH8HBwaqxRkZG2Nvbo6enx7Nnz1R2TJkyhXLlyqGlpZXjx7Jx40Z+/PFH1q9fz6hRoz77OdE0CoWC7t27c/78ea5fv67WfPVly5Yxbdo0vLy8qFSpktrmzWtevnxJo0aNsLKy4urVq5iZmeV4jmRFCi9i3uETHYhvTBBxqYmkKOVIkKAj06KIrgmOpiVxNC1FKSNLZJLP36RLF/7pHn9BEPJU+P/x9CT7X17RkMz/BykS9LV02d1sGkX1su75rVQqefTokUr4X79+neTkZIoXL54h5L+gbuwUVObPn88ff/zB+/fvc3xuSEgIJUqUYPny5YwbNy4PrBP5GPfv32fAgAH4+voyf/58Jk+eXOhrWImI5DWi2C8EjB07luvXr/Pw4UNNm6IWEpKUdPwpEPfdTiTFBiKRaiPTNkSmpUdyfNqXr2PTJdhU6sPD04OJCLiCRCLDwKI8SbGBKFJiMTAvR+3upwj2Ocobry0kRKZthBgVrYRUqkuR0s2xqz1edc107z18KPYzw8d1DkGPtoNESuOhj9DSMeLY7yUwMcy7L5VffvmFjRs3Ehwc/NV5bRQKBRKJpECH4JUpU4ZXr16hq6uLqakpJUqUwNHRkRo1alC2bFk6dOiQo1Db1NRUatWqhaGhITdv3lQ99ri4OF6+fImfn1+GH19fX16/fq3q3S2VSrG3t88QCZD+U6ZMmQ/qCUBarmqbNm0YOXIka9euVc8TowEEQWD8+PGsX7+eEydOqLV/ckhICOXKlWPgwIGF8jl6/PgxTZo0oWLFipw/fz7T98F/iU6Jx+WNJy6BnryKfY8SAQkglUhRCv+0lZMgQSaRIP9/MTsdqRZVzO3oUrohjYtVQVua882ndEJDQzl27BgHDx7k8uXLCIJA06ZNVcI/t4L2ceQrRroVnLa1MomUepYVWFLHOdv3+8TERG7cuMGFCxc4f/48Xl5pNQdq1KhBq1ataN26NY0aNcqTGh9fEuPHj+fSpUuqlImc0q1bN168eMGDBw++uu9qTZGamsqSJUuYP38+VapUYefOnVStWlXTZomIFAo+/5tZJN+Ii4vL1oKtsBCflDFRX9ewGHV6nEEi08FjbxNS4oOJDHJD38yeiIC0MM8anfdhZlOP5PhgPPY2ISHSl2DfY9hU6oO+qZ0qjL9Km00Zwvg/h5SEMEJfphV1sy7bCS2dtN7qCUkCJnn4Mty5c4c6dep8lYsHmUyGXC5HKpWSkpKCtrZ2gXsenJ2defr0KY0bN6ZatWpUqlQpU8+pQqHIVnrAmjVrePr0KXfu3MmwyWFkZES1atWoVq3aB+ekpqZy8eJFldc5/TxXV1d27NhBQkKCamyxYsUybADo6+uzYMECmjRpwooVKz7zWSgYrFq1irVr17Jhwwa1Cn2AWbNmIZPJmDt3rlrnzS+qVKmCi4sLLVq0oHv37hw/fjzL4oLPo95w5JUrF4LuoRCUGULbBT5sQScgIP+XfyBFKedBuB/3wl9gqmPId6Ub0tm2AVb6Zjm229LSkuHDhzN8+HDCwsJUHv+xY8cyZswYmjRpohL+xYoVy9HcyYoUFtzfg1QiQVlA/BsKQcnNkKdcCLpH65LZi0rR19dX5fH//vvvvH//XhXyv2vXLn7//Xf09PRo0qSJyvNftWrVAncv1TRhYWG5CsF3dnamQ4cO3L17l9q1a6vRMpHMePbsGQMHDuT+/ftMnz6dX375pcAWTBURKYiIYr8QEB8f/0WJ/ZTUjIutonat0NJNC2XUNy5FSnwwKQmhxAY/UI25f7znB/PEBN/HpmJvtdqWGP2ah6cHkRIfjGmx2pRvsjhLu9WJIAh4enoyZsyYPLtGQUdLS4uYmBhcXFwwNTWlcePGBep9P2PGjA8WzVFRUdy8eZOzZ8/y/v17Dhw4gEQi+eTiWhAE4uLiGDNmDDVr1sy2Ddra2rRr1462bduyf/9+Jk2ahKurK7/88gsTJ04kMjLyg4gAHx8fTp8+reotfeXKFYoWLaoqEPjfn1KlShXosMhDhw4xadIkpk6dyo8//qjWue/fv8+WLVtYvXp1oc7HrVevHsePH6d9+/b079+fffv2ZXhNY1MSWPP0GGcD7yCTSHPVdk75/w2C6JR4dvleZO+Ly/xQsSPd7Rt/doh/0aJFMwj/dI//uHHjGDNmTAaPf3aE/xbvs7xLiNBYnn5WSIDljw/xTdFyFPlIOH9WFCtWjP79+9O/f38EQeDx48eqkP9Zs2YxefJkihUrRqtWrVQ/Od0o+RIJDw/PVfeRNm3aUKJECbZu3SqK/TxEqVSyatUqZsyYgb29PTdv3sxRq0QREZE0RLFfCPjSxL5MmlEIpQt9AEkWYaAmVh8KIh0D9RbMi35/l0cuw0hNiqBI6ZZUbrUOmfY/7fZkeRhh/urVK8LDw7/6hYOJiQmdOnWiT58+dOzYkY0bN+Ls7KxpswCQSCT4+fnh4eHBxYsXcXV1xc/PL8OYhISEDyr8C4LwgfiXSCTMnDkz00J+2bWlT58+dOjQgXnz5jFr1iy2b9/O2rVradWqFU5OTqqxKSkptGnTBi8vL7Zv305KSkqGzYADBw4QEBCA8v+tMbS1tbGzs8syPUBfP+9bUGbFzZs36d+/P7169WLx4sWfPiEHCILAhAkTqFChgto3ETRBixYt2L9/P927d+fHH39k06ZNSCQSbgY/ZcnD/USnxAMfeu9zgxIBpaBg3dPjXH77gFk1+lLKKHf36aJFizJs2DCGDRtGeHj4B8I/3ePfrVu3TIVsVEocB/2vFzihD2nRE0mKVA76X+fHirnr+CCRSKhatSpVq1Zl0qRJJCUl4erqqgr537VrFwDVqlVThfw3btxYo59nTREWFparujgymYzBgwezdu1ali9fnu2uLiLZ5+XLlwwZMoQbN24wYcIEFi1a9FW+V0VE1IEo9gsB8fHxlChRQtNmqA0d7eyFFBpbVVf927bWKCzt06qGK5VyIgNdMTBzAECm9c8XgFKe+Fk2hfid5tmliSgVyZSoOphyTnOQ/McrlV27P4c7d+4AUKdOnTy7RmHBwMCAw4cPM3bsWIYNG0ZgYCCzZ89WCWa5UsGruPd4RwXiHR3I8+g3xKTE/6uImDaWeqZUNCuFo2kpHE1LYmNQRC2hrP+t+KulpYWenh4JCQm0bt2a+Pj4DxZ+WV1XKpViZGSUK3tMTExYvnw5Q4YMYfTo0bRu3ZoePXqwYsUKSpYsiSAIjB49Gjc3Ny5dukTjxo0znSclJYXXr19/EBVw9epV/vrrLxIT//lc2djYZLoR4ODggIWFRZ6FDPv6+tK5c2fq1avH9u3b1V7f4fDhw1y/fp2zZ88W6GKROaFr16789ddfDB48GDNzM6z61+FEgAcSJHkufr2j3zDw2lKmVu9J25Lqua8VKVIEZ2dnnJ2dMwj/CRMmMHbsWBo3bqwS/sWLFwfgdMDtAhO6nxlKQcnx1+4MLd8WHZn6lmR6enq0bNmSli1b8ttvvxEcHMylS5c4f/48e/fuZfny5ejq6tK4cWNVakDVqlULdN0UdZHbMH6AoUOHsmjRIg4dOsTAgQPVZJmIIAhs2rSJSZMmYWlpyZUrV2jatKmmzRIRKdSIBfoKAXXq1KFmzZps2rRJ06aoBYVCoP3EN1zfnlagz672BOzrTATg/vFeRL31wMymPjW7/M3DUwOJeHMNIE3cS6QkxwahkCdQo/N+zEs0IDUpErcddRCUqegYWKJnVJJSNYZj5dCB0Jcu+Ln/iiAoSIoNBEBbrwhaOkaYWNegUss1JMcHc3NnPUBAItXBuGjlDPaWb7IAM+uqnFlVCm2tvBEyP//8M/v37ycgICBP5i+MCILAr7/+ysyZMxk2bBgTlszkxBsPLr69R4pSDvDREOR/HzPVNqRz6QZ0Kd0Aa/3P78PevXt37t+/T7169ShXrhxlypQhKiqKw4cPExUVxcqVK2nRogUKhSJD2HRm3n11IwgCe/fuZfLkycTGxjJ79mwApk6dyvbt2xk0aNBnz/vu3bsPNgLSf9LTAwBMTU2z3AgoWbLkZwuJ0NBQGjRogLa2Nm5ublhYWHzWPFmRlJRExYoVqVy5MqdOnVLr3AWBFatXsSXkMkXql02LHc9nxlX6jh5lmuTZ/OHh4Rw/fpyDBw9y8eJFFAoFjRs3pluP7lwuF0Z4amyeXVtd/FKjX7Zz93OLIAg8ffpUFfJ/9epVEhMTsbKyyhDyb2Njky/25DfGxsbMmzePn376KVfztGjRArlczrVr19Rk2ddNUFAQw4YN4+zZswwfPpzly5djbGysabNERAo9ome/EBAfH59rD2BBQiaTUMZGm+vZGFul7SYC7v1B8IsTJMYEINM2xMC8LBa2TTG0cARAW8+cco3m8vreepLj3pGSEEpKQigA8pQ4EmNeZ5gzNSmc1KRwdI3SPD9KRQr838slKFOICbmfYbw8JQ47G+08E/oAnp6eX30I/3+RSCRMnT6NBHt9Tgff5Uf3NR+I+4+FIP/7WHRqPHteXGL3i0s0tK5EL/um1CxaNsc2/frrrwQHB1OyZEnMzc0xMjJCJpPRsmVLqlatyurVq2nRokWmjyWvkUgk9OvXj44dOzJ37lymT5+OUqmkV69eny300+e1sbHBxsYm08iA6OjoTDcBbt26xZs3b1TdA3R0dLLsHpDeXjAzEhIS6NSpE7GxsXh4eKhd6AOsWLGCwMBAzp49q/a5NY1cqSCkoTFF3mtG6AOseXoMqURCN/vMI0tyS5EiRRg6dChDhw4lIiJC5fFfsGs1FX7pnCfXVCdSJBx+dSPfxL5EIqFy5cpUrlyZiRMnkpycjJubmyrkf8+ePUBascf0kP8mTZp8EeHqycnJxMXFqaUmh7OzM/369cPX11fs854L0jeqx4wZg76+PmfOnKFdu3aaNktE5ItB9OwXAkqXLs3AgQNZsGCBpk1RG6v/juCUaxwKhaYt+TQyKbRvaMTEvuoXGZBWhMbMzIzp06czffr0PLlGYSQgLoRFD/byNCoACagt6Dh9w6BtydqMq/Qdxjq5W8C+fv2affv2MWfOHIoUKcLbt2/VZOnn4+XlRf369TEwMCA8PJyePXuyYsWKfE8HSk5O5tWrV5luBrx8+ZLk5GQgTXyUKFHig00AOzs7Fi5cyOXLl7l27VqebIi9ffuW8uXLM2LEiELfpSAzljz8mzNvbhWIjPW5tQbQwib7BSlzy2LPPZwLvqcqIljQOdN6Ya7vR+ogNDRUFfJ//vx5goKC0NHRoVGjRqqQ/+rVqxfKkP+3b99SokQJTp06letOHomJidjY2PDjjz/y66+/qsnCr4vQ0FBGjhzJ4cOH6du3L2vXrs2TDV0Rka8Z0bNfCPjSCvQBlLfVKRRCH0ChhHK2edfmxcfHh9jYWDFf//8oBCUH/a+z8dlpVV6xOpfq6R7/84F3uRXynGnVe9PQulK2z3/w4AEeHh54eHhw7949fH19VaK1bt26xMbGajT0MDg4mE6dOlGhQgWuX7/O0aNHmTJlCo6OjsyZM4fx48fnW9siXV1dHB0dcXR0/OCYUqnk7du3H2wCeHl5cfToUSIjI1VjDQ0NGTlyZKZRATY2NrkSHTNmzEBfX1+V9vAlce2dF6ff3NK0GSp+e/g31cztsfyM1nyfg19icJZCP8rrDY9nHQIBSg90olSPtCrfgkKJ19S/ifV+j66lMTXXDiBgrzvRT4JIDolBmZyKTlFjLBs7UuL72mgZ/PNZ8tt4hejHgSQEhINSQNvMgHq7fsi2vd4xgdQuWj53D1oNWFpa0rt3b3r37o0gCDx//lwl/OfPn8+0adOwtLSkZcuWqhZ/haWuUHrakTo8+/r6+vTr14/t27ezYMECtLTEJXVOOHbsGCNGjECpVHLw4EG6d++uaZNERL5IRM9+IUBfX5+lS5cyduxYTZuiNoJCUxkw552mzcg22+cUx9Y6b4p27dq1i4EDBxIREYG5+efnk38JJMiTmOa5lfvhfp8erAbSC5X1KtOUURU7Ic1Gq7C6deuqCipCmqC1tramZs2azJs3j2rVquWlyR8lKSmJ5s2b8/r1a27fvk3JkiWBtBaBc+bMYd26dTg6OrJ+/XqaN2+uMTuzw+LFi5k5cyZDhw7FwcEhw4ZAUFCQKj1AT08vy/QAOzs7dHV1s7yGp6cndevW5c8//+SHH7IvygoDUSlx9LuyhNjUhALj15ZJpHxTtBzL6o7I89QWuVJBK5dpyIWsd5Vfbr7K2xP3kWjJqLGiD4b2lrz5+xavd98ECVRZ1B09KxPuDPsLibYMg5IWJIfHIY9JK1hp/o0dled2Vc3n3vsPpFpp95DU6MQciX0pEkZU6EC/st/m4lHnPcnJybi7u6vy/e/evYsgCFSqVEkl/Js2bVpgHRQKhYJz585Rp04dLC1z39Hn/v371KpVi+PHj9O5c8FPGSkIREVFMX78eHbu3Ennzp3ZtGkT1tbWmjZLROSLRRT7BRyFQoGWlhZbt25l6NChmjZHrUxcGcwjv2SU6uv8pHakEqhURoc1k/KuN/G4ceNwcXHB19c3z65RGIhJiWeix5+8iHmrkbDbdiXrMLV6r0/2Bp85cybLly+nRo0aFCtWDAcHB6pVq0bjxo0pU6ZMPln7IYIg0K9fP44ePcr169czjRR5+PChqjp/nz59WLZsWYEswnXkyBG6d+/OlClT+O233z44npSUhL+/f6bpAf7+/qSkpABp6QGlSpXKso1ghw4diIuL4969exkKKn4JzLm7k6vvvVCqsbWeuphWvTcdSuVtv2zf6CCG3lj+0THKFDn3J+wh8U0EBnZFKTe2FV5T/0aQK7HpUosyw5qSEhlPyJVnFGtbDS0DHZQpch7NOESsd9pmdf19I9EySqs3kRwai66lMT4rzxFy+WmOxX7T4tWY/83n19fQBGFhYVy+fFnl+X/z5g06Ojo4OTmp8v1r1qz52dE3giCQmpqKjo4Or1+/ZujQoZQvX54ffviBGjVqfNacCoUCqVSqtg2nb775hpIlS3L8+HG1zPclc+HCBYYOHUpMTAxr1qxh4MCB+VLTRkTka0aMOSrgxMen9UIuqLvkuaFrM2Me+iZr2oyPohTg+2Z5G5Lt6en51YfwJ8iTmHhrI36x7zSWX+sS6ImWRMaUaj0+uvgYMmQIjo6O1KhRAzs7O0xMTPLRyqxZsGAB+/bt48CBA1m+n6pXr87169fZtWsXP//8M46OjsydO5dx48YVmHZz7u7u9OvXj549e2aZB6unp0fFihWpWLHiB8cUCgVBQUGqugDpmwD379/n0KFDREVFZRhfoUIFBgwY8MFmQPHixQvtIvR++Asuv3ugaTOyZM3jo3xbvDr6WllHXeSWgPiQT46R6mjh+FNbHk7eT8KrMB5NP4AgV2JQygK7gU4A6JgbUvL72hnOMSpnnSb2pRL4l4jVtfz87wolAi9iNF/vI6cULVqUnj170rNnTwRBwMfHRyX8Fy9ezIwZMyhSpEiGkP9SpUp9dM707iWpqaloa2ur0o7u37+Pq6srV65cwdramho1aqBUKnO8kaDujT1nZ2fGjRvHu3fvVC0fRTISFxfHzz//zIYNG2jRogV//fUXtra2mjZLROSrQBT7BZwvWew7VdPHzFhKVGzB8zylY2okpUKJBIKD49DS0lL9yGQytLW1c71oSE1N5cGDB/Ts2VNNFhc+lIKSWXe28yI6SOOFtE6+8cBS35Qh5dtkOaZs2bKULZuxkn96gJSmxOGBAweYM2cO8+fPp0ePHh8dK5VKGTRoEF26dOGXX37h559/5q+//mL9+vU0a9YsfwzOAl9fXzp16kTt2rXZvn37Z3kDZTIZtra22NraZpqqEBERwePHj+natSvFihWjXr16vHjxgmvXrmUorqivr0+ZMmUyjQooXbp0vtU9+BwO+7t+tC2lpklQJHMh6B6dSzfIs2skyVOyNc6orDWletUlYK8HyhQFSCWU/6ktUp3Ml0cpUQmE30yLwrJs7JghZz+3JCtS1TaXJpBIJKoaHWPHjiUlJQUPDw9VyP+wYcMQBIEKFSrQunVrFi9enOnaRiKRcPfuXVatWoW3tzfNmzdn3rx5uLm5IQgCJUuWpFWrVgCkpKSgo6Oj0WKBffv2ZdKkSezcuZOpU6dqzI6CiqurK4MHD+bdu3esW7eOkSNHFsrijiIihRVR7BdwvmSxL5NJ6NXShI1HozRtSqZIgErF3lC8eMNMj+vp6eHl5ZWrljtPnjwhKSnpq/bsH3/tjmeYj6bNULHN5zwNrSvjaFoyyzHpnqd0PiXy/ztendy+fZtBgwbRt29fZs2ale3zzMzMWLt2Lc7OzowaNYrmzZvTt29fli1bphHvVFhYGO3bt6do0aIcP348y1Z8ucXCwoLLly8TFxfHyZMnM6ReJCYm8vLlywwRAX5+fpw+fRp/f39SU9PEmFQqxdbWNtONAAcHB40WaAxLiubG+0ca3zj7GBLg0KsbdLKtn2efixSlPNtjE99G/fOLUiApJAajsh/mECe+i+LJ3KOkRMRjUtEGh1EfttnMDak5sLkwoKOjQ5MmTWjSpAkLFy4kIiKCS5cuceHCBe7cuZPlusbT05MOHToQFhYGwJ07d4iMjMTX1xeFQkGxYsWoWTOtq8O/7xOCICAIQr4LSTMzM7p168bWrVv5+eefC21EkLpJSkpi9uzZLFu2jAYNGuDi4iK2KBQR0QCi2C/gfMliH6D7t8Zc9Izn1dtUFAXICSWTgm0xbab/UIPty20ybadmaGiY63xnT09PpFKpauHytfE2IZx1TwtWnqNEImHB/T1sazIJbWnmt8jsLObSBf7JkycpUaIEtWrVUrepvHnzhi5dulCzZk22bt36WYvMGjVq4Orqyo4dO1Sh/fPmzWPs2LH5Vl06MTGRzp07ExMTg7u7e562Xnrz5g1Lly5l4sSJH9RY0NfXV/Uf/y8KhYLAwMAPagR4enqyf/9+YmJiVGMtLS2z3AiwtrbOUzFwMsAjz+ZWFwLgH/ueJ1GvqWJulyfX0JZmL+oqzM2X0KvPAdC1MiE5JIYX6y9hUtEGHfN/vndjnr/l6YITyGMSsahbBscp7ZHpqTf1RSubNhdWLCws6NGjBz169FAJ8/9+FhITE9m4cSNhYWFUqFCBESNGoKury4IFC4iJiUEQBJycnEhMTMTIyIh+/fqxaNEizM3NMTY2zjCfUqlUXSOvNwCcnZ3Zs2cPN27coEmTJnl6rcLAvXv3GDhwIL6+vixZsoRJkyZ9cXVRREQKC6LYL+B86WJfJpMwfVARfvj1vaZNyYAgwPRBRTAy1OHq1atUq1aNpKSkDGMmTZqU69fF09OTSpUqfbGv78dQCkp+fbCvwIUaKwUlAXHB7PC9wDDHdp81hyAIREREsHPnTvbs2UN8fDz37t1DX19fbXbGxcXRuXNndHR0OHr0aK484VKplCFDhvDdd98xa9YsJk+erArtz+uFq0KhoH///jx48IBr167leZHDqVOnYmJiwsyZM3N0nkwmo3Tp0pQuXZpvv81YMV0QBMLDwzMtGHj58mXevfun84ihoWGW6QG2tra5rp1wKuBWgfbqpyOTSDn7xjPPxL6e7NPh9SmR8bz44xIA5rXtKTe2JffG7EIek8iLdRep9EsXAMLcfPBZcRZlioLiHWtQZngzJFL1b9joZsPmL4WsNrwCAgLw8EjbsBo8eDBjx45FJpPx7Nkz1q1bh6GhIS1atOD69etAWjHP+Ph4njx5gr6+PsuWLaNly5YoFIoPxOV/Nxf27NlDQkIC7du3z3XrwKZNm+Lg4MDWrVu/arGfmprK4sWLWbhwIVWrVuXu3btUqVJF02aJiHzViGK/gJMu9o2MjDRsSd5RpoQOgzqY8tfJaE2bAqSFmA5ob0rZUmkLr3LlyrFx40YGDfqnSrJEImHx4sUkJyfz008/fXaRtjt37ny1Ifw3g5/yIOKlps3IFAHY9eIi35V2oqhezl/bu3fv0qdPH9zd3Wnbti01a9ZkxowZrFy5Ui32KZVK+vfvz4sXL7h586ba2haZm5uzfv16nJ2dGT16NE2bNqV///78/vvvFCuWNx0ppkyZwrFjxzh69GiefxZu3rzJvn372Lp1q1pD7SUSCUWLFqVo0aLUq1fvg+MJCQkfpAb4+flx/PhxXr16hVyeFr6dvqGQVfeAT30PRCbHEZIUlSPbs91vft0AtAzSCurJE1J4MH43Se/T7tkOo76leLvqObquQlDiFeGfo3NyQknDT7dV8117AXlMIlrGepQb2xIdCyPKjmrB899OE3H7Je/PP8b8Gzue/3YaBJBoyYjzfY/Xz/tVczj8+K0q5N9r+kFSwmNJjUprzZcak8idEX8B4DipHcaOWafHSJFgbyS2H4uJieHp06cANGjQALlcjkwmIyIiAkgLmXdycmL06NFAWiTA8+fPkclkhIaGAnD16lV+/vlnSpYsSYMGDWjXrh1VqlRBIpGoBH9iYiIHDhzg5MmT1K1bF3d391xF3EilUoYOHcrChQtZs2YNpqamuXwmCh9Pnz5l4MCBPHjwgJkzZzJz5swCXdtERORrQRT7BZwv3bOfTp/WJjzxT+b2kyQ02QxSKoFvKujRr21GgTdgwADOnj3L33//jVKpZPny5QQGBrJkyRLWrl3L1KlTGTNmDAYGBtm+liAI/Pbbb5ibm6v7YRQKDr9yRSqRoCyo3T8FOBXgweDyrXN02rNnz6hTpw6bN29WCcAlS5YwceJEOnXq9IFX+HOYPn06J0+e5MSJE1StWjXX8/2XWrVq4ebmxvbt25k6dSonTpxg/vz5jB49Wq2h/atXr2blypWsW7cuWz2qY1Li8Y15S0xKAinKVCRI0JVpY65rTFkTGww+Ut1dqVQyfvx4atWqxeDBg9X2GLKDgYEBVapUydTDJZfLefPmzQcbAe7u7uzevZu4uDjVWGtr6yzTAywtLfGJfpNj28yqlcKmU03enrhPwF4PLGrbY2hvSeAhT2K934MEyk1soxL6AC83XlYJ/dzwOj6YZEUqujL1d4IoY1z8o0UK3597RKRn2maDw8hv0bFI20gp2qg8lrf8CL36HP8t1zCrXor0QAlBrkh7Tv6FPPGfQoDJITEkh/yTzoFSIOld2vOkSPlEPr5EQgWzj1ep/xpI3/gyNTUlICCAxo0bExUVhbu7O5DWPcPc3JzTp08D0LlzZ/bs2YOhoSG+vr44ODgwefJk7ty5w507dzh27BhTp06lQ4cOrFy5UlVcVV9fn7Vr19KuXTsMDAyQSCQoFIpchfwPGjSIX375hf379/PDD9lrufgloFAoWLlyJbNmzcLe3h53d/ev1okhIlIQkQhCQV1pi0BamFn//v1JSEhQawhwQSQlVeDntSE89ktGqYF3pVQCFe11+H2cFXo6H37Zx8TEULVqVaRSKT4+PmhraxMUFMSiRYtUwu7IkSPUr5/9olNKpRKJRPLVFfQJjA+lz5XM26oVJMx1jDnScnaWubSCICCXy1Wh16mpqdSoUQNTU1NcXV1Vi0alUknLli158eIFjx49ypXXZ/v27QwZMoQVK1YwceLEz54nu0RERDBr1iz+/PNPqlatyvr162nUqFGu5z169CjdunVj0qRJ/P7775mOCUmM4uLbezyNDOBp1GtCk7IWmBLAxqAoVcztqGxempY2NTHW+WfzbceOHQwePJgbN26oxf78QBAEQkNDM00P8PPzIzg4WDXWyMiIikO/Ra+lA0IObyfZ6TefTugNb7yXnqFoo/KEuaYV1vwcz346mxpNoKJZ3rTgGnTtd17Gvvv0wALCsrrDqWf1YTvJr4nw8HAGDRrEmTNnqFSpEp06dcLHx4ejR4+io6PD7Nmz6dOnj6r+xcaNGz/YKPT396dkyZK8f/+eq1evMnv2bF6/fs1PP/3E/PnzMTAw4NixYzx79kwVefVf/l1TICffzx07diQkJITbt2/n+rkoDPj5+TFkyBBcXV2ZOHEiCxcu/OLXqiIihQ2x90UBJz4+HolEkmeVqQsSOtoSloyx5JsKeuS39pVIoEZ5XZaOzVzoA5iYmHD37l1u3rypEnclSpTgjz/+wMfHhzZt2uQ43UIqlX51Qh/SKvBLJQX/9hOZEsvN4CdZHpdIJPz999/MmTMHgJUrV/L8+XM2bNiQwTsklUrZvn070dHRjB8//rPtuX79OiNGjGD48OFMmDDhs+fJCRYWFvzxxx/cvn0bPT09GjduzKBBgzIIzZzi4eFB37596d69O7/99luGY4IgcCfUhxmef9H90gI2PjvNjfePPir0Ic35GpQQxsW391j5+DBdLs7lt4d/4x0dSFxcHNOnT6dXr16FRuhD2vvLysqKBg0a0L9/f+bMmcPOnTtxc3Pj/fv3xMbG8vDhQ44cOcKcOXOwrGL3WddJ7zcvkUmz7DcPkBway4v1lzAqa0XpAZl3KckpvtFBapknMyqbl0ZWCO4z6ZQ3FT37RYoUYcSIEZQvX56nT59y+vRpXF1dgbQIx1atWnH27FkAKlasmKG6e2pqKlevXmX69Ok0adKEZcuWYWFhQadOnQDYt28furppESoXLlxg5syZNG/enNevXwOwe/dulUhP9/Dn9PvZ2dkZT09PvLy8cvdEFHAEQeDPP/+kevXqBAYGcvXqVZYvXy4KfRGRAogYxl/AiYuLw9DQ8KsRhHo6UhaOtGTjkUiOXI1DKiFPvfzp83dubMTIbuboaH/8eS5atGimf7e3t2f79u152mLtS+Jc4B2UBawwX2ZIJRIuvX1Ak+LVshzj5eXFvn37cHZ2Zt68eYwbN47q1T/0ctra2rJmzRoGDx5Mly5d6Nq1a45s8fPzo2vXrjRq1Ij169fn+/usdu3auLu7s3XrVqZPn87x48dZsGABI0eOzFFov5+fH506deKbb75h586dGTZF7ob58rvXQYISwpBJpAgIOS41lx62naqU4xLoyak3tzCJlZJoCEuXLs3hbAUbIyMjqlWrRrVqae9P/5vr8PrMOhif6jcvKAW8V5xFUChxnNweiSz3IlomkRKTmpDrebKirqVjoehOIEGCvXExzHW/3No8OaFz58507twZPz8/IE2E//rrryiVSqpXr87YsWOBtE4i/64l4ubmxoQJE1RC+9atW6xdu1Z1ryxZsiQymYz379/z8uVLZDIZrVu3pnTp0sjlcgYOHAjAmjVrMDMzQ1tbm6ZNm+aoXknHjh2xsrJi69atrF69Wi3PR0EjMDAQZ2dnzp8/zw8//MDvv/+u0XajIiIiH6fwbHl/pcTHx3/x+fr/RVtLwpieFqycaEVRM1meefmlEihiJmP5eCvG97b4pNDPDqLQ/zThSTFEpsRleTzK6w2unVfi2mklbw7+EwopKJQ8nLwP104r8Ry6BXlCMu9cvPD6+W9udl+La6e0cxLeRGSYL/51GD4rz3H3x+2491yPe6/13J+wh/fnH3/SVqUg8CTy1UfHODk5ERgYyIgRIzAzM2PevHlZjh04cCDfffcdI0aMyJFnPCoqio4dO1KkSBEOHTqU64rtn4tUKmX48OF4e3vTu3dvxo8fT+3atXFzc8vW+WFhYbRr1w4LCwuOHz+uilhKkCez3OsQEzw28C4hHEAtXRrS54gxVFB1RW+upfggVypyPW9BJVmR8ulBHyGzfvPpvD1xn5jHgZQZ3gz9EuqpMyJBQrIiVS1zZUYj6yqY6xR8AS0g0N2+sabNKHCk16OYM2cOCQkJqqi6yMhIIG0D9d8pUX5+frx69QqAEydO4Ofnx9ChQzEzMwNQVcn39vbGz88PQRBUIfzXrl0DQEdHh1mzZuHs7EyfPn2oXLkyu3btyrbN2traDBo0iN27d5OcnJzbp6BAIQgCu3btokqVKjx+/BgXFxf+/PNPUeiLiBRwRLFfwPkaxX461cvpsW12cbo2M0YmTRPn6kAqSfvp1NiQ7b8Up6bjl58iUZDwjg786PH0gmEAAXs9iPdPq7CcWcGwyLuviHsZgrZp1oUR43yDCbn8lNToBPSKmSLIlcT7hfBi7QUCD3t+0t7gpChiU7L2PjZsmBbOfO7cOVauXPnRzgwSiYSNGzeqRHN2SqbI5XJ69epFcHAwp06dytMe9NmlSJEi/Pnnn9y6dQttbW0aNWrEkCFDCAkJyfKcxMREunTpQlRUFC4uLhQpUgSAh+Ev6X91CScC0gpw5UnbOKkEQQKbnp/hB9dVBMRlbWdhRsLn3yT/228e4MX6S6REphWJTf8cvtx8lZs91nFv9E7VuS83X+PhlP3kHCEXFn8aLamMrnZOSPP0KrlHX6ZDS5sP88ZF/kEqlVKxYkUkEgne3t5ERkbSv39/pFKp6j5ap04d1Ubopk2buHjxIkqlUiW6W7RoAcCDBw8IDg7G3Nyc+vXrA3Dy5EkgLV1v/PjxnDlzhiZNmhAZGcmOHTtyJNyHDh1KREQEx44dU9fD1zghISF069aNgQMH0rFjRx4/fkzbtm01bZaIiEg2EMV+AedrFvsA+rpSxvQw5+/FJRjSyRQLk7S3bE4jSNPHW5hIGdzRlIbWB5k8oBinTx1Rs8Uf59/i7mutjekd/eaTebR2gxqhX8oCQa7Ae8VZYn3eE7A/LRzXpnMtzKqm5bY6jPyWBn+PxrZP/Szn0rU0psK0DtTb/SM11/Sn1oZByAzT8jZD/i9uPmlzTNYbFIaGhmhpaVGqVCl69OjxybmsrKzYtGkTJ0+eZPv27Z8cP2HCBC5fvsyhQ4coX758tuzNL+rUqYOHhwcbN27kxIkTODo6sn79ehSKjN5zpVLJgAEDuH//PidPnqRMmTIAXHvnxXiPPwhPism33vB+se/4wXUV3lE5r1xf0Pncqvb/7Tdf/fdeaBnrqfrN/xtlUmraT/I/1eWFVEWG37OLkAubs0sn26zvDQUBmURKR9t66H+kk4TIh5iamqrS6tIj6ipUqMCECRMwNjbm1KlTrFixggsXLpCQkEDRokWpU6cOgiDg5eVFXFwcdnZ2Ks/++fPnAejduzdjxoyhRYsWqvuUUqnk7du32batQoUKODk5sXXrVnU+ZI1x9OhRqlSpwo0bNzh06BC7d+/+arsIiYgURkSxX8D52sV+OhYmMvq1NeXvxSVY8GNR2jc0wqGk9gei/7/+G5kUHEpo066hEfNHFOXvRSXo384UmRCHXC6nR48eTJgwId/C7SQSCdHR0aoq/F8jfjHvPtluL7sFw3SLGH0yd9isui1FncqrxulZmaBrmRZ2KNXOvMp+BluQ4BeTdUXvFStWIAhCjmprdOnShSFDhjB+/HhV2GlmrFu3jvXr17N+/Xq1tOzLC2QyGSNGjMDb25sePXowZswY6tSpo2qVBTBlyhSOHDnCvn37VH3oL729zy93d6AUlPkm9CEttD9BnswY93U8iwrIt+vmB0V0TT7Li51Vv3lA1W++/MQ2NDo5UfVTe8tQ1fkOo76l5pr+Ob6uQlBilsdh9kX1TOloW7/AevdlEik97Zt+eqDIJ9HR0WHmzJlER0fj5eXFwYMHGTFiBABlypShSJEivHz5El9fX6RSKTVq1MDMzIyQkBCeP3+Ojo4OderU+Sfq6OFDIG1DN6eh6s7Ozly4cOGj9/eCTlRUFAMGDOD777+nYcOGPH78mG7dumnaLBERkRwiFugr4IhiPyMyqQSnagY4VUsL206VC7x6l8o1dx+8ff1p1LgZ2jIJujoSSllrY2+jjbbWh4s8S0tL1b/XrFnDlStXOHToUIbKvuomLCyMHTt24OHhQWRkJC1atGDIkCFIpVKsrKzy7LoFjdjUhGyVXftUwbDPJfpxIAkBaXnhxdp8uke9RCIhPjUx02OCINC7d29evXrFtm3biImJ+WgY/79ZtWoVly9fZvDgwVy+fPmD3s7nzp1j/PjxTJgwQbVgLcgULVqUTZs24ezszOjRo2nYsCFDhw7FwcGBFStWsHbtWrp06QKAR8gz5t/bDZ9RgE8dKBFIUciZ6PEnG5zGYW+c/QJcBRlHs5JcffcwR+fkpN+8nvXnt4z8mM15zaiKnXALfkJkcmy+bixlhzGVulDMQPOpOV8aVapU+R97Zx0X1db94efMDA2KhWKRiootBtioXLu9toLY3d3dce0O7O5uRRRssTtBCQWkmZn3D17m6jUYYGBGPc/v4+++ztln7zXIzNlrr7W+S/Xfnj17EhqaqOXy+PFjbt68iVwuVwlbnjyZmL1SqFAh7OzskEgkPHnyhPv372NgYECBAgW+K86bkJCAUqn8roZKixYt6NevH2vXrv2pjouucvz4cTp16sTnz59Zv3497du3/2MDFCIivzqis6/jREZGprid25+EnkzAPq8eVfrVIjAwkGFBQT9UzP8SqfTfiK5SqeTu3buUKFGCtWvX0rJlS43Zp1AokEgkPHr0iNGjR7Nz504AZDIZ9vb2XLx4kYMHDzJhwgSsrKw0tq4ukxJBru8Jhpna50z12qFXn/Nw5iFQKLFsUFI9Zx+BWMX3bRYEAWtra5YtW8a1a9e4fPkybm5uatmSKVMm1q1bh6urK/Pnz2fgwIGqa/fu3ePvv/+mTp06zJ49W703pyOUL1+eK1eusHLlSoYMGcLnz5+pUaMGPXr0ACAo+hNjr61PldK+JlGgJFoexwi/NayvOiTd08kzAofM+VLszOb6q9gPPwcOg+rgMKjOd68Z5sxMpQMDUmzjl8gEKdam6X/QYqJnyMiSrRl0ZXm6r6UuUkFC0SzWNLJy1rYpvz3ZsmVTRetr167NzZs3OXfunEqwL0mAz8bGhty5cwNw4cIFYmJiyJUrFyVLlgT4qttOQkICO3bsoFu3blSvXp1atWrh5uZGgQIFEAQBU1NTWrVqxdq1axk7duxXew5d5vPnzwwZMoRly5ZRq1YtVq9eTb58YktIEZFfGTGNX8cRI/vJs3nzZgIDAwFYuXKlWvf898Erl8uJjo5mypQpGrVNoUhUA9+6dSs7d+7Ezc0Ne3t7EhIScHV15fXr12zYsIEbN24Af0Ydv7p9r5MTDEspAYdvcW/SPuTR8eRv64xd1+pq3qlEKvx4oyaTyZBKpare5ymhWrVqDBgwgJEjR3L37l0gMQOkQYMG5M+fn82bN/8ym8QvkUqllCpVioSEBKytrTl16hTlypXj8uXLTL+9nThFgk7EVxVKBe+iQljz6Ki2TdEIBTOnf5Rck9iaWSKTZMzvd7kcDjTQkXR+AQGpIGVkydZI1Pw+FNEctra2eHh4YGdnB8DEiRPp168f9erVUwULdu9O1PPJmzevqpXql5FtqVRKhQoVGD58OOHh4QwcOBAHBwdsbGzo0qULO3bsoHnz5rx+/VqVOaDrXLhwgRIlSrBhwwaWLFnCsWPHREdfROQ3QHzK6Diis/9zIiMjGTRokOrv//zzD/HxyUeO/+tAyWQyRo0apWq/oymSNgdHjyY6E/v371dtHMqVK0d0dLRqffgznH1DmX6yY1IiGJYcSqWS52vP83TpaQSJhIKDapO/lfqiXUpl8iJigiBgaGhI27ZtU2QbwJQpU7Czs6N9+/ZERETQtGlTIiIiOHDggNolAbrG06dPadCgAaVLl+b+/ftcunQJpVJJo9Ge+AY90EhbPU2hRMmWp2eTbbH4K2CmZ0Re4+Qzm3QBqSCheFabDF2zn2MTimW10arDLwASQWCqkzu5jbNpzQ6Rfylbtizz5s2jc+fOqkzKQoUKYWFhQfbs2VWHAl8iCAI2NjaMHDmSM2fOEBoaysGDB2ncuDHe3t78/fff/PXXXxgZGTFgwADOnz9PXFzaWmOmFzExMQwePJiqVatiaWnJrVu36NGjh5i2LyLymyA6+zqO6Oz/nFmzZhEUFKT6e2BgIHv27En2viTnWl9fn3LlyqGnp0efPn00rjCbdKjw4cMHMmfOTEREBOfPnydfvnxYW1urBICSVNZ/9HD9/PnHfel/NSwMzZON7qsjGAbwfN0FrnZdw4v1F1X33h23m6td1/Buf2K2RPD5h7zdfQ0AqbE+AQdvcmvwFtWf5JCjwMLQnNevf67eLpFIUrU5MjQ0ZMOGDdy+fZtKlSpx5coV9u7di7W1dYrn0gVCQkKoU6cO5ubm7Nu3D0NDQ5ydnTl+8QxF+tZGJ0L6/0EQYNKNzSQo5MkP1nEaWjmnqQVfRiFXKqiXv1yGrmkg1WNmuc4UzJxXKw6/QGJUf1yp9pS3KJzh64uoz6xZswgMDGTz5s1qlVKamppSr1495s+fz71793j9+jVr1qyhUKFC3L9/n6pVq5I1a1YaNGjAwoULefDggU4c7l+9epXSpUuzcOFCZsyYwblz57C3t9e2WSIiIhpEdPZ1nM+fP4vO/g94/fo106dPV6XKQ6LDNXfu3GTvrVOnDtOnT+f58+ccPXoUfX19pk+fni52fv78mRIlShAWFsb48eMJCgrCzs6OEydOcOjQIczNzZN19itVqsTEiRMJDw9PFxszEgfzfD+N7P5UMKxaIQCerzpHzPsw4j9GERMQRvynKNX9sUERia99jgFAEf+vA5cQHk3Ew8Cv/qjDmS0HKV68uKoX84/4r8ieupQpUwZXV1du377NyJEjcXFxSdU82iYmJoZGjRrx6dMnjhw58pV+xuG3vigkfNsyQwdQKJW8jQrG58N9bZuSZurmK6d2qYy2kCBQxNwK+0x5MnxtY5khC5x7UiKbXYYeikgECVJByrSynlTPXSLD1hVJG+bm5qm6L2/evHh4eHD8+HH09PQYOHAgo0ePJjIyksGDB1O4cGGsrKzw9PRk27ZtBAcHa9bwZIiPj2f8+PFUqFABIyMjrl+/zpAhQ37JsjEREZGfIyh14WhR5Idkz56dQYMGMWLECG2bonOMHz/+K5XbJEdLoVDg7++Po6Oj2nNNmjSJKVOm8OTJE/Lm1Vzda5Kgz+7du2nevLnqdVNTU8zMzAgICKBfv37MmzdPJeb3XxQKBYMHD2bJkiWYmpoyfPhwevXqhZGRkcbszEjuf3pF14vztW2G2kiUAs/77OTNq9eUL1+e3bt3Y2lpqdE19u7dS9OmTbG0tMTExISbN29ibGys0TXSG4VCQatWrTh48CBnzpxRtdgDSFDIaX5qEiGxuntYJREESmWzZ36FHto2Jc1MubmZE2+v61S5xH8ZW6ottfKU0dr6cfIE1j4+xqYnpxEEAUU6/qwEIL+pBWNKtcPhF9NVEEk7f//9N/fu3ePOnTuJ3V0iIzl//jzHjx/nxIkT3L17F0EQKF26NG5ubri5ueHs7IyBgUG62HP37l06dOjArVu3GD16NKNGjfpuRwEREZHfA90+/hcR0/h/Qt++fdm8eTPLli0jc+bMODs706tXL3r27PlVaz116NevHyYmJkydOlWjNiZF6ps2bcqcOXMoWLAgJiYmfP78mYCAAHr16qVSYf9RVD8pW+HJkyc0b96cESNGYGdnx+LFi3W2BvBn2Jnl1vnI45fEvAzhzavXODs7M3z4cCwtLYmMTJ1I4Pe4ceMGbdu2pVmzZpw8eZI3b94wbNgwjc2fUQwbNoydO3eyefPmrxx9AJ8P93Xa0YfE6P614Me8/hyU/GAdp7l1ZZ119AUEzPVNqZpLu9FtfamMboXqsbxSP/IYZ0uXKL8ECQICHQrUYk3lwaKjr0WS4lpyecaX6nh6enL37l18fX0BMDExoU6dOsybNw9/f3/evHnD2rVrcXBwYNWqVVSvXp2sWbNSr149FixYwL179zSS8i+Xy5k1axalS5cmJiaGK1euMH78eNHRFxH5zREj+zqMXC5HJpOxatUqPD09tW2OTmNubs7o0aMZPHhwqueYOXMmo0eP5uHDh9jYpF04KilSP3/+fPLly0ezZs149OgRt2/fRiaTkS1bNpydnZHJZF+19EmOZ8+eMWHCBDZu3Ei+fPkYN24c7du3V+kQ/Ap0v7iA+59e6VzP6/+ilCt4u+captc+MXz4cNq2bUtUVBR16tQhc+bM7N+/P03zv3v3jnLlymFpacm5c+cwNjZm0aJF9OnTh+PHj1OrVi0NvZP0JcnmBQsW0Ldv32+uD7qynKvBj1Do+ONGIkj426YKvYo01LYpaWbunV3se3lJJz9j05w6USlXUW2boSJWHs+mJ6fY/vw8kQkxiaqcaRAnkwoS5EoFJbPa0btIQxzMRUVzbfPhwwd69+7NrFmzMrzNrVwux8bGhtq1a7NixYqfjlUoFNy+fZvjx49z/PhxLl68SGxsLHny5MHNzY1atWpRs2bNFAc0njx5gru7O5cuXWLQoEFMmjQJQ0PDtLwtERGRXwTR2ddhIiIiyJQpE1u2bKFVq1baNkdnUSgUyGQyli1bRteuXVM9T2RkJHZ2dtStW5c1a9ZoxDalUomJiQkVKlRQaQMkERgYSExMDFZWVqkSdrt37x7jxo1j586dODg4MGHCBFq0aJHquvGM5Oibq0y5uVnbZqhFyNQz9GrbmV69egHQpUsXVq9eDcCxY8dS7ZBHRUVRtWpVAgIC8PX1VfV3VigU/PXXX9y/f587d+5oXDRS0+zfv58mTZrQr1+/7+plyJUK3I4MJ06RoAXrUk6BTHlYU2VQ8gN1nKiEWNqfnUFwTJjOOPwSQaBG7lKMLdVO26Z8l1h5HGcCbjHjxDoSchggICARBLWyJJIcfEOpPvXzlaeRlQvWZjkzwGoRdbh79y5Fixbl4sWLVKxYMcPXHzduHHPnziUgIEAtwb8koqKiuHDhgirl/86dOwCUKlVKlfJfsWLFH6b8K5VKli1bxuDBg8mVKxfr1q2jcuXKGnlPIiIivwais6/DBAYGYmlpyf79+2nQoIG2zdFZkg5Ftm7dSsuWLdM014IFCxg0aBD37t1Tiealhrdv33Lv3j0SEhKoV68ebdq0YePGjarrUVFRtG/fHj09PbZu3Zomm2/cuMHo0aM5fPgwxYsXZ9KkSTRo0ECn2+bEyuNpfGIcnxNitG3KD1HIFcQ9CaZxTGGGDx+OVCpl1KhRTJs2DUEQkEgkVKlShXz58jF//vwUCTkl1bcfOnSICxcuULp06a+uv3nzhqJFi1K/fv2vfm90DT8/P6pWrUrdunXZvn37dw+aXkS8p/25GT+c49Pt1/iP3glKsOpQkXwtEhXalXIFt4dtI+JhIAY5zCi1sD2vNvsQdvctsR/CUcTGo5/djByVHcjT1AmZceJBWmzIZ54sOknk8yDiw6KRGMgwyGGGRfXC5GlcBkHy88+FTJByvM409CS/TqbMj7gR/IS+l5do24xElKAvl7C7zgQyG+h2aZqzszM25R1p2q8DD8PecPfjS95EBqP8zqGJJF5JKcuCFDbPj0PmvJTLUQhjWfrUWouknvPnz1O1alUePHiAg4NDhq//4sULbG1tWb16NR4eHqme5927d5w8eZITJ05w4sQJ3r9/j5GREVWrVqVWrVq4ubnh6OiIIAi8fv0aT09PTpw4Qffu3Zk1a1aKDhpERER+D3Q/BPgHk1QXLH45/5ywsDAAjfQk79atG7ly5fpK+C81rFixgr/++oumTZsC8ODBA1asWMHx48cJDQ3Fx8eHPXv28ODBAyBtdYSlSpXi0KFDeHt7ky1bNho1aoSzszMnT57UidY+38NAqkdDK2ckOnwgIZFKKBiemX79+iGVSlmwYAHTpk0DoGrVqnTr1o3IyEg2bNhAz549U9QpYd++fezYsYONGzd+4+hDopLz4sWL2bRpEzt27NDYe9Ikz549o379+pQsWRIvL68fZpQ8CPt5y0Lz4vnI3aAUAK82XybyeWLN/JudfondEgQoMOAvEj7H8G7/DaJehWCQ3QyJoT4x7z7xetsVHs48pJovPiyKsNuvkBrqYWKdDUEiEPUimBdrL/Bml1+y7ytBKed5hHpdGnSdUtnt6WBfU9tm/L/lHFwbv4MeHl2Ijo7Wtkk/JTAwEGtjC5rbVGFUyTZsrj6CY7WnsqX6CNZXGcKayoPYWG0YOXa8Q7roNvMr9KBboXpUsywhOvo6SpLafbZs2bSyvrW1NTVr1lRlhaWW3Llz06FDB7y8vAgICODWrVtMnDgRuVzOqFGjKFasGLlz56ZSpUoUKlQIf39/jh49ytKlS8W9pIjIH4ro7OswSc6+KND3c5Kc/cyZM6d5LkNDQ8aMGcOWLVvw9/dP01yZMmVS6S5cv36d7t27U7t2bfLmzUvnzp0BqF27NoBGnHIXFxdOnz7NyZMnAahVqxbVq1fH29s7zXOnB02sKiLR0a8giSBgaZSV+X0nYGpqyubNmxkwYACQKLa0fPlyFi1axIULFxg1ahR16tRR+7BJqVTSpEkTzp07R5MmTX44rk2bNjRv3pzu3bsTEBCgkfelKUJCQqhbty6ZMmVi//79P+0M8SjsNTLh5+2crDtWwihfVpQJch7OPUrEo0Bebb0MQO6GpTEvlg+Jvgxrj8qU39idUv+0o9zazpg5JHZF+HjtBQn/b7VoYpUd5+29KbPMnZLz2uK0yhOJQWKUPvz+O7Xe38OwN2qN+xXo7FCHhvmdtba+8P//P6FMB1aOms3evXupXLkyb9++1ZpNP0OpVBIQEECuXLm+et1IZkBekxzYZrKkQOY8WJnmxM4iH69evtSSpSIpISQkBEEQtFoW5enpibe3t+qQP60IgkDx4sUZPHiwKpCwbds2TE1N8fb2JioqioCAAIYNG8bQoUM5efIkMTG6m00nIiKSPujmTlsEEJ19dUmKqGoisg/g4eGBlZUV48aNS/UcvXv35u7du2TPnh2FQkHr1q2pVq0aOXPmJCYmhpcvX1KoUCFV5F+TdfY1atTAx8eH/fv38+nTJypVqkTdunW5fv26xtbQBLmMs9KtcD1tm/FdFEolY0q1JUe27Fy/fp127RJrjJs3b87QoUMpUKAA8fHx6OnpMXjwYMqUKcOqVas4cOAAN2/e/OncSeUVVapUSXbc0qVL0dPTo3PnzjqTpRETE0Pjxo0JCQnhyJEjZM+e/afjA6M+kqD8eeaKRF+Gw8DaCFIJUS+CuTNiO8oEBcb5smLdIbG+Vj+LCXm/SNeX6MswLfD/mmiJAP//DAlSCYJUwt0Je7k5YBNXO69GEZuoF5C5SPJ93WWChPfRH5Md96sgCAKDijWjiVXG1ykLJIoeji/dnuq5S9KiRQu8vb358OEDTk5OXLlyJcNtSo6wsDBiY2PVaq9pZWXF69evUSh0s/OByL8EBweTJUsWrfaRb9y4MVmzZtWYJtB/OXLkCL169SIsLIxdu3YREBCAl5cXJUqUwMvLi1q1apElSxb++usv5syZw+3bt3XmuSIiIpJ+iM6+DiM6++qhycg+gL6+PuPGjWP37t2pdpBz5MhBnjx5aNOmDYMHD2bZsmVs27aNEydOcPz4cXbu3MmmTZtwcnICNOvsQ+IGv0GDBly/fp1t27bx7NkzypQpQ/Pmzbl3755G10oLLWyqUMQ8v0614hMQaGVbjWJZEzsylC5dmvr161O8eHFGjRpFgQIFANDT0yMiIoKxY8fSrFkzunbtSuvWralVq1aaUzWTyJ49O6tXr+bw4cOsWrVKI3OmBYVCQceOHbl69SoHDhzA3t4+2XtiFfFqzW1qn5N8LRPr9RVxcpAIFBxYG4n+92vn4z5FEXLpMQA5KjuoDgGS+PzkPZ+ffCAhIjGSlaeZE3maOalhiUCsXD2bfxUkgoQBRZvSxaFOouhcBjz6JYIEEz0jZpTtjGvukqrXS5UqhZ+fH7a2tlStWpUNGzakuy0pISmL5r+R/e9hZWVFXFwcgYG/R9nH70xwcHCyB5PpjYGBAe3atWP9+vXEx2vuO+bjx4+0a9eOZs2aUblyZfz9/WnatCm5cuVSrffu3Ttu377NlClTEASB0aNHU6JECXLnzk379u3x8vISf49FRH5TdGeHLfINnz9/BkRnPzmSIvuacvYB2rVrR8GCBRk7dmyq7k86LZ85cybTp0/HzMyMbNmyUbRoUWrWrEnTpk0pVapUuivnSyQS/v77b/z9/Vm7di3Xrl2jaNGitG/fnqdPn6br2uogFSSMKtkmXXpcpwYJApbGWensUPur1/fv38/+/fspVqzYV6/PnDkTLy8vHj58iKGhIcWKFSMkJIQuXbowe/ZsjdhUr149unTpwoABA3j27JlG5kwtI0aMYMeOHWzatIkKFSqodU+CQn09iuh3n/79i0JJzIfv6yBEB3zi9rBtxIVGkqlwbux61vhmTHmvbjjv6E2RsY2QGunxds813h9XrzRHnkwmwq+IICT2e19ZqT/5TLOn22cuadbKOYuyudoIylsU+mZMzpw5OX36NG3btqVjx44MGTJEK/3Pv0eSw6NuZB/gpZjKr/OEhIRo3dmHxFT+Dx8+cPDgQY3Md/ToUYoWLcrBgwfx8vJi165dWFhYfDNOEASKFSvGwIEDOXr0KB8/fuTkyZN06NCBu3fv0qFDBywtLb8qC9B1bQ0RERH1EJ19HUaM7KtHWFgYgiBoVHxGJpMxfvx4Dh06hI+PT4rvT0rVPnjwIC1btqRbt27Mnj2bAwcOcOfOHd68eZOhD1KZTIa7uzsPHz5k8eLFnDp1ikKFCtGtWzfevNFufXJ+UwtGlNB+a0kJAgZSPaY4uWMg1f/mev78+b86nAkODub8+fN8+vQJKysr1e/K0aNHsbCwYMyYMdy4cUMjts2ZMwcLCws6dOigNadoyZIlzJw5k3nz5qnKT9TBQKqn1rhg78cEnU2sZTWwSCzJebL4FHEfI78aF/7gHbcGbyXm3SeylrPFcWLTb6L6SUgN9cha1hbzklagUPJqs3qfZX2Jejb/ijiY52NN5cG0t6+BBAGJhpz+pFlM9IyYWLoDk53cyWLw4+9kAwMDVq1axfz585k7dy4NGjRQZWlpk5RG9kF09n8FgoODtSbO9yXFixenbNmyac7+ioiIoHv37tSpU4eiRYvi7+9Pu3bt1O7CY2hoSI0aNZgxYwbXr1/n/fv3bNq0iTJlyrBlyxb++usvsmTJQq1atZg1axY3b94Uy1VERH5RRGdfh4mMjEQQhJ+KX4kkRvbNzMw0HiVv2bIlRYsWTXF0P8kZW758OX379mXHjh2sXLmS4cOH06hRI2rXrk2tWrVUQnoZib6+Pj169ODp06dMnz6d3bt3Y29vz4ABA/jw4UOG25OEW94yDCzaTGvrSxCQSaTMLt8N+0zJ13VDYnu8CxcuADBmzBiqV6+OUqnEzc2NsWPH0rBhQ0qVKqUR+8zMzFi/fj2XLl1izpw5GpkzJRw4cIA+ffrQv39/+vXrl6J7jWWGyTqUcR8jebLkFABZnGwoMaslMjNDEsKjebLo389JsPcj/EftJCE8Gsv6JSk8qiFSw68d8xCfJ0S//bfmPu5TFJ8fvwdAHpN86qwS5W+vqK4vldGlUF221xhN+wI1yaRnDJAqxz+pBMfKNCdDirVgV42xVP8ibf9nCIJAv379OHLkCD4+PpQvX55Hjx6l2AZNktQHXZ3D48yZM5M5c2bR2f8F0JXIPiRG948cOZJqkcrz589TokQJNm7cyNKlSzl69Ch58+ZNk00WFha0adOGtWvX8ubNG/z9/Zk+fTp6enqMGzeOUqVKYWlp+VVZgIiIyK+B6OzrMJGRkRgbG+t0v3RdICwsTGPifF8ikUiYOHEiJ0+e5OzZsym6D2Dt2rW8evWK1q1bkzVrVgwMDJDJZAQEBPDw4UPi4uIAtHJabmRkxKBBg3j27BmjRo1izZo12NraMmrUKD5+1I44WRPrigwp1gIgQ5P6JYIEQ6k+C5x7Uvz/dfrqYGtri6OjIyYmJqo6/piYGBQKBV26dGHbtm1AYl/k+Ph41b93aqlcuTJDhgxhzJgx3L59O01zpQQ/Pz9atWpF48aNU1WaYGtmCcl8hz1eeIKE8GhkZoYU6FMT/aym2P8/NT/U9xmBx/2JDfnMgxmHUMTJEWRSPj8O5PbQrdwavIVbg7fw+UmiQx9y+SnXuq/Dt+MKrvfx4qrnKmKDIwCwcC2SrL1ypSLR5j+AnEZZ6OxQh721xjO+dHvKWRRSOf6Q6MjLBCkyQfL/P9KvDgRyGWXBLU8Zlrj0YUPVoTS0ck7VQYmbmxu+vr4IgkD58uU5fvy4Rt5faggMDFQrqp+EtbU1L168SD+DRDSCrkT2AVq1aoWBgQHr169P0X3R0dEMGjSIatWqkSdPHm7dukX37t01vkcUBAFHR0f69+/P4cOH+fjxI6dPn6ZTp07cv38fd3d38uTJQ9GiRVVlAVFRURq1QURERHMISlGKU2eZPHkyCxcu5P3799o2Rafp168fp06dSnOrvO+hVCpxcnLC2NiY8+fPq/1Q/fz5M5kyZaJIkSKcPn0aS0tLHB0d8fDwYNKkSbRq1YqZM2fqTN/b0NBQZs+ezYIFC1QK8/369cPMzCzDbbkY6M+UW1uISohFoUzfgxAByG+ak4mlO2CbyRKlUolSqUw2S0SpVBITE0OXLl3YvHkztWvXZuvWrV8dOt25c4cdO3awbt06rKyssLKyYuLEidja2qba3tjYWJycnJBIJPj6+mJgkL4R6OfPn1OhQgVsbW05ffp0qrKMfIMeMujK8h9eDzx2RxW9dxhalxyVHVTXHs45QtDZB0iN9Cm1sB1XO/9Yxbro1OaYF8vHhzP3CThyi+g3H0mIjEVqoIdRvqxYVC2EZf2SCJLkP8O7a4wlh5G5+m/yN0KpVBIcE8bDsDc8Dn/L5/gYYhXxSBHQl+qRzSATDpnzUiBzHkz1NJt1FhYWRuvWrTl27Bhz5syhX79+GX7Y3a5dO169esX58+fVGt+oUSPi4+M5fPhwOlsmkhayZs3KsGHDGDZsmLZNAaBjx454e3vz6NEjtbIS/fz86NixI8+ePWPKlCn0799fa50FgoKCOHXqlEpw+M2bN+jr61OpUiXc3NyoVasWJUuWTHdNIhEREfUQnX0dZsSIESoldZEf4+HhwcOHD7l06VK6zH/48GHq1avHsWPHcHNz++lYhUKBRCLhypUrODs707dvX0aNGkXOnDnp2LEjixYtolChQowfPx5PT890sTctvH//nmnTprF06VIyZcrEiBEj6NGjR4aXknyM/cycOzs5F5g+EWyJIEGpVNKhQE06FqiFniRR8f306dM4OztjYGCg1kYlIiKCunXr4u3tTa5cuZg1axZt27bF19eXmTNnsnv3biBRkOz9+/eYm5tz9OhRypUrl2rbb968Sbly5Rg0aBDTpk1L9TzJERoaiouLCwkJCfj4+JAjR45UzRMWF0n942M0bF36kVnPhANuE8WMKi0hl8sZMWIEs2bNolOnTixZsiTdD7W+pGbNmmTLlk2VmZMcffv25dSpU9y9ezedLRNJLQkJCejp6bFy5Uo6d+6sbXOAxFT8qlWrcubMGapVq/bDcXFxcUyePJmpU6dSsmRJ1q9fj6OjY8YZmgxKpZIHDx6oHP+zZ88SGRlJ9uzZqVWrlupPWssMREREUo947KbDREZG6kzkV5cJCwvTqBL/f6lTpw7Ozs6MHj1a7Z60SWmdtra2PHiQKDomlUrx8/Pj7du3KtE/XRO8yZkzJ/Pnz+fJkyc0bdqUYcOGYW9vz9KlS9Ochp4SshiYMtnJnbEl2iKPiAVSV0/8X5Lqi61Nc7Ky8gA6O9RROfqfPn2idevWTJw4Ue2IhJmZGRcuXKBbt24YGRmpovZHjx5l7969ANjZ2eHj48O8efP49OkTnp6eaarxLVmyJBMmTGDmzJl4e3unep6fERsbS5MmTQgODubIkSOpdvQBMuubkMMw/T6fmkRAoLB5ftHR1yJSqZSZM2eyYcMGNm3ahKura4ZmtwUEBKQojd/KyoqXL1+K/cp1mNDQUACdqdmHxLKsAgUK/LSlqr+/PxUqVGDatGmMHTsWHx8fnXL0ITHlv3DhwvTt25eDBw8SGhrK2bNn6dq1K48fP8bT05N8+fJ9VRaQJD4tIiKSMYjOvg4TGRkpKvGrQXh4eLo6+4IgMHnyZPz8/Dhw4MBPxyY5iTlz5sTe3h6ZTEZYWBgGBgasWbOGunXrAqhqvHXN2U8iX758LF++nAcPHuDq6kqvXr0oVKgQ69evz1A1+FfHb3K5wzI6ZatK0SzWwL8Ou7oI/1cclwoSqloWZ5Fzb9ZVGYxD5q8jDaNGjSI6Opo+ffqk2M6lS5fi7e2Ns7MzHz9+ZN26dSgUCvLnz8/Tp0/p0KED/fr1o0mTJrx9+5ZPnz6leI0vGTp0KBUqVKBjx46qFp2aQqFQ4O7ujq+vLwcOHFD9rqaFGrlLIUnhv5s2UKL8qie8iPZo3749586d4/nz5zg5OXH9+vUMWTcwMFCttntJWFlZERkZqXIoRXSPkJAQQLecfUEQ8PT0ZNeuXd88D+RyOTNnzqRMmTLExsZy+fJlxo4di56e7ncJ0dfXp2rVqkyZMgU/Pz+CgoLYtm0bzs7O7N69m3r16pElSxaqV6/OtGnTuHr1qs7ug0REfhd0f/f1ByM6++qRXgJ9X+Lq6kq1atUYO3asWg+mJFXpnj17Ur9+fVq3bo25uTkxMTE4OzvTsGFDAJ2vabOzs8PLy4s7d+5QunRp3N3dKVq0KNu3b0/3B3RcXByTJk2iWeOmeDg3YnHFRBGw1nbVKZXNHmPp16m9wnc6h2fVN8MlZxG6Fa7HrhpjmVC6AyWy2X4Tub169SpLly5l4sSJ5M6dO1X2fhkNNDAwIGvWrKxatYrOnTtz8eJF8uXLx/79+/n06VOaBb2kUinr168nICCAIUOGpGmu/zJy5Ei2bdvGxo0bcXZ21sicja1c0l1/QROYyAxxzV1C22aI/J/y5cvj5+dHrly5qFSpEtu3b0/X9WJjYwkNDU1xZB/E9nu6THBwMIDOCPQl0bFjR+Lj49m8ebPqtSdPnlClShWGDx9Ov379uHbtGmXKlNGilWkjW7Zs/P3336xatYqXL1/y4MED5s6di5mZGVOnTqVs2bJYWFjQqlUrVq9ezevXr7VtsojIb4dM2waI/BjR2VeP9E7jT2LSpElUrlyZPXv20KzZj9vEffz4EScnJ0qUKIGDgwOlSpXi77//pmTJktjY2FCzZk1VDbyuO/tJODo6snPnTq5du8aYMWNo2bIlJUuWZNKkSdSrVy9d0p7XrVvHq1evOHjwoOo1G7NcdCtUD0isFQyICqXXxCGERH6i36ABSAQJ+lI9suqb4mCej6wGyQsMyuVyunfvTvHixendu3eabFYqlRgZGVGiRAm2b9/OrVu3WLFiBRYWFsyZMwe5XI6TkxMlS5ZM0zoA9vb2zJkzhx49etCwYUPq1KmT5jmXLl3KjBkzmDt37k9/x1NKHpPslM1ekGshT3TW6ZcIEhrkr4CBVF/bpoh8QZ48eTh//jydO3emZcuW+Pv7M378+HT57kwqF0hpZB8SS7dKly6tcZtE0o4uRvYh8YC4Xr16rF69mu7du7N06VKGDh1Krly5OH/+PJUqVdK2iRpFEAQcHBxwcHCgd+/exMXFceXKFY4fP87x48fp2rUrCoWCQoUKUatWLdzc3KhWrZpYzioikkZEZ1+H+fz5c4o2HX8q4eHh6R7ZB6hUqZJKdf17jlCSON+NGzd4/vw5b9++5ejRo0gkEnLkyEHOnDnJkycPjx8/pkaNGpQo8etFEMuUKcPhw4e5ePEio0ePpkGDBlSoUIEpU6bg6uqqsXViY2OZPHkyf//9N0WLFv3uGEEQyG2Sjcgbb7DIlIlmNpVTtdby5cu5du0aly5dQiZL21eiIAgYGhrSp08fDh48yJAhQ4iIiGDy5MkA7N69m5o1a5IzZ840rZNEt27d2LdvH56enty5cydNkauDBw/Su3dv+vbtS//+/TVi35c0s6mMX7B2e6j/DIVSQWMrF22bIfIdjIyM2LhxI8WLF2fEiBHcuXMHLy8vjTsBAQEBACmK7OfIkQMjIyMxsq/DJEX2s2TJomVLvsXT05NGjRrh7OyMr68vPXv2ZMaMGX+Eg6uvr0/lypWpXLkykyZNIjQ0lNOnT3PixAn279/PwoUL0dPTw9nZGTc3N9zc3ChdurTWuhCIiPyq/BphxT8UMbKvHhkV2QeYOHEiOXLk+K4YU1J0W6FQkDt3buLi4oiJiUEul/Py5Ut8fX3Zu3cv48aNY+TIkdy5cydDbE4PKlWqxJkzZzh+/DgKhYIaNWpQo0YNlfBgWlmzZg1v3rxh3LhxyY4NDg5OtYBcYGAgI0eOpEuXLhpLWQeoWLEiZ86cwc7OjokTJ2JnZ4eLiwvTp0+nf//+GBoaamQdQRBYvXo1MTEx9OrVK9XzXL16lZYtW9KwYUPmzp2bLpkazhaFKZ7VNsWaCxmBBIHGVi7kMdGtyJ/IvwiCwLBhw9i/fz+nTp3CxcWF58+fa3SNJGc/JYfsgiCoRPpEdJOQkBCyZMmS5sNcTaNUKgkODkYQBO7evcuxY8dYvHjxH+Hof4+sWbPSvHlzli9fzvPnz3n06BHz588nS5YszJgxg3LlypEjRw7+/vtvVq5cKX7mRETURPd2XSIqRGc/eZIc6oyI7AOULVuWZs2akZCQ8M21pAOAuLg45HI5w4cP5/Tp0yxevJi6desikUiwtrYmMjKSI0eOMG/evAyxOb0QBIFatWpx+fJl9u3bR3BwMC4uLtSvX5+bN2+met6YmBimTJlCmzZtKFy4cLLjg4KCUp2eOXjwYPT09NKlhV3ZsmU5d+4c/fv3J2/evBgZGVG/fn0sLCw0uk7u3LlZunQp27ZtY+vWrSm+/8WLF9SvX59ixYqxadOmdIuaSAQJo0q01jlnX4JAdsPM9CjcQNumiKhB/fr18fHxITIyknLlynHu3DmNzR0YGIhUKk3x94no7Os2wcHBOlev//79exo3boynpyeOjo7IZDIqV05ddtrviCAIFChQgJ49e7J3715CQkK4ePEiffr04fXr13Tv3h1ra2tVScD+/fsJDw/XttkiIjqJbu26RL5CdPaTJ+nLPaMi+5AYtf2eKm5SDWlS3dmoUaOoVq0anTp14uDBg9jb2+Pm5sbmzZuxsLDg/PnzPHz4MMPsTi8EQaBhw4bcuHGDLVu28PjxY5VOwf3791M838qVKwkICGDs2LHJjlUqlQQFBaUqsn/mzBk2bdrEzJkzU7URVKfVVu7cuZk1axb79u2jatWq39QZKxQKjbTsatmyJa1ataJHjx68fftW7fs+fvxInTp1MDU15cCBAxgbG6fZlp+R2yQbvYo0TNc1UooCJaNLtsFYlnG93EXShqOjI76+vhQvXpyaNWuyfPlyjcwbEBBAzpw5U6wHIDr7uk1wcLBO1evv3LkTR0dHLl++zJ49e9i9ezdhYWHs2bNH26bpLHp6elSsWJEJEybg4+NDSEgIu3btwtXVlcOHD9OoUSOyZcumKgm4cuVKhnYOEhHRZURnX4cRnf3k0Yaz/7MU7ODgYAICAggPD2fLli1EREQQGxtLSEgIMpkMHx8fWrVqRf78+Xn9+rXGo7zaRCKR0KpVK+7evcuaNWvw9fWlaNGidOzYkWfPnqk1R3R0NNOmTaNdu3YULFgw2fGRkZHExsameCMXFxdHz549qVSpEh07dkzRvZDo6H/+/Jn4+Phkx0qlUszNzX/oQIwaNYqPHz+m2Ib/snjxYoyNjenUqZNaBwixsbE0btyYoKAgDh8+nOpSiJTS2MqFUtnskXzTOyHjEYDm1pUpld1e26aIpJBs2bJx9OhRevToQffu3enVq5dan8efkdK2e0mIzr5uExISohPOfmhoKG3btqVFixZUrVoVf39/GjduTIECBahSpQqrV6/Wtom/DObm5jRt2pSlS5fy7Nkznjx5wsKFC8mRIwezZ8+mQoUKZM+enebNm7NixQqNl/yIiPxKiM6+DhMZGfnH1m6pS1hYGECGpfEnh1KppG7dusTGxjJ27Fjc3d0ZNWoUbdq04d69e6p2dVKplCxZsuikYFBakclkeHh48PDhQ/755x+OHz+Og4ODWlHn5cuX8+HDB8aMGaPWWkFBQQApdlTnzJnD48ePWbJkSapUvadOnUrx4sWJjY1N8b1f8vz5c5YvX06lSpXS3HIoa9asrFmzhuPHj7Ns2bKfjlUoFHh4eHDlyhX279+v1sGKppAIEqY6eWBjlkurKf0CApVzFdO5TAMR9dHT0+Off/5hxYoVrFixgr/++kulvJ4aAgICUiTOl4SVlRWhoaFERESkem2R9EMX0viPHDlC0aJFOXz4MBs3bmTnzp1fPbc8PT05ffq02gfjIl9jZ2dH9+7d2b17NyEhIVy6dIn+/fsTEBBAz549sbW1pUCBAvTq1Yu9e/eq9o4iIn8CorOvoygUCqKjo8XIfjIkfWFnZGT/Z+TIkYOBAwdiaWlJYGAge/bsYe7cuZw4cQIzMzN69erFjRs3uHLlym9fn2dgYECvXr14+vQp06ZNY8eOHdjZ2TFw4ECVk/4lUVFRTJ8+nQ4dOmBvr16kNTXO/vPnz5k0aRIDBgygWLFiat+XxM6dOxk9ejTu7u5pPoyzs7Pj0qVLREVFUaFCBW7fvp2m+f766y969OjB4MGDefz48Q/HjR49mq1bt7Jx40ZcXDJegd5Uz4h5FXqQ39QCSTqIASaHgEAFi0KMK9UemURUdv7V6dKlC6dOneLOnTuULVsWf3//VM2T2si+tbU1gBjd11G0GdmPiIiga9eu1K1blxIlSuDv70/btm2/EUFt3rw5mTJlYs2aNVqx83dCJpPh7OzMuHHj8Pb2JiQkhD179lCrVi2OHz9OkyZNyJYt21dlAd/TYRIR+V0QnX0dJSoqCkB09pMhKY1flyL71atX5+rVqyxYsIAOHTpQrVo1qlevzqZNm3B3d+fcuXMUKFCANm3aaNvcDMHY2JjBgwfz7NkzRo4cyerVq7GxsWH06NF8+vRJNW7p0qWEhIQwevRotedOaqmUko1cv379yJYtm1pK///l6tWrdOjQgVatWqmlKaAODg4O+Pj4kDNnTipXrszp06fTNN+sWbOwtLSkQ4cO393ALF++nGnTpjF79myaN2+eprXSQhYDUxa79KFw5vwZltCftE7NPKWY6tQJfaluqXOLpJ4qVarg5+eHmZkZzs7O7N+/P8VzpCWyD6Kzr6toK7J/7tw5ihcvzubNm1m+fDmHDx8mT5483x1rbGxMmzZtWLdunVhrrmEyZ85M48aNWbJkCY8fP+bp06csXrwYS0tL5s+fj4uLC9mzZ6dp06YsW7aMp0+fattkERGNIjr7OkpkZCQgOvvJoWuR/aTTektLS3r37s3SpUs5ceIEp06don79+ujp6VG/fn127txJ7dq1tWxtxpIpUybGjh3Ls2fP6N27N3PnzsXGxoapU6fy/v17ZsyYgbu7O7a2tmrPmdLI/r59+zhw4AALFixIcVT+zZs3NGzYkOLFi7NmzRqNtqfLlSsX586do0KFCtSuXZvNmzenei4TExM2bNiAr68vM2fO/Ora4cOH6dmzJ3369GHAgAFpNTvNmOkZscilN54OdZAKknRN65cKEgyl+ows0ZoxJduKEf3fEGtra7y9vXFzc6Nx48ZMnTpVbQFMhULB+/fvUxXZt7S0RCaTic6+DiKXy/n48WOGRvajo6MZOHAg1atXJ1++fNy+fZuuXbsm+8zw9PTk7du3HDt2LIMs/TOxtbWlW7du7Ny5k6CgIC5fvsygQYMICgqiT58+2NvbY2dnR48ePdi9e/dXQQmRlKNUKpEr0i5ELJJ6BKUmpKBFNM6zZ8+ws7Pj1KlTuLq6atscnWXx4sUMHDgwzbXTaUUul6dby7LflcDAQKZNm8ayZcvQ09MjJiaGu3fv4uDgoPYcc+bMYcKECWq13ImMjKRIkSI4Ojpy6NChFDnrkZGRVK5cmeDgYHx9fVMV/UtISEAqlf503fj4eDp37syGDRuYOXMmgwcPTvWhwsiRI5k1axa+vr6UKlWKa9euUbVqVWrWrMmuXbt07vf1Sfg7Jt/YzNOIdwiAph5MEgQUKCmfoxDDiv9NDiNzDc0soqsoFAomTpzIhAkTaNWqFatXr06200RwcDA5cuRg165dNG3aNMVr2tra0qJFC2bMmJFas0XSgbT+u6YUX19fOnTowIsXL5g2bRr9+vVTWxdGqVRSsmRJ7O3t2bVrVzpbKvI9wsPDOXv2LMePH+fEiRM8evQIiURC+fLlqVWrFm5ubpQrV+67HZn+dKJiFDx8GcfDV3E8ehXL/edxhITJSfh/oopEAob6AnZ59SlsrU/B/Po45Ncndw6ZRoMnIt8i5jDqKJ8/fwbEyH5yhIWFaT2F38vLi+joaDp16oRM9u9HKj4+Xnwg/IRcuXKxYMECunXrRunSpVEoFNSoUYMxY8bQqVMntX52QUFBakdsJk2axIcPHzhz5kyKHiwKhYL27dvz6NEjLl26lCpHX6lUcu/ePbJkyUK+fPl+OE5PT49169aRL18+hg4dyuvXr5k3b16qHPPx48dz+PBhOnTowM6dO6lfvz6Ojo5s3rxZ5xx9APtMuVlVeQAHXl1mx/PzvI4MQipIkCsVqZov6d4iWaxoaVuVqrmKixuKPwSJRML48eNV3UCqVKnC3r17yZs37w/vCQgIAEhVZB9ERX5dJTWlXqkhLi6OSZMmMW3aNEqVKsWNGzcoXLhwiuYQBAFPT08GDRrEhw8ffqtuPb8KmTJlomHDhjRsmCjc+uLFC06cOMGJEydYuHAhEydOxMzMDFdXV9zc3KhVqxb29vZ/9LPl0as49p6L4KRvJAlykAiAAIr/PLoVCoiKUXLnSSz3nsUi//91uzx6NK1uRnUnYwz1xYTz9ED8qeooYhq/eoSHh2s9hb9mzZr069ePSZMmqV6LiIhg3bp1YvqXGuzbtw+lUsmZM2eoWrUqPXr0oFChQmzYsCHZ2sWgoCC1Uvjv3bvHnDlzGDlyZIrKBCCxNd7evXvZsmULxYsXT9G9SURGRlKmTBnOnz+f7FhBEJg8eTLLli1j8eLFtGzZkujo6BSvqa+vj5eXFw8fPsTFxQUjIyMOHDiQbIRTm8gkUppYV2RTteEsdO5FlVzFVAJ+AsJP0/y/vKYvyGiQvwLrqgxmacW+VLMs8Udvxv5Umjdvjre3N0FBQTg5OeHj4/PDsYGBgQCpOswD0dnXVZK6M6Sns3/nzh3Kly/P9OnTGTduHJcuXUqxo59E27ZtkUgkeHl5adhKkdRgbW1Nly5d2L59O0FBQVy5coVhw4bx8eNH+vXrR8GCBb8qC9BEG91fAaVSydlrkXSbFkD36YGcuBKpiuArlN86+v9F/sX1Z+/imbUxlGbD3rJk50c+RYiaFZpGdPZ1FNHZVw9diOwn1efPmzdPFUXw9vama9eu31WdF/mX8PBwZs2aRZcuXahatSqbNm3i9u3blChRgo4dO1KsWDF27typaln4X4KDg5PdxCmVSnr27ImNjQ1Dhw5NkX3r169n+vTpzJw5kwYNGqTo3i8xNTXFzs4Ob29vte/p1q0be/bs4fDhw7i5uREaGpridQsWLEi+fPkIDQ1l4sSJv0ykSBAESmazY2KZjhz9ayqLXfrQ17ERNXOXJr9JDrLom2IiM8RUZkgWfVPszXJTL185etjU4Ub/TbQPdWRQsebYZcqt7bciomVKliyJn58f9vb2VKtWjfXr1393XFJkP7XOvrW1NS9evEitmSLpRNIzOT0E+uRyOdOnT6dMmTLEx8dz5coVxowZk6aMvmzZstG0aVNWrVqltt6ESMYglUopV64co0aN4ty5c4SGhnLgwAEaNGjA+fPnadGiBdmzZ6dChQqMGTOGCxcuEB8fr22zNU7wpwRGLgli4uoQnrxJfH/y1CXgAZD0ax4dq2T32Qg6Tgjg/I0oDVgqkoTo7OsoorOvHmFhYVqP7AMMHToUpVLJrFmzAPDz88Pc3FztFnJ/KgsWLCAqKooRI0aoXitatCi7d+/Gz8+P/Pnz06JFC5ycnDh8+PA3mx91IvsbN27k3LlzLFmyBAMDA7Vtu3jxIl26dFGlVaaVihUrpsjZB2jYsCGnT5/m/v37VKpUKUWRQ6VSSadOnXj79i3FixdnzJgxv2QfcCOZAcWz2tDcpgqjS7VhU/UR7HebyNHaUzlSeyr73SaytupghhT/mzaOtbA3teTc6bPaNltEh7CwsOD06dO0b98ed3d3Bg8e/E3WUGBgIJkzZ8bIyChVa1hZWREYGEhMTIwmTBbREEmR/axZs2p03sePH1OpUiVGjhzJgAEDuHbtGqVLl9bI3J6enjx48OCnmSgi2sfMzIz69evzzz//cP/+fV6+fMmKFSuwtrZmyZIlVKlShaxZs9KwYUMWLVrEo0ePfukDHKVSyfErkXScEIDf/Zj/v6bZNRQK+BytYPzKYCasDBKj/BpCdPZ1FNHZV4/w8HCtR/YhUQ2+X79+LFy4kMDAQK5evYqTk5OYOvwTPn36xNy5c+nWrdt32xE5OTlx9OhRzp8/j5mZGfXq1aNSpUqcOXNGNSZJfOlHfPz4kUGDBtGqVStq1qyptm3Pnj2jSZMmuLi4sGTJEo38O1asWJE7d+6oOkioS4UKFbh06RIxMTE4Oztz8+ZNte4bPXo0mzdvxsvLiz179hAcHMzAgQNTYfmvhaurK6dPn/6lN1UimkdfX5+VK1fyzz//MH/+fOrXr/9VmVVAQECq6/Xh3/Z7r1+/TqupIhokODiYzJkza0w/R6FQsGjRIkqUKEFwcDAXL15kxowZKTpITg5XV1esra1ZvXq1xuYUSX/y58+Pp6cnW7du5cOHD/j5+TFy5EgiIiIYOHAgDg4OX5UFJB1E/QrIFUrmbg5l+voQomOVyabpp4WkR/eFW9F4Tg7gRcDvlx2R0YjOvo5StmxZli5dqtP1tbqArkT2AQYNGoS+vj7Tp0/Hz8+PsmXLatsknWb+/PnExMQwfPjwn46rXLkyZ8+e5dixY8TFxeHq6krNmjW5fPlysgJ9o0aNIiYmhrlz56ptV1hYGA0aNMDc3Jxdu3ahr6+v9r0/o2LFiiiVSi5fvpziewsWLIiPjw+5c+emSpUqnDx58qfjV6xYwdSpU5k1axYtWrTA1taWefPmsWrVKg4cOJDat/BL4OrqyqtXr3j27Jm2TRHRMQRBoE+fPhw9epQrV65Qvnx5Hj58CCRG9jXh7It1+7pFSEiIxur1X716Ra1atejTpw+dOnXi5s2buLi4aGTuL5FIJHh4eLBt27ZfMhtLJDHl38nJiREjRnDmzBlCQ0M5dOgQTZo0wdvbm5YtW5IjR46vygLi4uK0bfZ3kcuVTFkTzCHvyAxdV6GA8EgFfWYH8vi1bv5sfhVEZ19HsbOzo1OnTmJkOBl0QaAviSxZsjB48GCWLFlCQEAATk5O2jZJZ/n48SPz5s2jR48eam2wBUHAzc0NX19f9uzZw/v373F2dubTp08/TJv19fVl2bJlTJ48We1NfEJCAlu2bGHt2rXcuXNHo3WeBQsWJHv27ClO5U8iZ86cnD17lkqVKlGnTh02btz43XFHjhyhZ8+e9OrV66vyA09PT+rVq0fnzp1/ay2JKlWqIJVKOX36tLZNEdFRatasyZUrV1QttY4dO0ZAQECq6/UB8uXLhyAIorOvYwQHB6f5e1ypVLJ27VqKFSvG48ePOXHiBIsWLUrXzEt3d3eioqLYvn17uq0hknGYmppSt25d5s+fz71793j9+jWrV6/G3t6eFStWUK1aNbJmzaoqC3jw4IFOZKcpFEpmbQzh3PWUiwRrArkComOUDJr/nleBYoQ/tYjOvo4ikUg0FlH8ndEFgb4v6devH4aGhgBiZP8nzJ07l/j4eIYNG5ai+wRBoHHjxty6dYslS5YAiS3mWrZsqYrQQaJwUo8ePShZsiQ9e/ZUe/47d+7QtWtXypYtq/p31BSCIODi4pJqZx8SNwz79u2jffv2tG/fnunTp3+1Ibh+/TotWrSgbt26LFiw4KvDQkEQWLVqFXK5nO7du+vERiI9yJQpE05OTqKzL/JTChQowOXLl6lYsSJ169bl/v37aXL29fX1sbS0FJ19HSOtkf3AwEAaNWpEp06daNKkCXfu3ElRSVhqyZ8/P25ubqxatSrd1xLJePLmzYuHhwebN2/m/fv3XLt2jTFjxhAdHc2QIUMoXLiwqixg27ZtKqHJjGbT0XCOX4lCm7sFhRKiYpUMWvCBz9HpWD/wGyM6+yK/NLoU2YdEwZYkJ/93VGHVBCEhIcyfP59evXqRM2fOVM0hkUioVKkSACNGjODy5csUKVIEDw8PXrx4wdKlS7lx4wZLly5FJpOpNaevry8lSpRAIpGkW0ZNpUqVuHLlCgkJCameQ09Pj9WrVzN27FhGjBhBnz59kMvlvHz5knr16lGkSBG2bNmCVCr95t5cuXKxfPlydu/e/cPMgN8BsW5fRB0yZ87M/v37GTx4MB8+fODChQvExsamej4rKytRkV/HUKdjy4/Yvn07jo6OXLlyhb1797Ju3boM3W907tyZy5cvc+/evQxbUyTjkUgklC5dmmHDhnHq1ClCQ0M5cuQILVq04MqVK7Rq1QoLC4uvygLS8j2lLk9ex7H+UMo0htILhQI+hstZuvPPaG2oaURnX+SXRalU6oxA35cIgoC+vj6TJk3Stik6yZw5c1AqlSlug/dfklLRO3XqxKNHj1iwYAFHjhyhQIECDBo0iLZt21K+fHm15jp37hzFixdHIknfr8SKFSsSGRnJrVu30jSPIAhMmDCBFStWsHTpUho3bkzt2rUxMjLiwIEDP00vbdasGe3ataN3796/rZiYq6srHz58EDfJIskilUoZN24cADdv3qR69eoEBgamai5ra2sxsq9jpCaNPzQ0lNatW9OyZUtcXV25e/cujRo1SicLf0zDhg3Jnj27KNT3h2FiYkLt2rWZO3cu/v7+vHnzhrVr1+Lg4MCaNWtwdXUla9asX5UFaPpgOz5BydR1IaBDlcQKJRzxicT3rnZKCn5lRGdf5JclMjISuVyuU5F9pVLJjRs3cHV1ZcOGDV+lloskOuj//PMPvXv3TrZlXnIkpbVlz54dAwMDevfuzbNnzyhatCjx8fHs2LGDwYMHJ5v+9uDBAx48eKAxteafUaZMGQwMDNKUyv8lXbp0YefOnRw+fJgnT56wefNmtbIlFi5ciJmZGR4eHijSU1ZXS7i4uKCvry+m8ouoRZJzP2/ePF68eEHZsmW5fv16iuexsrISnX0dI6Vp/IcPH8bR0ZFjx46xefNmtm/frjGBv5Sir69P+/bt2bBhg86Kt4mkP3ny5KFjx45s2rSJgIAAbty4wfjx44mPj2f48OE4OjqqygK2bNmilibPw4cPefPmzQ+vbzoaxsuA+HRV3U8NggAzvULEdP4UIjr7Ir8s4eHhADoV2X/+/DmhoaF069aN3LlzM2HCBG2bpFPMnj0bQRAYPHhwmucKCgpCT0/vq8MeHx8fbt68yeLFixk+fDgrVqzAxsaGsWPHfrflXUhICF26dKFTp07fTXvXNAYGBjg5OXHx4kWNzKdUKtm9ezcSiQQTExPc3d3VSiM2Nzdn3bp1nDp1isWLF2vEFl3C2NgYZ2dn0dkXUYuAgAAAqlevjp+fH5aWllSqVIlt27alaB4rKyvevHmTpjIdEc2hUCgIDQ1VK7IfHh5Oly5dqFevHqVKlcLf35/WrVtrXSTZ09OT4ODg376Lioh6SCQSSpYsyZAhQzhx4gShoaEcO3aM1q1bc+3aNdq0aYOFhQWlS5dm+PDhnDp16rsixn/99RdFixbFx8fnm2sRUQq2HA/Xap3+j1Aq4WOEgv3nxC4VKUF09nWMyMhIPnz4QEhICOHh4cTExIgbhx+Q5LzpUmTfz88PSIwsjhkzhq1bt3Lnzh0tW6UbvH//nkWLFtGvXz+NREqSajGTNmOxsbH06tWLypUr0717d8aPH8/z58/p2bMns2fPxsbGhmnTphEZmdg+Ji4ujqZNm9K1a1e16/o1QcWKFfH29tZI2t3YsWPZuHEjGzdu5OrVqyQkJODs7MyNGzeSvbdmzZr06dOHoUOH8uDBgzTbomvUqFGDs2fPIpfLtW2KiI6TFNnPlSsXefLk4dy5czRt2pRWrVoxevRotbNfrKyskMvlvHv3Lj3NFVGTT58+oVAokn3enDlzhuLFi7N161ZWrFjBoUOHyJ07dwZZ+XMcHR0pX768KNQn8l2MjY1xc3Nj9uzZ3L59m3fv3rFhwwYcHR1Zt24dNWvWJGvWrNSpU0dVFvDkyRNevnxJeHg41atXZ//+/V/NedTnMwk6/NhUKmHv+c/IFbp4HKGbiM6+jqBQKPD29mbkyJF4enrSunVr2rZtS/v27WncuDELFizQtok6R1JkX9ec/fz582NhYYGHhwc2NjaqetA/nZkzZyKTyRg4cKBG5gsKCvpqEzd79myePn3KkiVLVAcA2bJlY8aMGTx9+pS2bdsybtw4bG1tmT9/Pl27diU4OJh27dolG73RZD1cxYoVeffuXZrTfVetWsXkyZOZOXMmLVu2xN7enkuXLpEvXz6qVKnC8ePHk51j+vTp5M+fn/bt2/92gpKurq58+vRJrYMPkT+bgIAA9PX1yZo1KwBGRkZ4eXkxY8YMpk6dStOmTdXqd25lZQUgpvLrCEklXD+K7EdHR9O/f39cXV2xtrbm9u3bdOnSRevR/P/SuXNnjh079ttqrIhoDktLS9q3b4+XlxcBAQHcunWLiRMnolAoGDVqFMWKFaNMmTJA4r4mLi6Oxo0bs2LFCiCx1d6esxHourZt8Cc5V/zF2n11EZ19LZPkRFy/fp2OHTuycOFCDh06xMmTJzl06BC7du3i8OHDXL16VcuW6h5JkX1dSuP38/NTqfHr6ekxduxY9uzZw7Vr17RsmXYJCAhgyZIl9O/fX7WhTitBQUGquv/nz58zefJkBgwYQNGiRb8Za2lpycKFC3n8+DH169dn4MCBrF+//qfCR186+IIgIJfLNVLf7uLiApCmuv2jR4/SvXt3evbs+VVJhIWFBWfOnKFKlSrUq1eP9evX/3QeY2NjvLy8uHHjBtOmTUu1PbpI2bJlMTExEVP5RZIlMDCQXLlyfdOqcujQoezfv5/Tp0/j4uLC8+fPfzpPkrMvKvLrBiEhIQDfjexfuXKFUqVKsXz5cubNm8fp06exsbHJaBPVomXLlhgbG7Nu3TptmyLyCyEIAsWLF2fw4MEcO3aM0NBQjh8//pVeklKpRKlU0q1bN9zd3bn2IIbAEB0O6/8fiQT2nP2sbTN+GURnX8skOQ83btzg2bNnWFtbU61aNWrWrEnFihUpW7YsFhYWOvsQ0ia6lsYvl8u5fv26ytkHaNu2LQ4ODowdO1aLlmmfGTNmYGBgwIABA5IdGydP4OGn1+x7eYmZt7fT6fwcmp2cSMPjY2l4fCwtTk2ih/c/fCqTCeOy+XgeHkDvvn3IkSNHsj9nKysrlapyw4YNKVeu3A+jOIIgEB4ezpEjR3j37h1SqRSJRKJ6OKaW7Nmz4+DgkGpn/8aNG7Ro0YK6deuyYMGCb+w3MTFh3759uLu74+7uztSpU39qb7ly5Rg5ciSTJk36rQ4V9fX1qVy5sujsiyRLQEAAuXLl+u61+vXrc/nyZaKjoylbtixnz5794TwmJiZkz55djOzrCF+KuCYRFxfHqFGjcHFxIVOmTNy4cYP+/funeyeWtGBmZsbff//NmjVrfktBVZGMwcjI6LvdRpL2EOvXr2ff6ddIdfejoEKhgOsPY4iOFT8P6pBxhaoiPyWpZrh///707dtXy9b8GiSl8ZuZmWnZkkQePnzI58+fv3L2ZTIZEyZMoFWrVvj4+ODs7KxFC7XDu3fvWLZsGSNHjsTc3Py7Y5RKJfc+vWLPi4ucfneTeGXiybJUkCBXfvtlHhj9EaljZqKUCjqcn0VCOyuadq7OR6IxxfSHtty8eZM2bdrQpEkTdu7c+VO7ly5dyuLFi3n48CFyuZyxY8cyevRo1WdVLpenWtQvqW4/pbx69Yp69epRqFAhtmzZ8kOtAZlMxooVK8ibNy+jRo3i9evXLFq06If2jhkzhkOHDtG+fXuuX7+OkZFRim3TRVxdXRk/fjxxcXHo6+tr2xwRHSUwMBBLS8sfXi9SpAi+vr78/fff1KpVi3/++YcePXp8d6yoyK87JDn7Sdlkt2/fpkOHDty9e5cJEyYwfPjwDNVrSQuenp6sXbuWM2fOUKNGDW2bI/KL8vjxY5Vukb6+PsWLF6d8+fKULl0aR0dH1pw2Q65In5K+j299uLm/FQAV2l7EKFM+1bVP767w8sYSIj7cJj4mFICCVaaQx7HdD+dTKuHpm3iK2hmki72/E7/A+c3vTdJpcvHixSlUqBCPHj0iOjpaJc4XHx8vnuT+gLCwMExNTTNERV0dksT5Spcu/dXrLVq0oFixYowZM0YbZmmdadOmYWxsTL9+/b65JlcqOPTaF4/zs+nuvYCT726oHP2k6z/iy2syEwNuyAJoc3Ya/S8v5fKH+9+MDwwMpGHDhjg4OLBx40YEQfhhVP/QoUP079+fe/fuYW5uTpYsWVizZg3z5s1j5syZhIWFqX7vUhPp9/T05MGDB9/tEPAjPn36RN26dTEwMODAgQOYmJj8dLwgCIwbN45Vq1axcuVKmjZtSlRU1HfH6unp4eXlxfPnzxk5cmSK3osu4+rqSlRUFL6+vto2RUSH+VlkP4msWbNy9OhRevToQc+ePenZs+d3dS5EZ193CAkJIVOmTEgkEqZNm4aTkxNyuRw/P7+vDm5/BVxcXHBwcPhp6ZmISHIUKFCAgwcPcuvWLSIjI/Hz82PRokV06tSJMk7leP5OO9o9EUH+fHxzEZmBudr3CAI8eiW2pFSHX+eb7jdFqVQiCAKBgYEkJCSwfPly3r59i5OTEwYGBhgZGREXF0ft2rUpXLiwts3VKcLDw3WuXr9gwYLfRK8lEgkTJ06kSZMmnDlzhurVq2vHQC3w+vVrVqxYwdixY78pt3j5+T2TbmzmYdhrBBKd7p8598mh+P+9N0KecC34MVVzFWdQseZkMTAlOjqaRo0aIZfL2b9//08j1x8/fmTdunXEx8dTvHhxJk6cSNmyZXF3d2fKlCmEh4czY8YMvL29KVSokOrAICEhAalUqpa4k7OzM0+fPuXVq1cUK1Ys2fFxcXE0a9aMd+/e4e3tnaxj8iWenp5YWlrSokULatSowYEDB75bw1qkSBGmTZvGwIEDadiw4W/xe1qyZEnMzc05ffo0lSpV0rY5IjpKQEDATyP7SchkMv755x+KFStGr169uH//Pjt27Pjq82RlZcWhQ4fS01wRNQkODiZTpkxUrlwZX19fhg4dyvjx4zEw+PUigYIg0LlzZ0aPHk1oaKjGtG9E/ixkMhn16tX77rUX7+K/q8Lvs7EiMRFvyF+yO/KEKN4/3o8gSMlZoCF2LqORSGQo5LG8vLaY90/2ERPxFpl+JrJZu2JXYST6Rll57jePF1fnq+a8vCnxeZzLoTmFXeeQy6EpuR3bEhcVpLqWHBLR2VcbMbKvZZLaQi1dupQnT54gl8vZt28fY8aMYejQofTp04dBgwZ9txfmn05YWJjO1OsDXL169asU/i9p1KgRZcqUYcyYMRpVdtd1pk2bhqmp6VelKXKlgs1PT+N+bjZPwt8CoNRgR1fF/3++F9770/bsNM68u4mHhwd37txh//795MmT56f3v379ml27dgEwZMgQateujaWlJc2bNyc8PBxDQ0MqVKhAoUKFWL16Ndu2bUOhUCCTyVRCfskhCAK5c+dWy9FXKpV07tyZixcvsnfv3lQd+tWtW5ezZ8/y9OlTXFxcePbs2XfH9evXj2rVquHu7p6irANdRSqVUq1aNbFuX+SHyOVyPnz4kKIDtC5dunDq1Cnu3r1L2bJlv2qvamVlxatXr/6o73ldRKFQcO7cOd69e0dISAgXL15k2rRpv6Sjn0SHDh2Qy+Vs2rRJ26aI/Ia8DPx5VP/17dW8f7wfqcyQ+JgQ3txZS+CDHQDcOdqNF9cWEBP+GuMs9igUcQQ+2MGNfX8jT4jBwCQXxlnsVXOZZi9CJotSGGXKD4CeYRakMsMU2StXwJM3orOvDqKzr0W+3AzUqFGDChUqULlyZUqVKoWDgwN58+ZVbUB0pS5dlwgPD9cZZz8uLo6bN2/+0NkXBIFJkybh7e3NsWPHMtg67fDy5UtWrVrFkCFDVL+/UQkx9PdZytL7B0lQytMUyU8OhVLB5/hoxl7fwNVswazbsF7VcuZn3Lx5E0jctDs4OKhqvY8cOQIkCkL27t2bmzdv0qVLF1q3bo2dnR2LFi0CULusRF1BqHHjxuHl5cX69eupUqWKWvd8j7Jly+Lj44NSqcTZ2fm7HSIkEgnr1q3j48eP3y27+BVxdXXFx8fnhyUMIn82QUFBKBQKtSL7X1K5cmX8/PzInDkzLi4u7Nu3D0j83oiJieHDhw/pYa6IGrx8+ZKaNWty+fJl8ubNy40bN34LvRwLCwsaNGjA6tWrxcMkEY0THfvz3ykDk1w4t71A+Tbn0DfJCcDHt958fHeZ0FdnACjZcAvl/j5K+VankMgMifr4mPeP95K7SGsKVp6smqvoXyso02wv1k5p22fEiAJ9aiE6+1pEEAT09PQAGDBgAJcuXeLcuXNcu3aN+/fv8+rVK969e4dCoaBFixZatlb3CAsL05k0fn9/f2JjY3FycvrhmNq1a+Pi4vLHRPenTp2qcowBwuMi6X1pMbdDvx9VTg+SfsqWtYvjbxNFgiL5qHu5cuWwsLDg7du3qh7t69ev58SJEwiCQKVKlahTpw65cuXC29ub7t27ExQURN++falevTr37t37ar6goKBUR8nXrFnDpEmTmDFjBq1atUrVHF9iZ2fHpUuXsLGxoWrVqhw9evSbMVZWVvzzzz+sX7+ePXv2pHlNbePq6kpcXByXLl3StikiOkiSMnVKIvtJWFlZ4e3tzV9//UXjxo2ZMmWK2H5PiyiVStasWUOxYsV48uQJRYsWpUqVKsnqm/xKeHp6cuvWLa5fv65tU0R+M+LilfysCjG7dS1kBpmQygwxMksU14uLCiLi/U3VmBv7/ubMUisubSiHIiEGgPD3N9LR5nSb+rdCdPa1yLlz5zh69CgKhQJ/f3+uXLnC3bt3efr0KW/fviUkJITPnz8TFyemqXwPXUrjv3r1KlKplFKlSv1wjCAITJ48matXr7J///4MtC7jef78OWvWrGHYsGGYmpoSlRDDgCvLeRoRgEKDKftqI8DZgNtMvbVFVdv/PQIDA8mbNy/169cnISGBnj17kj9/frp3705kZCRWVlY0a9aMo0ePMnnyZHx9fZk9ezYPHz6kZMmSnDt3joMHDwL/toY8cuQIWbJkYciQISkS2wwNDWXt2rV0796dIUOGpO39f0GOHDk4ffo0rq6u1K9fn7Vr134zpmPHjjRq1Ihu3br98hHKIkWKYGFhIabyi3yXgIAAgBRH9pMwMTFh+/btjB8/ntGjRzNp0iQAUaQvgwkICKBhw4Z4enrSvHlz7ty5g1wu/64+ya/MX3/9Re7cuUWhPhGNI5MmKtz/8LrBv8E1QfJ9ybdMFqW++aNvnEPTpv5rk6g8pxbij0mLDBkyhFevXvHy5UuGDBnChQsXyJYtG1KpFD09PfT19TE2NiYsLIyDBw9ib2+f/KR/EOHh4aooirbx8/PD0dERY2Pjn46rXr061atXZ8yYMTRo0ECne/umhcmTJ5M1a1Z69OiBUqlk9NV1PAl7qx1H//8oUXLi7XUsDM3pXrj+N9fj4uLYuHEjMTExrFq1ijZt2vDo0SPOnDmjKr0oWbIkAQEBtGvXTuW4DxgwgD59+lCyZElu3rzJnj17GDp0KEuXLmXHjh3ExCSebr9//x6JREJCQoJaKtCZMmXiwoULKBQKtUT/UoKxsTG7d++mV69edOrUiTdv3jB69GjVOoIgsGLFCooWLUrXrl3Zs2ePxm3IKARBwNXVVXT2Rb5LUmQ/Z86cqZ5DIpEwbtw4ihYtSvv27ZFIJNy6dYu///5bU2aK/IRt27bRs2dP9PT02LdvHw0bNgQSBfqyZcumZes0i0wmw8PDg4ULFzJ79uxk9xwiIupioJ+6Z7yZRQnV/85fuic5bNwAUCgS+PjmIsbmdgBIZf8KIysSotNg6b/o6/2a+5KM5vf0NH4RDAwMyJYtGzKZjIiICGJjY/n06ROBgYG8fPmShw8fcvv2bR49evRHpH2nFF2K7Pv5+f2wXv+/TJo0iTt37iTb5/1X5enTp6xfv57hw4djYmLC/lc++AU/0qqj/yWbnp7mTujzb16PjY3l5cuXjB07lr///hu5XE6FChW4f/8+4eHhZM+enY4dO3Lr1i0UCgWlS5dm8uTJ2Nvbs3DhQjZu3AgklmsAxMfHc+PGDR4/foxUKlXVjKrb7ilpXHodCMlkMpYtW8akSZMYO3Ys3bp1IyEhQXXdwsKClStXsm/fPtatW5cuNmQUrq6u+Pn5/RaigyKaJSAggGzZsqm0OdJCs2bN8PHxQSqVMm/ePFFYN50JCQmhVatWtGrViho1auDv769y9BUKBaGhob9dZB+gU6dOhIeHq4RkRUQ0Qa5sqYv/ZsnjTNZ8VQHwP9qFK1tcubK1JhdXF+P2oY7ERLwBwCizFYIksXT55oE2XNvVmA9PEzuXBD07wuVNVbi5/99yxee+c7m8qQr3Tvble0gEyGehlyqb/zTEyL4WmThxInFxcUilUgYMGMC7d+9ISEggNjaWmJgYYmJiiI+PJzg4mBw50i8N5ldFVwT6oqKi8Pf3p3v37mqNr1ixInXq1GHs2LE0bdr0l+r1qw6TJk0iR44cdO/enYCoUBbe3adtk75CgsDkm5vZUHUIBtJ/N/hmZmYMGzaMjx8/snnzZnbu3Imenh7x8fHkzp2bDh060KhRI9Uhjbm5Of369aN27dr07NkTX19fLCwsVG1t2rZti5eXF0+ePEEikdCrVy927drFypUrsbGxUbXdVCgUWsvwEASB0aNHkzdvXjp37kxAQABbt25V1bg2atQId3d3+vXrR/Xq1bG2ttaKnWnF1dUVhULBhQsXqF//26wOkT+XwMDAVKfwf48SJUpQtWpVrl27RrVq1Vi+fDnu7u4am18kkYMHD9KlSxdiY2PZsmXLN5omYWFhyOXy3y6yD2Bra0v16tVZvXo17du317Y5Ir8JBfKl/sCzaO0VvLq+hPdP9hMd/gqpngnGWezJmr8qJlkdgETF/QKVxvPy+mJiPwcQFxVEXFQQAAlxn4kO/7r0KT4mhPiYEAxMf/D9LICDVdoPaf8Efi8v4xfjyz7WzZo106Ilvya6ItB369Yt5HK52pF9SHSInZyc2Lx5Mx06dEhH6zKWx48f4+Xlxbx58zA0NGTa5bUkKJMXxctIFCgJiApl1cOj9CrS8KtrefPmZePGjQwcOJAlS5bw+vVrjIyM6Nixo+rz2r59e06fPs3p06ext7cnZ86cvHr1SnXN0dGR2NhY9u3bx5MnTzA2NmbmzJkcOHCAoKAgPnz4gI2NjSotXiKRoFAoUCqVaiv5axp3d3dy5cpF8+bNcXV15eDBg6oDxvnz53P69Gnc3d05ffr0L1l6YmtrS/78+Tl16pTo7It8RUBAQKrE+X5GwYIFCQwMpEKFCnh4eHD79m1mzpz52x3saoPw8HAGDBjAmjVrqFu3LitXriR37tzfjAsJCQH4LSP7kCjU165dO548eSKWeIpoBGNDCbmzy3gXnPDV687tvL8ZW6rRtq/+LpUZYlNuIDblBv50jTyO7cjj2O6b1y0LtcCyUMqEyBUKKJhfdPbVQXzyaJGkWtykTf+DBw/48OEDkZGRGBgYYGxsjJGREQYGBhQqVEjL1uoWCQkJREVF6URk38/PD319fbV6pidRpkwZGjduzIQJE2jdurWqK8OvzsSJE8mVKxddu3bl0od73Ah5om2TvosSJduenaOZdSVyGWf95nrp0qVZtWoV4eHh3xwoubm58fLlSzZs2IBUKmXRokV8+vQJa2trWrdujZGREQ8ePFAJ3/Xu3ZuePXvSrVs3nj17hp2dHYcPH+bx48dERkbSpEkTChcunGjX/6P92qB27dqcO3eOevXq4eLiwtGjR7GzsyNz5sysW7cOV1dXFixYwIABA7RiX1oQBIEaNWqIdfsi3xAQEICtra1G57S2tsbLy4tbt25RokQJ+vfvz71799i6dSvm5uYaXetP4vTp03h4eBAaGsrKlSvx9PT84fdlcHAwwG8Z2Qdo2rQpmTNnZs2aNUydOlXb5oj8JhSx0ScwNIEUaAlrFdHZV49fL0TzGyGRSFQPquvXr9OqVSuqVatGvXr1qFmzJi4uLpQqVYoiRYqINfv/ITw8HEAnIvt+fn6UKFEixTWfEydO5Pnz5798PXQSDx48YPPmzYwcORJDQ0N2v7iIVNDdrxgB2P/q8k/HfO/3K0lgr1OnTnTs2JGmTZsC0LBhQwoUKADAsWPH8Pf3x9zcHA8PDxISEpBKpeTJk4eBAwdSv359BgwYwOjRo3F0dKRLly4EBgZqXQSvTJky+Pj4IJFIcHZ2xs/PD0jMQhowYAAjRozg7t27WrUxtbi6unL79m2CgoK0bYqIDhEYGKjxyL6VlRURERGEhYXRu3dvjh07hq+vL+XLl+fhw4caXetPICoqir59+1KjRg1sbW25c+cOnTt3/un35e8e2TcyMqJt27asW7fuK60VEZG0ULqQ4S/h6AtA/lwyzM20kw35q6G7O/E/CIVCwbBhw7h9+za5c+dGJpNhaGiIsbExEokEExMTrTsBukaS0JauRPZTksKfRLFixWjZsiWTJk0iNjY2HSzLWCZOnEju3Lnp3Lkz7yJD8A16iPwnbe60jQIl+15eIk6eso2STCb76vBtxIgRfPz4kaFDh2JmZgbAli1bAGjXrh0ODg7IZDKioqJYu3Yt//zzDwDDhg1j2bJl2NnZsXr1aubNm6ehd5Y2bGxs8Pb2xt7enmrVqnHoUKKAzpQpU7C1taV9+/a/ZDvQpDKMs2fPatcQEZ1BqVQSEBCg0Zp9QNUlJqn9Xo0aNfD19UUqlVK+fHmOHj2q0fV+Zy5fvkypUqVYuXIl8+fP59SpU2pph/zukX1ApbNy5MgRbZsi8ptQrYwxxoa6728ogSbVzLRtxi+D6OzrANHR0Zw9e5ZcuXIxffp0EhISKFKkCP369SNbtmwsXbpU2ybqHLoS2Q8PD+fhw4epcvYBxo8fz9u3b1m5cqWGLctY7t69y9atWxk9ejQGBgbse3UJyS9wQBUeH8X5wNspvi/p8E2hUJCQkEDmzJlVdaMxMTFUqFABSGwJtWTJEmJjY5HL5ezfv181x+7duylVqhTXrl0jZ86cLFiwgGfPnmngXaWd7Nmzc/LkSWrVqkWjRo1YvXo1RkZGeHl5cefOHSZPnqxtE1NMnjx5cHBwEFP5RVR8/vyZqKiodInsw7/OPoC9vT2XL1+mUqVK1KtXjzlz5ogZez8hNjaWkSNHUrFiRczNzbl58yb9+vVTWzMkODgYU1NTDAwM0tlS7VGqVClKlSrF6tWrtW2KyG+Cob6Eui6m6Lo0j4GeQK1yJto245dBx/85/wwiIyORy+WUKVOGdu0ShSvs7OyYMmUKCoWCmzdvatdAHURXIvvXrl0DSLWz7+DgQPv27ZkyZQpRUVGaNC1DmThxIvnz58fDwwOAE2+vo/gFNrISBE6+u5H6+yWSb0S3DA0NGTlyJB07diQoKIhZs2bx4MEDwsPDOXXqFAAuLi48fvyY8uXLU7ZsWd6/f0+WLFl0KmJubGzMrl276Nq1K507d2b8+PGULl2aMWPGMHXqVK5cuaJtE1OMq6ur6OyLqAgICADQeGTfwsICAwODr5x9SDyc3rdvH0OGDGHw4MF4eHgQExOj0bV/B27dukW5cuWYPXs2kyZNwtvbGwcHhxTNERIS8tum8H+Jp6cnBw8eJDAwUNumiPwmNKhsqtOp/FIJ1HY2wdhQdGHVRfxJ6QBJKdwmJiaqiPWbN2949OgRISEhnDhxQpvm6SRJPydtO/t+fn6YmJikSUBx7NixBAcHs2TJEg1alnHcuXOH7du3M3r0aPT19fkU95mgmB/3M/90+zUXG87jYoN5vN7hq3pdKVdwa/AWLjaYh1+nVSRExRJw5Da3h27jUvOFXGyQeE/U69Cv5osN+czdCXvxdV+Jd5N/8Gm1hOt9vHiz+ypKxc8PHBQouf/xVdp+AP9BqVRiYWHB2rVruXPnDuPHjydPnjwolUry5cuHmZkZo0aN4ubNmzRr1ozXr18DYGpqSkREhEZtSStSqZTFixczdepUJkyYQJcuXRg6dChlypShQ4cOv9wBlaurK48ePeLNmzfaNkVEB0hykDTt7EskEvLnz/+Nsw+Jn6np06ezceNGtm7dSvXq1VWHDn86CQkJTJkyRXV47ufnx8iRI1PVxSA4OPi3TuFPok2bNshkMjZs2KBtU0R+E/Ll1KNKKSOdje4LAjRzFVP4U4KO/lP+WSgUCmQyGY8ePSIhIYE8efLg4+OjciD/hAdWSkmK7Gs7jd/Pz4/SpUunqWWara0tnTp1Yvr06Trn7KnD+PHjsbGxoWPHjgA8/PRzR8q8eD5yNygFwKvNl4l8niiY9manHxEPA0GAAgP+QmZswMdrL/j87AN6mY1/OF98WBRht18hNdTDxDobgkQg6kUwL9Ze4M0uv2TtD42LIDRWcz93QRCQy+UoFAocHR3p2LEj2bNnJ2/evHTs2JGIiAgGDRrEx48f2bFjB3v27MHNzY1q1aqlOkMkPREEgREjRrB+/XrWr19Ps2bNWLp0Ka9evWLYsGHaNi9FVKtWDYAzZ85o1xARnSDJydZ0Gj8kpvK/ePHih9fbtm3LhQsXePXqFWXLluXq1asat+FX4uHDh1SsWJGxY8cyePBgfH19KVGiRKrn+1Mi+1myZKFZs2asXr1aLAsR0Rh9W2bFyEBAF4sxOzU0J6/F79HBKqMQnX0dIGvWrIwfP57q1asTExND9+7dMTAwwMDAgDx58uDu7q5tE3WO8PBwZDIZRkZGWrXj6tWrGnHQRo8eTUREhEq87Vfh5s2b7N69mzFjxqjaBz4Me4MkGRV+646VMMqXFWWCnIdzjxLxKJBXWxOV8XM3LI15sXwA2PVwxXlbL/K3rvDDuUyssuO8vTdllrlTcl5bnFZ5IjFIjASF33+n1vt4+Om1WuPURSqVIpFIVJuvpP96enrSqlUrHjx4QPXq1XF0dOT8+fOMGzeOMWPGfDVW1zZuHTp04NChQ5w/f55u3boxZswYFi1a9EtlHmXPnp0SJUqIqfwiQGJk38jIKF0Oja2trb8b2f+SsmXL4ufnR548eahcuTJbt27VuB26jkKhYMGCBZQsWZJPnz7h7e3N1KlT01xr/6dE9iFRqO/Ro0dcvHhR26aI/CZkzSRlQOus6NIuRCoBByt9WtQQo/opRXT2dQCpVErHjh2ZOnUquXPnZtiwYaxdu5bRo0ezfft2OnTooG0TdY6wsDAyZcqk1S4FQUFBvHjxQiPOfr58+ejevTuzZs3i48ePGrAuYxg/fjx2dna0b99e9drTiHeQjKMq0ZfhMLA2glRC1Itg7ozYjjJBgXG+rFh3qKgaZ5DNFEH6868pQSpBkEq4O2EvNwds4mrn1ShiExX2MxfJk+x7kCDwNCJ90miTfj+T/psvXz42b97MqVOnaNiwIR8/fmT//v3ExsaSP3/+r8YCrF27lsePH6eLbanBzc2N8+fP8+bNG9asWYOzszMeHh6/1O9sUt2+rh2miGQ8AQEB5MqVK12eI1ZWVsk6+wC5c+fm3LlzNG/enNatWzNq1CgUulwwq0FevHhBjRo16N+/P127duXGjRsqcdO08qdE9gGqVq2Kra2tKNQnolGqlzGmYnHdSecXBBjRMRtSiS7mG+g2OvJP+GeStNm8dOkSxYsXZ/bs2UDiZr9Vq1aMGjUKZ2dnbZqos4SFhWm9Xj8p7dLJyUkj840YMYK4uDjmzp2rkfnSm2vXrrFv3z7Gjh37VU1lZHwMCjXOg03tc5KvZTkAFHFykAgUHFgbiX7K6zMBPj95z+cnH0iISBS8ytPMiTzNkv+3kQgCUQkZ0/pQLpcDiW3g9u7dy4ULF9i7dy8uLi5fjVMqlURGRjJx4kQKFy5M586defVKs9oCqaVUqVL4+Pggk8l4+PAhnz59ok+fPto2S21cXV159eqVznQ+ENEe6dF2LwkrKyuCg4OJjIxMdqyhoSEbNmxg5syZTJs2jSZNmvySJV3qolQqWbVqFcWKFePZs2ecOnWKBQsWYGz843KtlBIcHPzHOPsSiYROnTqxY8cOlZ6RiEhaEQSBwe2ykM9CpnWHXxBgpEd28ucS0/dTg+jsa5EkZz8yMpKPHz+qhPrSUv/9pxAeHq71ev2rV6+SJUsW7OzsNDJfrly56N27N/Pnz1f1CNZlxo8fT8GCBWnTps1Xr8fI1VeUj3736d+/KJTEfEj9RqW8Vzecd/SmyNhGSI30eLvnGu+P+6txp0CcIj7V66aEpM92ktNvZ2eHnZ0d+vr6X1skCJiamnL//n1mz57N/v37KVCgAH379tUJ1WVra2u8vb0pVKgQ8fHxbNq0iR07dmjbLLWoUqUKUqlUTOUXITAwMF3q9eHf9nvqHtIJgsCQIUM4ePAgZ8+exdnZ+bc8kHr37h3169enS5cutGzZkjt37uDq6qrRNZRKJSEhIX9MGj+Au7s7MTExf2QpiIhmCQwMZO3atdSrV4+smQ14dKozubLKSCbJMl0Z1CYr1Upr7jDwT0N09rVIUupgwYIFKVasGFevXiU4OJjPnz8TFxdHQkLCH5POl1J0IbLv5+eHk5OTRlNAhw4dCsDMmTM1Nmd64Ovry8GDB7+J6gPIBPUOq4K9HxN09gEABhaJBzdPFp8i7mPykbAfITXUI2tZW8xLWoFCyavNPurdl4zGgKb52YHel+nlhoaG9O/fn2fPnjFu3Di8vLywtbVl+PDhhISEZISpPyRbtmycPHmSevXqAeDh4fFLqIpnypQJJycn0dkXSffIPqBWKv+X1K1bl8uXLxMbG0vZsmV/KzHJrVu3UrRoUa5fv86BAwdYtWpVuhzah4eHk5CQ8MdE9gHy5MlD7dq1xVR+kVTx9u1bxo0bR8mSJbG0tKRTp04cPnwYhULBXzUqsHBITvLn0svQCL9E+H9E3z0bdSuaZtzCvyGis69Fkjb179+/B+Do0aM0aNCAGTNmMHfuXBYvXszcuXPx9fX92TR/JOHh4Vp19pVKJX5+fhpXT8+ePTsDBgxg0aJFOhHB/RHjx4+nUKFCtGrV6ptrhjL979zxNXEfI3myJLHnfBYnG0rMaonMzJCE8GieLDqZIltCfJ4Q/fbfmvG4T1F8fpz4mZLHqBOxV6Iv0Z3UsO8dHpmamjJy5EieP3/OoEGDWLRoEba2tkyYMEGraZtGRkbs2LGDTp06ERkZSZUqVX6JA0qxbl8E0jeynydPHqRSaYqdfYDChQvj6+tL6dKlqVWr1i/bljWJ4OBgWrZsSevWrXFzc8Pf35/69eun63rw53Uy6ty5M76+vty5c0fbpoj8YsyfP5+JEydy69atr17X19enX79+ZDGTsmBQTmo4JUbX01suSyJA1sxSZve1oGY5k/Rd7A9AdPa1SFxcYrrzli1bVF/OV65cYcqUKYwcOZIBAwYwdOhQjhw5ok0zdZIkgT5t8fbtWwIDAzVWr/8lAwcOxMDAgGnTpml8bk3g4+PDkSNHGD9+/Hcj1DkNzZONlD9eeIKE8GhkZoYU6FMT/aym2PesAUCo7zMC/59+/3zdBa52XcOL9f+qDN8dt5urXdfwbv8NAEIuP+Va93X4dlzB9T5eXPVcRWxwYr2rhWuRZN9PglKBhZG5Wu89JURHRyfOn5Cg9j0JCQl8+vTph9fNzc2ZNGkSz58/p3PnzkybNg1bW1tmzZqltZ73UqmUVatW0bFjR548eULlypWJj8+YsojU4urqyocPH7h79662TRHREvHx8QQFBaVbZF8mk5E3b96ftt/7GVmyZOHIkSP07t2bXr160aNHD9We4VfiwIEDFC1alJMnT7J161a2bt2a7k54UtbTnxTZB6hfvz4WFhZidF8kxYwaNQpHR8ev9nRSqZTmzZurAmumRhJGuGdncvfsZDaRkB46eUmHCPUqmrBurCWlHAw1v8gfiOjsaxFDw8Rf4oYNG1K/fn2aNGmCq6sr5cqVo3Dhwtja2gKJrflEvkbbafxJ4nzp0Rfd3NycwYMHs2zZMl6/1mxLOE0wfvx4HB0dadGixXevO5jnQ678cXQ38NgdPvo9BxJb6+lnTUzPyl6pIDmqFQLg+apzxLwPI/5jFDEBYcR/+teRjQ2KSHztc6IQn3nJ/JgVtkQRLyfqVQiCVIppwVzYdqmGbZdqar0nh8x51RqnLuHh4VSoUIH69eunyNmXyWRs3rw52XE5cuRgzpw5PH36lBYtWjBy5Ejs7OxYtGiRSvsjIxEEgXXr1lGtWjUuXbpEzZo1+fz5c4bboS4VK1ZEX19fTOX/g/nw4QNAujn7oL4i/4+QyWTMnz+fVatWsXr1atzc3AgKCtKghenH58+f8fDwoGHDhjg5OeHv70/Lli0zZO0/NbKvp6dHhw4d8PLy0spzQOTXxdzcnDFjxnyVmSeXy/Hw8PhmrEtxY9aPz81fziZIJZqJ8ifpAQ6UqwsAAQAASURBVOTLKWN2XwsGtMmGsaHoomoKQSnmMWoFX19fXr58SaZMmciTJw85cuRAJpNhaGiInp4eMpkMibblL3UYW1tbWrZsqbXo96hRo1izZg3v3r1Ll7ZNERER2Nra0rRpU5YvX67x+VPLxYsXqVy5Mjt27KB58+bfHfM0/B3u52dnsGWpRyZIOV5nGnqS1HUB+C/x8fHUq1cPX19fvL29cXR0VPvex48f06xZM27fvp2iNZ8/f86ECRPw8vIib968jBs3jg4dOnyjp5DeREREUKBAAYKDgylRogSHDh1KtzTptFK9enUyZ87M3r17tW2KiBa4evUqZcuW5dq1a5QuXTpd1ujQoQNPnz7F29s7zXNdvHiRpk2bYmJiwr59+yhevLgGLEwfFAoFb9++pWzZskydOhUPD48MbZPr5eVFhw4diIqKwsjIKMPW1QUePHhA4cKF2bZtG3///be2zRH5Rdi5cydt2rTBxcWFe/fuqbKeXr9+/VONoU8Rco74RLLnbATBn+RIJSBXs5JPKgGFAiQSqFLKmMZVTSlqZ6DVltq/K6I3qSUWLlxIy5Ytad++PZUqVaJw4cIUL16cwoULU6hQIRwdHSlTpgxWVlZi9Ok7aDuynx7ifF9iZmbGsGHDWLNmjU4pMo8bN47ixYvTtGnTH46xMs2pMcc5I7Axy6Uxe5VKJd27d+fs2bPs2bMnRY4+wM2bN/H39/9pKv/3sLGxYd26dfj7+1O+fHk8PT1xdHRk69atGVpDb2Zmxo4dO5DL5Tx+/BgXFxcePXqUYeunBFdXV86ePavqjCDyZ5GkiaLLkf0vqVSpElevXsXc3BwXFxedOqT6b8xIIpGQO3duHj16RKdOnTJ88x4cHIyJickf5+gDFCpUCBcXFzGVX0RtVq5cScuWLWnevDnHjx/nzJkzZM2ald69eyfbHczcTEprt0xsmZyb6b1y0LJWJkoXMsTE6MefeYkErC1l/FXBhH6tsrBtah7GeGanmL2h6OinE7/Ojvw3IynFNTIyEkEQvlurK5VKkcvlYjrWf1AqlVoV6FMqlVy9epX+/fun6zo9e/Zkzpw5TJw4kXXr1qXrWupw7tw5Tp8+ze7du3+adSKTSCmaxZpbIU9RoNuJQ1JBQpnsBTQ23+TJk1mzZg1eXl5Ur149xfeXKFECpVLJ5cuXqV27dorvL1y4MNu3b+fmzZuMGTOG1q1bM3XqVCZNmkTDhg0z5EFauXJlhgwZwvz58xEEARcXFw4cOICzs3O6r50SXF1dGTt2LDdu3EgX7Q0R3SYgIABBEMiRI0e6rWFlZcW7d++Ii4v7pr1masifPz8XL17E3d2dJk2aMGnSJEaNGpXhG+S9e/fy5MkT9PT0aNGiBTlz5vzGKZBKpVrT1QkODv7jUvi/pHPnznh6evLy5UtVVwgRke8xY8YMhg8fTs+ePVm4cCESiQRHR0fevn2LgYGB2vNIJQLlHI0o55h4wKZUKnkfKif4k5zYeCVyuRIDPQFjIwlWufTQ1xOd+oxEjOxriT59+rB06VLmzJnDsGHDsLCwwM7OjlatWuHu7k6xYsWQSCQULFgQa2trbZurU0RHR5OQkKC1jcSzZ8/4+PFjutTrf4mxsTGjRo3Cy8uLBw8epOta6jBu3DhKlSpF48aNkx3bxMpF5x19ALlSQYP8FTQy1/r16xk7diyTJ0+mXbt2qZqjQIEC5MiRI81pvyVLluTAgQNcunSJHDly0LhxYypUqMCJEycyRIF+4sSJODg4YGhoSKFChXB1dWXfvn3pvm5KKFu2LCYmJmLm1B9KQEAAFhYW6VrqYmVlhVKp5M2bNxqb08TEhO3btzNx4kTGjBlDy5YtM0ycMyQkhIYNG9K0aVOGDh3KgAEDaNy4MStXrsyQ9dUlJCTkjxPn+5IWLVpgYmLC2rVrtW2KiI6iVCoZNmwYw4cPZ/To0SxatOirII6hYdqi7IIgkCubjKJ2BpQpZEg5RyNKFDSkQD590dHXAqKzryVcXV3p1q0b3bt3x8bGhvDwcLZt28bmzZtZs2YNt27dwtHRkfLly5M3r2bFw351klqNaSuy7+fnB5Ah0cAuXbqQJ08eJkyYkO5r/YwzZ85w7tw5xo8fr9YDoHKuYmTW1+12KRJBoHS2AuQ3tUjzXKdOnaJz58507tyZkSNHpnqepEi4Jmp8AZydnTl16hSnTp1CIpHg5uZGtWrVuHjxYvI3pwFDQ0O8vLxUqfz169enadOmLF26NF3XTQn6+vpUrlxZdPb/UNKz7V4SSQf1qVXk/xGCIDBmzBh27drFoUOHqFSpUrqKuSqVSt6+fUvr1q05ePAgVatWZePGjWTOnJmrV6+yfPlyjh8/nm7rp5Q/PbJvampKq1atWLt2rVimJPINcrmcrl27MnPmTObNm8ekSZPE9PnfHNHZ1xIKhUKVnj99+nSioqJUqt1J7XXy5s2Ll5fXL6O+m1GEhYUBaC2y7+fnh5WVVbqmfyZhYGDAmDFj2Lp1a4pF2zSFUqlk7NixlClThgYNGqh1j0wipYlVRSTo7gNEoVTSzKZSmue5c+cOTZs2pWbNmixZsiTND82KFSty5coVjbavc3V15dKlSxw8eJDw8HAqV65MnTp1uHbtmsbW+C8lS5Zk/PjxzJkzh759+9K7d2969uzJqFGjdKa/vaurKxcuXPglW5qJpI2AgIB0rdcHyJcvH4DG6vb/S9OmTbl06RKhoaE4OTlx6dKldFlHEAQeP36Mj48Pf/31FydOnEAQBMLCwjAyMsLe3p5MmTLpzOf6T4/sA3h6evLq1StOnTqlbVNEdIjY2FjVQdC6devSvRxVRDcQnX0tIZFIVDV8JiYmJCQkMGLECFasWMGhQ4cYPHiw6ks6qUWfSCJJzr62IvtJKs4Zhbu7O7a2towbNy7D1vySU6dOcfHiRSZMmJAiR7aRlbPOCvVJEMhtnA0XiyJpmuft27fUrVsXW1tbtm/fjp6eXpptq1SpElFRUdy6dSvNc32JIAjUq1ePa9eusX37dl68eIGTkxPNmjVLt37zQ4cOpVy5cnh4eDB58mRmzZrF1KlTcXd31+hhRmpxdXUlKioKX19fbZsiksFkRGTf0NCQXLlypZuzD4k6H35+fhQqVIhq1aqxZs0ajc39/Plz1f8+ceIEkZGRxMTEUKNGDdq2bUuuXLlYs2YNkydPZseOHdy/f19ja6eFPz2yD1C+fHmKFCkiCvWJqPj8+TMNGjTgwIED7Nq1i44dO2rbJJEMQnT2tUiS49SzZ08sLCw4c+YM3bt3p1mzZsydO5fo6GgaNmyIubm5dg3VMZLS+LUR2ZfL5Vy7di1DnX09PT1mzpxJ/fr1MzxykhTVL1euHHXr1k3RvdkNM9PbsVE6WZY2FCgZVbINMsnPlWZ/RkREBPXq1UMQBA4dOoSZmZlGbCtdujQGBgbplmovkUho0aIF/v7+rF+/nhs3blCsWDHatWvHkydPNLqWTCZjw4YNBAQEMHToUAYPHszmzZvZsmUL9erVIyIiQqPrpZSSJUtibm4upvL/gWREZB80q8j/I3LkyMGJEyfw8PDA09OTAQMGqDIFU0NsbCx9+/bF2dmZiRMnAonOIyQKtV64cIGWLVty9epVqlevTpcuXZg3bx4BAQEaeT9pRYzsJ+4vPT092bt3L8HBwdo2R0TLhIaGUrNmTXx8fDhy5AiNGunm3kwkfRCdfR2gY8eOjBs3DhcXF+zt7cmfPz+Wlpa0bduWdevWYWxsrG0TdQptRvYfPHhAZGRkhjr7kJiu2bFjxwyvqzp27Bg+Pj5MnDgxVWs3zF+BktnsEHQjuxMAAYGWtlUpntUm1XPEx8fTokULnj9/zuHDh8mdO7fG7DMwMKBs2bIaq9v/EVKplA4dOvDgwQOWLFnCmTNnKFSoEF27dtVo/W+BAgWYPXs2y5Yt48iRI7Ru3ZqjR49y5coVqlatqlUHQSqVUq1aNdHZ/8NQKpUEBgb+Ns4+JGpQLFu2jEWLFuHl5cX58+dTNY+vry8lSpRQCXaFh4eTkJCAjY0NNWvWBMDIyIg6depw4sQJKlSowMWLF+nWrRulS5fW5FtKFUqlkuDg4D/e2Qdo3749SqWSjRs3atsUES3y7t07qlSpwpMnTzhz5kyqOgWJ/NqIzr6O0KNHDy5cuMDRo0c5evQo9+/fx8vLS4zqfwdtRvaTxPkyelMjCEK6qkZ/D6VSybhx43B2dsbNzS1Vc0gECSNLtEZfqocuiPNLELA0zkoXhzqpnkOpVNKjRw9Onz7Nnj17KFq0qAYtTKRixYp4e3tnSCaHvr4+3bt358mTJ8ycOZM9e/Zgb29P//79ef/+vUbW6N69O3/99Reenp6EhoaqauU/fPiAs7OzVrtNuLq64uPjk2GK5iLa59OnT8TGxqZ7Gj9knLMPic+JXr16qTb3KSU6OpoJEybw6NEjmjdvzoMHD5g9ezYymYxixYrh4eFB0aJFiY6OxsPDAw8PD168eMGYMWNYunQpWbJkSYd3lTIiIiKIj4//49P4ITHjo1GjRqxevVpn9BREMpYnT55QsWJFwsLCuHjxothm9g9FdPZ1CEEQsLW1pVChQloTn/sVCAsLw9jYOMOdX0is13dwcNCaXkBGcvjwYXx9fVMd1U/C0jgrY0u11braqwQBQ6k+U5w8MJCmvuf1zJkzWb16NatXr8bV1VWDFv5LxYoVCQgI0LiK988wMjJi4MCBPHv2jDFjxrBu3TpsbW0ZMWIEoaGhaZpbEARWr15NTEwMPXv2BKB48eL4+PhgamqqOtzQBq6ursTFxaWbuJmI7hEYGAiQYZH9V69eZagqur6+foqej8+fPycqKor79+9z5MgRzM3NGTVqFJkyZSI2NhaFQgFAq1at8PLyomXLlrRt2xYPDw8uX76s9W4xXxISEgIgRvb/j6enJ/7+/qpAhcifw+3bt6lUqRL6+vp4e3tTqFAhbZskoiVEZ1/klyM8PFyrbfcyOoU/pWjiBD8pql+pUiVq1KiR5vmqWBZneImWaZ4ntUgQkEmkzC7fFftMqU+5VygU1KpVi7lz59K+fXsNWvg1Li4uAFpxgM3MzBg9ejTPnz+nf//+LFy4EBsbGyZNmpSmGvs8efKwZMkStm3bxtatW4FEtfILFy5QrFgxatasyZ49ezT1NtSmSJEiWFhYiKn8fxBJpSMZEdm3trYmISFBZ+rZ/8uYMWOoUaMG+/btQ6FQIJPJ+PTpE48fPwYSy4okEgn79u3j6tWrlChRgk2bNrFhwwZWr15NuXLltPwOviapPl2M7CdSq1Yt8uXLJwr1/WF4e3tTpUoV8uTJw4ULF8ifP7+2TRLRIqKzL/LLERYWppXMh7i4OG7evKkTzr5cLufmzZssWbKEFi1aMHHiRM6cOaOx+Q8cOMC1a9fSHNX/krr5yjGmZFuE//9fRiERJBhK9fnHuSfF0lCnD4nidiVKlEj3djXZsmWjUKFCWot2A2TJkoUpU6bw7NkzOnXqxJQpU7C1tWXOnDlER0enas5WrVrRsmVLevbsydu3b1XrHDt2jIYNG9KsWTMWL16sybeRLIIg4OrqKjr7fxAZ6exbWVkB6dd+L7U8f/6ckydPMmvWLGJiYsicOTOxsbHY29sDMGXKFJXDf+TIEdq0aUPfvn2BxO9BXU0LFyP7XyOVSnF3d2fLli1ERkZq2xyRDODo0aPUqlWLkiVLcubMGSwsLLRtkoiWEZ19HePdu3e8efNG22boNGFhYVqJ7N+5c4e4uDidqHlavXo17u7u9O7dm127djF+/HgaNmzIjRs3EAQhTSmjSVH9atWqaUTI5f3798THxyOXy3HLW4bZ5buSWd8ESQY4/AJgZWrBskr9cMxirZE5pVJphpQkaDO1/UssLCyYN28eT548oVmzZgwfPhw7OzuWLFmSqv70ixcvxtDQEE9PT5XDYGBgwJYtW+jfvz+9e/dm+PDhqtThjKBGjRr4+fmpxD9Ffm8CAwMxNTXF1NQ03dfSRWd/3Lhx2NnZ0bNnT7Jnz8758+epW7cuFStWpEqVKpiZmXHr1i1q165N+fLlqVevHtHR0TRq1Ej1mdV2WdaPECP739KpUyc+f/7Mjh07tG2KSDqzdetWGjRoQM2aNTly5IhYEiwCiM6+zjFu3DiaNWumbTN0mvDwcK18gV29ehWpVErJkiUzfO0vmTJlCt27d+f27dsYGxtTr149SpUqRWRkJNOmTQMSHdLUsnfvXm7evKmROkyFQkHTpk1p1KiRanNYLocDm6sNp1aeRJHD9IjySwQJEgTcC7ixuvJAbMxSHsHTduSqYsWK+Pv78+nTJ63akUTevHlZtmwZDx48oGbNmvTu3RsHBwfWrVuXojZf2bJlY/Xq1Rw7doxly5apXpdIJMydO5e5c+cyY8YMOnbsmKrDhNTg6uqKQqFItYK5yK9FRrXdg8SymCxZsuiEs590gPbhwwcAXr16hbW1NTY2NqprI0aMoG3bthgZGfH8+XP8/PywsrJi9+7dDB8+XGed/CRCQkIwMjISuxh9gbW1NTVq1BBT+X9zli1bRps2bWjdujW7du3CyMhI2yaJ6Aiis69jREZGYmJiom0zdBptRfb9/PwoWrSoVjYRnz9/5tWrV8TGxqrSjevWrcu5c+fYsGEDx48fx9HREQsLC1W3gtRE9xUKBePGjaNGjRqpUnP+L+vWrePSpUsMHToUieTfrxszfWNGl2rL9LKeZDdMPLiRCGn/OpL+fw57M0tWVR5IJ4fa6EmSF6r6r2OfkJDw1aZWG45/xYoVUSqVXL58OcPX/hl2dnZs2LABf39/nJycVArd27ZtUzsaX6dOHbp3787gwYNVqcJJDBgwgK1bt7J9+3bq1aun+n1OT2xsbLCyshJT+f8QAgMDMySFP4mMVOT/EYsXL2bOnDkAzJgxg7JlyxIXF0dcXByPHz9WfT9bWVnxzz//cPLkSfbu3YuXlxf+/v40btxYi9arT3BwsBjV/w6enp5cvHiRhw8fatsUEQ2jVCqZOnUqPXr0oE+fPqxbtw49PT1tmyWiQ4jOvo4hOvvJoy2BPj8/P62k8IeHh7NkyRJWrVpFVFQUV65cQSKR4OnpSZkyZciSJQvZsmXDxsaGgwcPMmzYMCB10f3du3dz584djUT1Q0JCGDp0KO3bt6datWrfHVMxpyM7aoxhellPymRLrBWVCJIURfsFAIUSqSDBNXdJllbsy6rKAymQOU+KbT5y5AjDhg3DxcWFESNGqITktBHNKlCgADly5ODixYsZvrY6FClShB07dnDt2jXs7Oxo1aoVpUuX5sCBA2odjsyaNQtLS0s6duz4TWZAy5YtOXbsGH5+flSpUoV3796l19sAxLr9P42MjOyD9px9pVKJQqGgV69e9OnThw0bNnD69GkyZcrEjBkzkEgkXL16lc2bN391qCaTyXB2dqZhw4a0bdv2l9qTBAcHi/X636Fx48ZkyZKFNWvWaNsUEQ2iVCoZPHgwo0aNYsKECcyfP/+rwIqICIjOvs4hOvvJow2BvqioKO7evasVcT6JRMKOHTtYuHAhpqam/PU/9s47LKqz6cP3WTqCIIhEUcGKvXfsxhq7xt5iiRq7sRuxJmqMvSf2FnvD3nsDBUVU7AoKCNI77D7vH7yQGKVvA/e+rvf6Ptlznpmz2T175pmZ37RsiUKhSBkf9f79e6ZPn86xY8d49+4d69evTxHry0xGWi6XM3PmTFq0aIGTk1O2/Z4yZQpyuZxFixaleZyeJMPJtjxL6gzj7yZTGVCqObVtymBhkP73oICxJRWNivBy02Umm7XCuWofKuRzyFRwrlAokCSJ48eP065dOxYtWoSbmxsLFy5k4sSJLFu2LMNrKRNJkrSmbz8tqlWrxvHjx7l27Rr58uWjffv21K1bl/Pnz6d5npmZGVu3buX27dtf/Iw0btyYa9eu8fHjR+rWrcujR49UdQlAUin/gwcPCAwMVKkdHZrH399frcG+g4ODWsdoJqNQKJDJZNSvX59ChQrx/Plz/vrrL/z8/GjcuDHOzs4ALF++nMuXL6t1PKCq+Pjxoy7Y/wLGxsb06dOHrVu3kpCQoGl3dCiBxMREBg0axJIlS1i5ciXOzs5a32ajQ0MIHVpFnTp1xMCBAzXthlZjZ2cnZs6cqVab169fF4C4e/euWu0m8/PPPwtJksS+fftEaGioGDRokMiTJ49o2bKlcHBwEEZGRkKSJGFpaSns7e3F7t27M23j77//FoC4efNmtv1Nfr/WrFmTrXUCY0LFdX8vccrHVUzdvUTYNi8vXF7eEK4fvEVYXKQQQgi5XC6++eYbMWHChCzb8fb2Fvny5ROSJIk9e/aIIUOGCEmShJ2dnVi9erV48eKFSExMzNa1ZIVFixYJExMTER8fr3bbWUGhUIhz586J2rVrC0A0adJEXL9+Pc1zpkyZIgwMDIS7u/sXX/fx8REVKlQQlpaW4sqVKyrwOglfX18BiL1796rMhg7tIF++fGL+/Plqs7dkyRJhYmIiFAqFWuz5+vqKiRMnivPnz6f8beLEicLAwEDkz59f/Prrr0IIIaKjo0WzZs2EJEmiQoUK4smTJ2rxT5U0adJEdO/eXdNuaCX3798XgDh8+LCmXdGRTWJiYkTHjh2Fnp6e2LFjh6bd0aHl6IJ9LaNChQpi1KhRmnZDqzEzMxOLFy9Wq81ly5YJIyMjERcXp1a7yQQEBAgjIyNhbm4udu/eLaZNmyaKFSsmJEkSkiQJExMTUbFiRfHbb7+JiIgIERERIYKDg4UQIkNBamJioihTpoxo3bp1tn1NSEgQlSpVEjVr1lRqgLx48WKRJ0+eL742ePBgUbp06UyvqVAohEKhEAsXLhSSJIm5c+eKuLg4UaBAAaGnpye2bt0qTpw4IVq1aiUePnyY3UvINDdu3BCAuHPnjtptZweFQiGOHj0qKlWqJADRpk0bce/evS8eGxcXJypXriwqVKggYmJivnhMSEiIaNy4sTAyMhL79+9Xmd+Ojo5i2LBhKltfh+aJjY0VgNiyZYvabB44cEAA4sOHDyq3FRoaKmQymZAkSYwZM0a8fPlSCCGEn5+faNy4sZAkSVStWlUcO3ZMCCHEzZs3hSRJonz58iIkJETl/qmaSpUqiREjRmjaDa2lRo0aom3btpp2Q0c2CA8PF02bNhXGxsbCxcVF0+7oyAHoyvi1DF0Zf9rI5XIiIyPV3rPv6upK5cqVMTQ0VKvdZAoUKMDcuXOJjY2lZ8+ezJ8/nzdv3mBqakq1atUYMWIER44cYerUqVy9ehUHBwd++eUXIGO9+7t37+bJkydK6dVfuXIlDx8+ZO3atdmaCvBfAgMDsbGx+eJr7du35+nTpxkWH0ouV5UkCUmSCA4OBiA+Pp5KlSoRGBjI77//Tr9+/XB2dubKlStZni2fHapVq4aRkZHWl/L/F0mSaNeuHe7u7uzevZvnz59TrVo1vv/++8/K8Q0NDdm2bRtPnz5NKSv+L5aWlpw6dYpOnTrx/fffs2LFCpX4revbz/0ktz+pW6AP1DN+z8LCgrlz5wKwfft2zp49S0REBN988w0jRowA4MmTJ2zdupWXL19Sp04d7ty5w8OHD7G0tFS5f6pGJ9CXNoMGDeLEiRMq10HRoRqCgoJo1qwZbm5unD59mrZt22raJR05AF2wr2Xogv20iYiIAFB7z76bm5tG+vX/zahRo9i4cSPFihWjfPny1KxZkzFjxjB8+HAsLS2ZN28eO3bsoEqVKtjZ2bF27VpOnDgBkOZotMTERObMmUPbtm2zfY3v3r3D2dmZn376ierVq2drrf+SlvBSs2bNMDEx4dy5c+muI4RI2YQ4e/YsAPny5QNg/vz5PH36lMGDBzN+/HgmT57M3bt36datm0bEGY2MjKhZs2aOC/aTkclkdO/eHS8vLzZv3oybmxsVK1akX79+vHz5MuW4SpUqMXfuXP744w+uXr36xbWMjIzYuXMnP//8M2PGjGHSpEkZVv/PKE2bNuXp06f4+voqdV0d2oOfnx+A2gX6QHXB/rNnz3j+/HlKADdt2jQaNGhASEgIW7du5c6dOwB8++23WFlZERsby/79+1Pul5q4t6kCIYSuZz8devbsiZGREVu3btW0Kzoyia+vLw0bNuT169dcunRJKROTdHwlaLq0QMen5MmTRyxZskTTbmgtr1+/FoA4ffq02myGhoaqvewzLUJDQ4W/v7/w9fUViYmJon379inl/MbGxuLw4cPizp07QpIkUalSpXTX27p1q9L0CL7//ntha2urknLQDh06pNlm0LVrV/Ho0aM019i/f79Yt26dEEKIvn37Cjs7O3Hx4kURFBQkGjZsmPI+dunSRXTo0EFIkiRKlSqV0hIhl8uVd0EZZPLkyaJgwYJq6/dVJXFxcWL16tWiYMGCQl9fXwwdOlT4+PgIIZJaSerXry+KFSsmwsPD01xn2bJlQpIk0bNnTxEbG6s0/wIDAwUgtm3bprQ1dWgXhw4dEoAICAhQm02FQiFMTU2V3n4WExMjfvzxR1GoUCFhbW0typUrJ37//XchhBCvXr1KuZ9169ZN7Ny5U/Tr10/Y29sLJycnMWfOHKX6og1EREQIQOzcuVPTrmg1ffv2FSVLlswVvylfC97e3qJo0aKiaNGiwtvbW9Pu6Mhh6IJ9LUKhUAhJksT69es17YrW8uDBAwGIW7duqc3m+fPnBSC8vLzUZjOjnDt3LkWcr2vXrkKSJGFrayuEEKJFixZCkiRx4sQJIcSXA1WFQiEqV64sOnbsmG1fTp06pdIHLScnJ9G3b99UX3/58mWaGgGPHj1Kefht2rSpkCRJODk5ibdv3wohhDh9+rRo165dyjHJmyXJP6yaEOgTQoijR48KIKX3NjcQFRUlFi1aJKytrYWRkZEYO3asCAgIEC9evBB58uQRgwcPTneNffv2CSMjI9GkSRMRGhqqNN8qV64sBgwYoLT1dGgXa9asEXp6emrfuCtXrpxS9Xjc3NxEmTJlhCRJokCBAsLU1DTlvvXnn38KIYRYv379J/czSZLEwoULUzYvM0JCQoJGNjmzwqtXr9SeDMiJXLp0SQDi0qVLmnZFRwa4e/eusLGxEWXKlEnZHNehIzPoyvi1iJiYGIQQmJmZadoVrSUsLAxQbxm/q6srefLkwdHRUW0200P8f6Seo6Mj8fHxGBkZsW/fPpydnfnw4QOTJ0+mcOHCANy7dw8g1dmrHTp0YNasWdnyJzY2lpEjR9K0aVN69uyZrbVSI62efUgab5WWRoAkSfTv3x+AK1euYG1tzfz58ylSpAiQ1AqwZcsWtm/fzi+//MKePXs4cuQIpUuXRi6XK1V/IDPUq1cPIMeW8n8JU1NTJkyYwMuXL5k+fTqbNm2iePHibNy4kXnz5rFhwwaOHTuW5hpdu3blzJkzuLu706BBA969e6cU35L79kUmxlbqyDn4+/tja2ur9lnU9vb2Sivjj4+PZ+3atXh7e9O9e3ceP37Mpk2baNasGQCLFi0iPDycH3/8kenTp9O4cWO++eYbpk+fzqRJk1LaltJDCMHTp0+pUaMGBw8eVIrvquTjx48AujL+dGjYsCElS5Zkw4YNmnZFRzpcuXKFJk2aYG9vz9WrV1Oe63ToyBSa3WvQ8W8+fPigG4uSDseOHROAePfundpsdu3aVTRs2FBt9jJKcrZl4sSJQpIkMXXqVHH06FFRoEABYWxsnJLJOX78uBBCpFqyl5oCemaYOXOmMDAwEI8fP872WqmhjHFZ27dv/yTL1bNnz092ygMCArRyzF2ZMmVytUr8x48fxZQpU4SpqanImzevKF26tChQoIAIDAxM99yHDx+KIkWKiMKFCytlYoKLi4sAxPPnz7O9lg7tY8iQIaJ69epqtzts2DBRuXLlbK2RrObv4+MjrK2tU8axCpFULePi4iJsbW2FJEliw4YNQoikiqS4uLgsZwSjoqJEt27dBCBmz56t1aXfydVlr1+/1rQrWs/8+fOFsbFxrpjAkFtxcXERxsbGomnTpum2tunQkRa6zL4WERUVBaAT6EuD8PBwQP2ZfU2L86WFs7MzmzZt4s8//2TGjBkEBgYSFxcHQN++ffn222/x9/dHkiTgc7E+IyOjbNl/9uwZCxYsYOLEiZQpUyZba6VGYmIiISEhWc7YKBQKEhISeP36NaVKlaJLly4YGBiwe/duevToga+vL48ePWLw4MHMmTOH0NBQ5V5ANqlfvz7Xrl3TtBsqw8rKivnz5/PixQt++OEHXr16RWBgIM2aNSM6OjrNc8uXL8/NmzexsrKifv36XL58OVu+NGzYED09PZ0qfy7F399freJ8yWQ3s79kyRJatGjB+vXriYyMJDExkTx58uDl5UVISAimpqaUKVMGU1NTgJQKQUmSMDQ0zHJG0NTUlN27dzN37lxmzpxJ9+7dU55VtA1dZj/j9O/fn4SEBP7++29Nu6LjC+zcuZOOHTvSqlUrjh8/jrm5uaZd0pGD0QX7WoQu2E+fsLAw9PT01PYeBQYG8ubNG60M9pPLUM3MzDAxMSE4OJgHDx4AScHh1q1b2bRpE69evWLEiBGsW7eOs2fPsnTp0k/WSd4EyApCCEaOHEnBggWZPn161i8mHZIf4tIq4/8SySP2ZDIZBgYGTJ48mYMHD7Jr1y7WrFmDtbU1N27coFGjRnTo0IFjx44RFRWldSOonJyc8PLy0rpNCGXzzTffsGzZMl68eEHTpk158OABdnZ2rFu3jvj4+FTPs7Oz48qVK1SvXp0WLVqwd+/eLPuQN29eatSowfnz57O8hg7txc/PT61j95Kxt7cnNDQ0ZcM6o9y/f59q1aoxYcIE7t+/z/379yldujQVK1YkKiqK48ePc+DAAQC8vLwIDAykWLFiVKlSBUi9fSszSJLEL7/8wsGDBzlx4gT169fn7du32V5X2QQFBWFkZJSy4aEjdQoWLEibNm3YuHGjpl3R8R9WrlxJnz596Nu3L/v27cPY2FjTLunI6Wi6tEDHP9y+fVsA4v79+5p2RWsJCQlR6/tz/PhxrS7pTS6pfP/+vZAkSdSoUUP89ddf4u3btyll/hcuXEgR8ZPJZEKSJKW9h3v37hWAcHFxUcp6qfHw4UMBiOvXr2f4nISEBCGEEPHx8WLNmjVizJgxYtGiRSliblFRUeLAgQPC0dHxExX+ZLSpXPXp06cCSBFb/Fpo3769MDAwEIAoVqyY2LJlS5pCiXFxcaJ3795CkiSxdOnSLNudNm2asLGx0arPgA7lULhwYTFjxgy1271+/boAxIMHDzJ8jru7uyhSpIiQJEkMGjRI+Pn5CT8/PxEYGCjOnz//yRSW6tWrp/x77ty5KvvsPnjwQDg4OAgbGxtx9epVldjIKs7OzsLOzk7TbuQYDh8+LADh7u6uaVd0iKRnjlmzZglAjB8/PscIY+rQfnTBvhaRrPqurYHl18js2bOFlZWVVj/0Jwe1N27cEN7e3iIuLk4IkbQxcvLkSTFgwAChp6eX0sffuHFj4ebmlm27YWFholChQkpR8k+PixcvCiDDI2f+HRB269btkz795s2bi1u3bqX8N339+rWYMWOGWLlyZcrfkt9TbUGhUAgbGxsxffp0TbuiVoKDg4WdnZ2oU6eO6NSpkwBEmTJlxN69e1N9EJLL5WLSpEnZemA6d+6cAISnp2d2L0GHFiGXy4W+vr5YvXq12m37+voKQBw9ejTD56xYsUJIkiS6d+8uhBBi06ZNokmTJiJ//vxi6NChokePHqJatWpCkiRhbm4uSpQoIY4cOaKqS0jhw4cPomHDhsLAwCBFG0Ab+OmnnzI0blZHEvHx8eKbb74RI0eO1LQrXz1yuVyMHj1aAOLXX3/V6mdOHTkPXbCvRSSP2PLz89O0Kzr+T9u2bUWLFi007UamuXv3rhg0aJAwMTFJCXKNjIyEhYVFylzy7P6YjBs3Tpiamoo3b94ow+U0Sa4gyMjIqH9f19ChQ4UkScLR0VEMGjRI6OvrC0mSRNWqVcXp06e/KE6oqRF76dGxY0fRuHFjTbuhds6cOSMAsWLFCuHm5iZatWolAFGlShVx7NixVD/HK1euTAmUkj/zGSU6OloYGhqK5cuXK+MSdGgJgYGBAhAHDx5Uu225XC4MDAzEypUrM3zO3r17U+7fDg4OQpIkUaRIEWFmZiYMDAzE+PHjxZMnT8T169fFxYsXRVRUlAqv4FPi4uLE0KFDBSDGjBmjFRuk3bp1E02bNtW0GzmKyZMni3z58ilFqFdH1oiPjxd9+vQRkiSJtWvXatodHbkQXc++FqHr2dcuhBC4urpSo0YNTbuSKTw8PKhfvz6bNm0iNjaWBg0acPLkSQYNGkR4eDjLly8HyNZosfv377NixQpmzpxJ0aJFleV6qgQFBaGvr5+hXvpkDYINGzbw559/Urt2bTw8PLCyskIul2NoaIiHhwcjRoxg//79REZGfnK+pkbspYeTkxO3b98mISFB066olebNmzNy5EgmTZpEnjx5OHnyJFevXiVv3ry0bdsWJyenL4rpjRw5kv3793P48GFatmyZKb0DExMT6tWrpxPpy2X4+fkBaKRnXyaTUbRo0UyJ9LVp04Zhw4ZhbW1NmTJlWLFiBW/fvmXIkCEkJiYSHR2No6Mj9erVo3HjxmrtVTc0NGTdunWsWbOGVatW0bp1a4KDg9Vm/0t8/PhRJ86XSQYOHEhISAiHDh3StCtfJTExMXTp0oXdu3fz999/M2zYME27pCM3oundBh3/sGHDBgFobWbxa8PHx0cA4tChQ5p2JcMkZzlfvHghpkyZIg4fPpwyWsfT01PUqlVLDB8+PFu9YHK5XNStW1eUK1cupWVA1cyePTtTO97h4eGiadOmQpIk8fz5c3HkyBEhSZKoUKGCGDNmjLCyshKSJIk8efIIX19fFXquPG7cuCEAcefOHU27onaioqJE6dKlRc2aNVMyiAqFQpw5c0bUrFlTAKJp06bi5s2bn5177do1kS9fPlG+fHnx9u3bDNucM2eOsLCw0N2PcxGnT58WgHj16pVG7Ddt2lR8//33mT4vMjJSJCQkCIVCIVatWiX09fWFgYGB2LZtmxBC8/oiFy5cEFZWVqJkyZLi0aNHGvOjcuXKYvjw4Rqzn1Np0KCBaNasmabd+OoIDQ0VDRs2FCYmJuLkyZOadkdHLkaX2dcioqKiMDY21trM4teGq6srgFYq8adGclbb3t6e+fPn06FDh5RseIUKFdi3bx9Lly5FJpOhUCiyZGPTpk3cvHmTtWvXYmhoqCzX06Rs2bLp7ngnX4+7uzuxsbFMnz6d33//HSEEvXr1AuDQoUMpo9VKlCjBwoULsbOzU7n/yqBatWoYGRlx/fp1TbuidkxNTdm2bRt3795l/vz5QNJnvXnz5ty+fZvDhw8TGBhI3bp1adeuHR4eHinnOjk5cf36dSIjI6lbty6enp4Zstm0aVPCwsJwd3dXxSXp0AD+/v6AZjL7kPXxe0II5s6dS/HixRk1ahTGxsZs2LCBvn37AtmbqKIMmjRpgqurK0ZGRtSpU4cTJ05oxA9dZj9rDBo0iPPnz/Pq1StNu/LV8OHDB5o0acKDBw84e/YsrVq10rRLOnIxumBfi4iKitKV8GsRrq6uFCxYMMcEg/8mecNI/L9UPzExkVevXnH37l2OHDlCcHBwykgmkYly/qCgICZPnkz//v1p2LCh8h1PhS5duqT5uhACmUyGh4cHtWrVolOnThQtWpQJEyZw584doqOjqVixImFhYUyePJn69etz/fp1RowYkXK+tmNkZETNmjW/ymAfoHbt2kybNo05c+Zw9+7dlL9LkkSHDh3w8PDg77//xtvbm6pVq9KtWzeePHkCJG0W3bx5ExsbG+rXr8/FixfTtVezZk3y5MmjK+XPRfj5+WFpaamxUVbpBfsKheKL96I8efIQGBhISEgIAwYM4MmTJ/Tr10+Vrmaa4sWLc/PmTRo3bkzbtm1ZtGiR2u+rQUFBWFtbq9VmbqBr167kzZuXzZs3a9qVr4K3b9/SoEED3r9/z+XLl3FyctK0SzpyObpgX4uIiorCzMxM025oLaGhoQQEBHzWY60qcmK//n9JzvjIZDKKFSuGo6Mje/bsoWPHjhw8eBAgUxn+yZMnI4Tg999/V4m/qZHWQ6NcLkeSJOLj41m0aBFyuRwPDw969+7NlStXKFWqFHp6enh6etK4cWNevHhBtWrVKFCgQMrams6MZZTkLHVO2JxQBTNmzKBSpUr07duXmJiYT16TyWT06NGDR48esXHjRm7fvk358uUZMGAAr169omDBgly+fJnatWvTqlUrdu/enaYtQ0NDGjRooAv2cxH+/v4ULFhQY/bt7e0JCAj47LObkJDA7NmzGTVq1BfvRZIksXjxYq5du8amTZu0dgPa3NycQ4cOMW3aNCZNmkS/fv2IjY1Vi+3o6GhiY2N1mf0skCdPHnr27MnmzZuRy+WadidX8+TJE5ycnEhISOD69etUqlRJ0y7p+ArQBftahC6z/2XkcjmHDx9m0qRJ9O7dm/nz5/P8+XPOnDlDRESESmwKIXBzc8tRJfxpkZzFd3R05MCBA6xZs4YjR44QFhaGnp5ehgL+69evs2nTJubPn58SKKuL1Fpb5HI5enp6JCQksHbtWry8vDAxMSE6Opq7d+8ydOhQrl27xsyZMylYsCAGBgb07t2bX375BchZgT5A/fr18fPz+2rLLQ0NDdm2bRsvX75k+vTpXzxGX1+fgQMH8vTpU5YvX87p06cpXbo0w4cPJyIigmPHjtG9e3d69uzJ4sWL09w4adq0KVevXiU+Pl5Vl6RDjfj5+WmshB/AwcEBSMrsJfPo0SPq1q3L3Llzsba2TvVebGJiQoUKFdThZraQyWTMmzePv//+m/3799OoUSPev3+vcrtBQUEAusx+Fhk0aBC+vr6cOXNG067kWtzc3GjQoAEWFhZcu3aNEiVKaNolHV8LGtAJ0JEKQ4YMETVr1tS0G1pFQkKC+Ouvvz6Zk96jRw+xY8cOIUmS2Lx5s0rsPnv2TAC5VjQlWaDv/fv3n/w7NeLj40XFihVFrVq1siXupyratm0rJEkSLVq0EBcuXBDdu3cX5ubmQk9PT5QrV0788ssv4vXr18Lb2ztFcE0bRkVllo8fPwogRZjra2Xx4sUCEBcuXEj32KioKPH7778LKysrYWxsLMaPHy8CAgLE1KlTU8aGpfaZdnNzE4C4evWqsi9BhwZo1KiR6NWrl8bsv3z5UgDi9OnTIjExUSxatEgYGRmJMmXK5ErhTVdXV2FnZycKFSqk8uu7e/euAISrq6tK7eRWFAqFqFixoujSpYumXcmVXLhwQZiZmYk6deqIjx8/atodHV8Zusy+FqHL7H/O8+fPmTZtGjY2NtStWxdIyo7Ur18fgNu3b6vEbrI4X04v40+N5Ex/coY++d+psWLFCry8vFi7dm26xyobIUSalQeXLl3ixIkTmJmZsWDBApo0acLu3bsZOnQoCoWCx48f8+eff7J//35Kly6dUsmgr6+vxqtQDlZWVpQtW/ar7dtPZuzYsTRq1IgBAwYQFhaW5rGmpqZMnDiR5y9fMHLWRPY9PE+tId/hV0jBT3/NYs+j83Qa25+giJDPzq1SpQqWlpa6Uv5cgqYz+4ULF0Ymk+Hq6kqTJk2YNGkSI0aM4N69e7mmiuzf1KhRA1dXV4oWLUqDBg3YuXOnymx9/PgRQFfGn0UkSWLQoEEcPXqUwMBATbuTqzhy5AitW7embt26nD17FisrK027pOMrQxfsaxGRkZG6YP8/vHv3jqCgIAYOHMj69esBsLCwSCm9VdVcX1dXVxwcHHL0g4PIQF/3f4X8voSvry8zZ85kxIgRVKtWTWn+ZZTY2Ng0Nxisra3Jmzcvenp6eHl5pZRcL1q0iKJFi2JtbU1gYCBbt27Fy8sLSH9zQ5tJ7tv/mpHJZGzZsoWQkBDGjh37xWOEEDwIfsUKr0MMvbacrtd/41b5SOxHNaXI4AY8KxrH/QKhlBzdnOAWNnS6PJfOZ2fhfHcrh15fJzIhBj09PRo3bqwL9nMJmu7Z19fXx8LCgtmzZ+Pr68ulS5dYvHgxJiYmGvNJ1RQsWJCLFy/So0cP+vTpw5QpU1TSF64r488+ffr0QZIktm/frmlXcg1bt26lS5cutGvXDhcXF50ulw6NkHOfeHMhusz+54SHhwNJu/XJfX/58uUjNDQUQGXZ2Zzerx8TE0NiYiIBAQEZOj6tvvUZM2Zgbm7O3LlzleVepnj//j0bNmxI9XVbW1tsbW0JCwtj1qxZnDlzBn9/fw4ePEhwcDADBgzA2NiYhw8fcu7cOTV6rhqcnJzw8vJK+Q58rTg4OLB8+XK2bNnC4cOHU/4enRjHkTc36Hf5d0bcWMnB19d5FPqGeEXiPydLIMkkJNmnn/vAuHAu+z1gycMDdDg7kz8e7KNaKydu3rxJdHS0mq5MhyqIjo4mPDxcY5l9X19fWrVqRUhICA4ODty/f1+tE000ibGxMZs3b2bx4sUsWrSIjh07pvy2K4uPHz9iaGioC6aygbW1NZ06dWLDhg1frQisMlm2bBkDBgzghx9+YPfu3RgZGWnaJR1fKbpgX4vQBfufY25ujiRJHD16lP379wPw7Nkz/vrrLwDKlSundJtyuTzHllXGxsayc+dO6tatS4MGDRg6dCiLFy/OcgVEfHw8W7duZcmSJVhYWCjZ24wRGBjIkCFDUt24KFCgAMuXL6d48eK8fPmSPn368N1339GrVy+EEMyYMYPu3btjYGCg0RJeZeHk5IQQgps3b2raFY0zYMAA2rdvz48//oh/QAB7X15OCtI99/MmMunzIhcZnzYBoCDpITdekcgxn9ucsXtPqRltOXbtrNL916E+/Pz8ANSe2RdCsH37dipUqMDDhw9p3Lgx33zzDebm5mr1Q9NIksT48eM5fvw4V69epU6dOjx//lxp6yeP3ctJgqvayKBBg3j8+DG3bt3StCs5luTnjnHjxjF58mT+/PPPVEWGdehQB7pgX4vQBfufU6NGDfr378/Vq1dTsrtLlixh7dq1VK9enWbNmind5uPHj4mKisqRwf7SpUvp27cvDx484M6dOxw9epQzZ87g6+vLu3fvMrWWEIINGzbQtGlTevTooSKP0ye5PDOt0s9mzZqxYMECatSoQXh4OB4eHsTHx7Nw4UL09PS4ePEikiTlihLPkiVLYmNj89WX8kNSAPHnn39iUMCcXsfnsPLREWLlSW0cyshLJW8UWFYswuqYyxx6fR1FJjcPdGgH/v7+AGrd8Pvw4QNdunShX79+tG3blocPH1KvXj1ev36tNh+0jVatWnH79m3kcjm1atXi/PnzSlk3Ojo6R7fdaQvNmjXD3t6ejRs3atqVHIlCoWDEiBHMmzePhQsXsmDBAt0GlA6Nk/MUqnIxumD/U4QQWFpaMmLECMLCwrh79y7R0dEkJCRQoEABZsyYQZ06dZRu183NDUmSNNKfnh2Cg4OZPXs2RkZGXLx4kUGDBvHixQu6devGkSNHuHDhAjt37qRQoUIZWs/Dw4Px48dz//59jf5YJYsFpfUgp6+vT9euXWnRogW7du3CxMSEwoULU7duXcaOHcvbt28ZP3483377rbrcVhmSJOn69v+PEIJr0U8ptaATCQrVzYeW9GTIhWDJwwOcf+/OrGp9yW+smUqXfxOZEMOrCH+iE+NIUCSiJ8kw0jPgG1MrCppY6R4y/4W6M/uHDh1i6NChCCHYv38/Xbp0AcDe3p53796RkJCAgYGBWnzRNhwdHbl16xY9e/akZcuWLF26lJEjR2br8/rzzz+nbOjoyDoymYwffviBP/74g2XLlunaIjJBfHw8/fv3Z+/evfz1118MHjxY0y7p0AHogn2tQhfsf0ryD3/16tU5cOAA165d482bNxQsWJAGDRqo7EHJ1dUVR0dH8ubNq5L1VcXOnTuJj49n/vz52Nvb8/jxY+rXr8+gQYNwcnLC29ub8PDwDAX779+/p06dOkyaNAlHR0c1eJ86QUFB5M2bF0NDw0/+Hh8fjyRJn3wO8ubNy7BhwwB4+fIl3333HZcvX6ZLly788ccfavVblTg5OeHs7PxVBwxCCNY8dmH3y0tJf5CpNrBNvh89DHnNj9eWsbLuCOzyqDeT+D7qI5f9H/Ak1IdHoW/wj/l8gkAyefSNcbQoTFnLolTLX4oa+Ushk77eYj5/f38MDQ3Jly+fSu2EhoYyatQoduzYQYcOHVi/fj22trYpr9vb26NQKHj37h0ODg4q9UWbyZcvH8eOHWPy5MmMHj0aT09PVq1a9dl9PqNYW1uniPjqyB4//PADs2fPZu/evQwcOFDT7uQIoqOj6dq1K+fOnWPPnj107dpV0y7p0JGCLtjXIqKionS7qP/h+fPn3L17l2rVqlG/fv2UkXsRERFIkqQSgT5XV9ccWcKfPILMxsaG4cOHAzBlyhQeP37MzZs3adSoEWXKlEl3HSEE/fv3x87OjmnTpqnU54wQGBiIjY3NJ3978uQJ33//PceOHaNo0aJfzAgZGBjQvn17mjVrxi+//KIud9WCk5MTMTExuLu7U6tWLU27o3aEECz3OsSB19fUblsuFATHRTDs+grWO42hUB7VtobIhYJbHx5z8PU17gR6IyPps65Ip1EhKjGWex+fcz/4JTtfXMDWJB9dHOrTpkgtLAy/vk3l5LF7qqx2OHPmDAMHDiQyMpKtW7fSt2/fz+zZ29sD8ObNm6862IekiqzFixdToUIFhg0bxuPHjzl+/HiWNtr19fVz9JQVbaJo0aK0aNGCDRs26IL9DBAaGkrbtm3x8PDg+PHjNG/eXNMu6dDxCbo7o5YghNBl9r/AqlWr6Nmz5yejryIjI/n2228pV66cUgV+IClbfP/+fWrUqKHUddVBqVKlABg8eDBHjx6lTp06lClThilTpgBJwjsZYe/evZw7d45Vq1ZpxUio/wb7AQEBtG7dGiEEFhYWqT68FylShJ9++kkrNiyUTbVq1TA2Nv5qS/k3PT2tkUA/GblQEB4fxaibqwmKVa6qeDJCCM6/d+f783OZ4roRt6BnQFKQn16g/19fAQJiQlj7+Bgdz85iqecBohNjVeK3tqLKsXuRkZEMHz6cli1bUq5cOTw9PenXr98X701FixYFkoJ9HUn88MMPXLx4EQsLC0xMTLKsBK8L9pXHoEGDuHnzJo8fP9a0K1qNv78/jRs35tGjR5w7d04X6OvQSnR3Ri0hNjYWIYQu2P8P9+7dQ19fnzZt2gBJ75OZmRklS5bk+fPnSh+H5enpSXx8fI7M7Ddt2pS2bdum/Pv27dt07NgRFxcXatasSZ8+fdJdIzw8nHHjxtGpU6eU91zTBAUFpfTrR0VF0bZtW+Li4jhx4gSWlpZpnmtkZPTJA6BCkTvE1YyMjKhZs+ZXGezfCfRmy7MzmnYDBYIP0SFMvrpO6WOqguMimO62mVn3thMYm1SxowxhQIEgUcg5/OYGfS4txC3oabbXzCkkZ/aVzdWrV6lcuTLbtm1jzZo1nD59miJFiqR6vKmpKTY2Nrpg/z/Uq1ePI0eOIJPJdFoTWkD79u2xtrbWCfWlwatXr6hfvz4fPnzgypUrKtGQ0qFDGeiCfS0hKioKQBfs/4eIiAgSExNTZvIaGxsDpPxb2ZlnV1dX9PX1qVKlilLXVSXu7u68ffsWGxsbFi5cyLBhwyhTpgxCCB4+fEjnzp1ZtmxZquf/O1BxdnYmPDyc5cuXq8HzjJGc2ZfL5fTs2ZMnT55w/PjxlAxZRklMTMxVs+mTRfq+pnnIUQmx/Obxd0opu8aRSTyN86f9jEF4e3srZcmL7z3ofXE+1z88Usp6X0KB4GNsOONurWPRg33EJMapzJa2oOzMfmxsLBMmTKBRo0YULFiQ+/fvM3z48AwFqvb29l+1In9q6OnppTmi7MaNG2zcuJGjR4+q0auvEyMjI/r27cu2bduIj4/XtDtah5eXV0pb6fXr16lQoYKGPdKhI3V0wb6WoAv2v0yymNyyZctwd3fH19eXPXv2cOXKFYyNjZUutuTq6kqFChW0onw9I3z48IFu3bpRokQJbt++TdmyZXF2dmbjxo2cPHmS/fv3s3//furWrZvqGvHx8Qgh8PDwYOXKlcyaNSvNzJS6CQwMJH/+/IwePZoTJ06wb98+qlatmul1EhMTadWqVa55cHFycsLf359Xr15p2hW1sfrRUULiIjJVxq5yBARXNaNKw9oMHDgwW0HczucXcL63jcjEWJWP+Et+D4+9vcXYW2uJSIhRqT1No8zMvpubG9WqVWPlypUsXLiQy5cvU7JkyQyf7+DgoMvsZ5Jz587RpEkThgwZQseOHRkyZIimXcr1DBo0iMDAQI4dO6ZpV7SK27dv07BhQ/Lnz8+1a9coVqyYpl3SoSNNdAJ9WkJkZCSgC/b/S79+/Th58iQbN25k69atGBsbp7xX/fr1w8JCueOvXF1dqV27tlLXVCWzZ8/mxYsXjB07NkWo7ZtvvqFAgQIZ6l8UQrB06VJKlSrFH3/8Qbly5RgzZoyq3c4UQUFBPHr0iOPHj/Pnn3/SqlWrLK3z5s0bXF1duXLlSq4YwVevXj0gKatQvHhxDXujejw+vsDF55am3fgcCQyMDWm78idOjN7Ejh07GDJkCNOnT8/wmEuAzU9Ps+npaRU6+mUUCJ6E+TDyxipW1RuJuUHO2OjMDHK5nA8fPmQ7s5+QkMC8efP49ddfqVy5Mvfu3aN8+fKZXsfe3h4PD49s+fK1sWzZMuSSoMUPnQnUi+KS0WuaLBtM1ZrVMTY0wkjPgPzGFjhaFKGMZWHsTPPr2gGySYUKFahduzYbN26kc+fOmnZHKzh37hwdO3akSpUquLi4qHy6hw4dykAX7GsJusz+l+nevTt37tzh0KFD+Pv7Ex8fj7m5OUWLFuX3339X6tix6OhovLy8GDlypNLWVCUfPnxg27Zt5MuXj2nTpiFJEnFxcRgZGTF79mwCAwNZtGhRmp8pSZJwdXVlxYoV+Pn5cfXqVa0a5RYXF0d4eDjHjx9n+vTp2crmlC5dmiJFinD06NFcEexbWVlRtmxZrl+/Tt++fTXtjsrZ/fISepIsRXBOm5ALBf6msVx6cIsjm/ewcOFCNm3axMiRI5k8eXKK5kRq7Ht5RSOBfjIKIXgd6c+E23+yrM4wTPSNNOaLKggMDEShUGQrs+/l5UW/fv24f/8+v/zyC9OnT8/yvdLe3p63b9+iUCh0onLpEBARzJmAe4hBFajzYymiZBJ5kDBVKEhA4Br8FCQJGRKSJKXcH0z0DKlkVZyO9vWoa1sOva947GR2GDRoEMOGDcPX15fChQtr2h2NcuDAAXr16kWzZs3Yv38/pqammnZJh44Mobv7aQm6YP9zEhMTefLkCePHj2fx4sWMHTuW4cOHs3TpUu7du0eBAgWUas/d3R2FQpFjxPlcXV0RQlCoUKEULQMjo6SH9PPnz7Nu3TqePk1fgGvw4MH4+fnRsGHDlB40beHEiRMANG7cmLlz52ZrLUmSaN++PUePHs01fe7Jffu5nYCYEG4EPNLKQD8ZPUnGmUB3Jk+ezKtXr5g0aRLr1q2jWLFiODs7p4zG/C/3P75kxaPD6nX2CyiE4EnoW5Z7ad4XZePn5weQpcy+XC5n0aJFVKtWjdjYWG7fvs2sWbOytSlqb29PfHw8AQEBWV4jt/Mg+BWz7m3n+0vz+OvJCcIN4pFkSZl6gQCZhCSTgfTPKMp/3x9i5PG4Bnkz1W0TXc/NYduzc4TERWjkWnIy3bt3x9jYmC1btmjaFY2yceNGunXrRufOnTl8+LAu0NeRo9AF+1qCLtj/nLCwMHr37s2vv/5Kp06d+O2331i6dCkDBw5USfbZ1dUVIyOjHCO0Ur58eWJiYvDy8mLKlCmEhIQA8Pfff3Pjxg2qVauWod72vXv3YmBggK+vL4mJiap2O8N4e3szYMAAAObOnauUksz27dvz5s0bPD09s72WNuDk5ISXl1euEh78Ekfe3NQWSb5UkQsFx97eJiYxDgsLC2bPns2rV68YNmwYixYtolixYixYsCDlXg8QK49nnsdOrREcVCA47nObO4HKERvUFvz9/YHMB/vPnz+nUaNGTJ48mdGjR3P37l2qV6+ebX/s7e0B3fi9LxESF8EvblsYcWMlF997ICSyrNCh+P+mblBcOBu8T9LtwjyOvrmZazZ71UHevHnp1q0bmzZtyjXTbDLLokWLGDx4MEOHDmXHjh0YGhpq2iUdOjKFLtjXEnTB/udER0fj7u6eonItl8tVas/NzY0qVapoVRl7agQFBWFvb0+XLl0AWLNmDeXLl6dx48YMHToUgOnTp6e7ztWrV9myZQuTJk3i5cuX7NixQ6V+Z5SAgABat26d0g+Xmd7ntGjUqBHm5ua4uLgoZT1N4+TkhBCCmzdvatoVlaEQCo68uaFdonypEJMYx+k3rin/zp8/P4sWLeLly5f06tULZ2dnSpQowYoVK4iNjeXPJ8cJiAnVqmuTIfGbx99E5iLBvuTMfkarwYQQrF27lsqVK+Pn58fly5dZtGhRSgVVdkkO9nWK/J9y8b0HvS4t4GrAQwClfi8Eglh5Aos89zHu9joCYkKUtnZuZ9CgQbx69YpLly5p2hW1IoRg6tSpTJo0iV9++YXVq1enOS1Chw5tRRfsawm6YP9z8ubNS9euXXn//j3v3r0jISFBpTvyrq6uOaKE/82bN4wYMYI9e/YwbNiwlADW39+fK1euYGpqypAhQ+jUqVOa6yQkJPDTTz9Ru3Zt5syZQ5cuXZg9e7bG1eqjoqJo164dMTEx/PzzzwDp9jxnFCMjI1q1apVrRjeVLFkSGxsbrl27pmlXVIZPVCDhCdGadiNDKOQKFu1ex8ePHz/5e8GCBVm1ahVPnz6lTZs2jBs3jgot67Dv5dWkkmQtQoEgJC6CdY9zjwK3v78/+fPnz1BGzsfHh5YtW/LTTz+l9Og3aNBAqf5YWlpiYWGhy+z/n3h5IrPvbcf53jaiEmJUPonC4+ML+lxawBX/3FHhpWqcnJxwdHRk48aNmnZFbcjlcoYNG8aCBQtYsmSJ0qoLdejQBDqBPi0hKioKY2Nj3a7hvwgODiY4OBhvb2+6du1K165dsba2xszMDAMDA4oUKUK1atWUYis0NJSnT59mKBuuaRYvXsy+ffto2LAhPXr0wMHBgb179+Lj40NsbCzdu3dPc9ReMsuXL+fRo0e4ubkhk8mYPXs2FStWZPPmzSnVAepGLpfTq1cvHj16xJUrV7h+/TqGhoaYm5srzUa7du3o168ffn5+Sp27rQkkSaJ+/fq5um//SahPps8JfeDDw1/2gwD7fk4U+T5pUoWQK3gweQ8R3v4Y2ZhTdVVfEiNiebvrFmGePsSHRmNcIC+2zctj16lGSo9wRpHp6xFnY4STkxMnT578bCSTg4MDmzZtYvLkyYy8sJxYIVJ6jrUJBYJjPrcZ5NiKfEbK++5pioyM3RNCsH37dkaPHo2ZmRmnTp2iZcuWKvPJ3t5eF+yTVA0z1W0T94KeA1kv2c8McqFALlfwi9sWplbuQesi2r/Jr0kkSWLQoEHMmDGDVatW5XoF+vj4ePr06cOBAwfYvHlzSjuhDh05FV1mX0uIiorSZfX/w/Xr17lw4QKQNNd04sSJDBw4kG7dutGpUyecnZ2VZuvu3bsAWp/Zj4uLw9jYGAsLC/r37w9A8eLFmTJlCkuXLmXjxo20aNEi3eDY19eXWbNmMWrUqJS+/vLly9OzZ0/mzp1LbGysyq/lvwghGDNmDMePH2ffvn1Uq1aNoKAgbGxslLqj3qZNG2QyWa6ZHezk5MSdO3dISEjQtCsqwTvMF/1MKmlbVipCoXZJn+u3u24R9SoQAN/9rkR4+4MEpca1RCTIuf/z33y48IjEyFhMC1sR4xfK6y3XeLXxcpb8NS5kSaKkoG7duty7d++Lx+QraktcERPI5GaCOlEIwXGfO5p2Qyn4+/unubH34cMHOnfuTP/+/Wnfvj2enp4qDfRBF+xDUkZ/iutG3IOea6TCRSD47f7fnPG9q3bbOY1+/fohl8vZuXOnpl1RKcmVhUeOHOHAgQO6QF9HrkAX7GsJumD/c0qWLEmzZs1o06YN9erVo3LlyhQvXhw7OzsAbGxslGbLzc0NMzMzSpcurbQ1VcHUqVM5fTppRNeLFy8+EczJjNbAmDFjyJs3L3PmzPnk7zNnzsTf35/169crx+FMsGTJElavXs2aNWto3bo1kDQyS1kl/MlYW1tTv379XFPK7+TkRExMDO7u7pp2RSU8Dn1LYhbKeh3618ekiBUiUY73klNEPPXn7e5bABRqXw3LikUIuvaMhLCk3vRKi3pQdUUfSv7UDID3xzyIC8y8erdAsOX4HooWLUqjRo1Svq//5uhb7RccFAgOvL6m1RMQMkpamf2DBw9Svnx5rl+/zoEDB1LGmaqarz3YF0Iw23077h9faFyzYp7HLm5/eKxRH7QdW1tb2rZtm6tL+YODg2nevDk3btzg5MmTdOzYUdMu6dChFHTBvpagC/Y/p06dOpw9e5Zjx45x7do13N3defr0KU+fPuXDhw8sW7ZMabZcXV2pXr26VrdRvHjxgmXLluHp6UlMTAxLlizhwYMHxMQkBSsZzX6fOXOGgwcPsnTpUvLmzfvJa6VLl6Zfv37Mnz//E9VwVbNv3z4mTJjA1KlT+fHHH1P+HhgYqNRNnWTat2/PuXPniI7OGb3gaVGtWjWMjY1zbSm/fxaFtGSG+jiOb4WkJyP6dRCeU/ciEhWYFrHCoZ8TwCcaICkl+8nfI4Ug1DPzLQQACcYyLl68SKNGjWjbti1bt25NeS1RIedwDhEcDIoN4/aHJ5p2I9t8qWUnJCSEPn360KVLFxo0aMDDhw/p3Lmz2nxKDva/VmX4E76uXPH31BrNirkeuwiPV99vXk5k0KBBeHh4pFqxlJPx8/OjUaNGPH36lAsXLtC0aVNNu6RDh9LQBftaQmRkpC7Y/w9v3rzhxo0beHl58eLFC969e0dISAhyuZy8efNiYWGhNFs5QZzP2tqaCRMmYGdnR3x8PNu3b6d79+4sWbKEhw8fpgT9aZGQkMCwYcP49ttv6dat2xePcXZ2Jjg4mNWrVyv7Er7I9evX6du3L7169WLevHmfvBYUFKT0zD4kBfuxsbGcO3dO6WurG0NDQ2rWrJlrg/0EedbbE8xK2lKke1K/viJeDjKJ0uNbITNMkquxquGAnklSRcz9n3fjPnoHL9acTzk//mNkluzGKRLIkycPhw8f5ocffmDAgAH8+uuvCCF4ExlAWA4JKvQlGfc+PtO0G9lCCIG/v/8nmf1Tp05RoUIFjh07xvbt2zlw4ECGlfqVhb29PZGRkSkjU78mPsSEsuzhQU27kYJAEBEfzTKvQ5p2Ratp1aoVBQsWzHXZ/RcvXuDk5ERISAhXr17V+mdBHToyiy7Y1xJ0mf3P2bJlCx06dKBfv3707NmTnj170qtXL/r37893333HmTNnlGLnw4cPvH37lho1aihlPVUQFxeHpaUlv//+O7dv32bmzJkUKFCAZ8+eMWPGDFq0aMHu3bvTXWfBggW8e/eO1atXp1oJ4ODgwODBg1m4cCHh4eHKvpRPePr0Ke3bt6dOnTps2rQJmezTW5KqMvulSpXC0dExV5XyX79+PVdmCbObAY95H/qvxQSxH/75TBt/Y0n5OZ2xqFQEZBLxwZEUaFaO5Bp7SS9rP5HJpe/6+vqsX7+e2bNn88svvzB8+HAeB7/N9HqhD3y41n4p19otxWffP330Qq7g/oS/udZuKa4DN5AYHQdA1KtAHs934VbvdVzvtJw7/f/kyYLMa1QkCgWPQzLvrzYRERFBdHQ0BQsWJCIigmHDhtG6dWsqVKjAw4cP6dOnj0ZUth0cHICvb/yeEIIF93eToEjUtCufoEBw9t09rvk/1LQrWou+vj4//PADO3fuzFByISfg6elJ/fr10dfX5/r165QtW1bTLunQoXR0wb6WoAv2P+fly5d8/PgRT09P3NzcuHbtGmfPnuXQoUOcP3+egIAApdhxc3MDtFucb9asWUycOJEHDx5QqFAhZs6ciZubGzNmzKBAgQL4+/tjZWWV5hofPnxg3rx5TJ48OV1tgunTpxMVFaXUVokv+dO6dWtsbW05dOgQRkZGnx2jqmAfkrL7x44d+0T3IKfi5OSEv78/r1690rQrSsdAlvWhMUHXnxF4KakM3ahAUsvK89XniQ/5J7Oet0whKv7albq7f6L2jmHYNi+fIgluUjhrvdtGsn/0MyRJwtnZmY0bN7JhwwaW7fkLPRUJDuqbGhHm9Y77E3bz8cZzRKIc06LWyIwM+Hj7ZZau5Wm4r8pHoakSf39/IOl+U7lyZXbs2MHatWs5deoUhQsX1phf9vb2AF9d3/7VgIe4Bj3VSi0ICYlFnvtIVMg17YrWMnDgQMLCwjhw4ICmXck2N27coGHDhnzzzTdcu3Yt5TupQ0duQxfsawm6YP9z+vbty8KFC5kzZw5Tpkxh2LBhVK9eHZlMRtGiRXF0dFSKHVdXV6ytrT8bk6UteHl5sXDhQtavX8/w4cOZO3cunp6eFC5cmNmzZ3Pz5k3WrFlDhw4dUl1DCMHAgQMpXLgwU6dOTdemnZ0dw4cPZ/HixQQHByvzcgCIjo6mXbt2REdHc/LkyS8KYikUCj5+/KiSMn5ICvYDAgJwdXVVyfrqpF69egC5spQ/j75xls6LD4ni+f9L8vPVKEblRd3RNzcmMTyG56v+ad8I83qHkCcFHomRsbzadAUA/bwmWFYqmkWfP9+4GjhwIC4uLgQbxWUp0MmI4KAQguerzqGIT8SmcRlqbRtK1eV9qPHnD9TeOSxL1xIrT8A3KihL52oDyZnzMWPGYGdnx/379xk2bJjGZ2bb2NhgYmLy1QX7+15eQaal8pQCQXBcBFd12f1UKVGiBI0bN87xpfynTp3i22+/pWLFily6dEntbTw6dKiTrKdMdCiVqKgojWYZtA0hBN9++y3ffvvtZ681adKEAgUKULJkSaXYcnV1pUaNGhp/+EuNkJAQ6taty9OnT7l58yYPHz7kzJkztGzZko4dO1KhQgWGDUv7Qd7d3Z3jx49z4sQJTExMMmR3ypQp/PnnnyxevJhff/1VGZcCgFwup1evXnh5eXH58uVUd9NDQ0ORy+Uqy+zXrVsXa2trjh49Su3atVViQ11YWVlRtmxZrl27Rt++fTXtjlIpY1GEd9EfM51dfrbyLInhMeibG1Nq1LcYWplR8qdmPFl4nOA7L/E/85BvWlTgxZrzxH2MxMjGnFi/UBRxiSCTKPlTM/SMMz7h4t+UzFvoi39v3bo1yxSXiRbxmV4zWXDw/oTdqQoORr0OIsb3/5tzAu4N20JidBxmJW0p9kMDzEraZul6/KI/UtQs5z0Mu7q6MnDgQADmzZvHlClTtEaEVZIkihYt+lUF+68jAvAIfqFpN9JEhsTB19doUqiypl3RWgYNGkTfvn158eIFJUqU0LQ7mWbPnj307duXli1bsnfv3gw/E+nQkVPRZfa1BF1m/1MkScLPz493794RGBhISEhIipBRmTJlOHjwIB8+fMi2HSEEbm5uWt2vX79+fS5dusSKFSto1aoViYmJXL9+nTVr1tCrVy+2bduW5vkKhYKuXbvSpUuXlJF2GcHW1pZRo0axfPlyAgMDs3sZQNL7PW7cOFxcXNi7dy/Vq1dP9digoKRsoqqCfT09Pdq2bZvr+vZzG6UtC2dai8D/tCchrkktDSWGN8XQygyA/PVLY9O4DACvNlwmNiAMy6r26JsaEuMbgqQnw7KqPRV/7Up+p1JZ8jevgSn5jVMXD1Vk41c3PcHBlEAfCLz8BJlR0t/DHvjgOW0fsQFhWbIblw2RRE0QHx+Ps7MzdevWRZIkjI2NmTZtmtYE+sl8beP3jry5gSyTLSzqRoHAI/gFryOU0yaYG+nSpQsWFhZs2rRJ065kmvXr19OzZ0+6devGwYMHdYG+jq8CXWZfS4iKisLMzEzTbmgVc+bMISwsDAsLC0xMTDAxMSEkJISdO3cil8uVsjni6+tLQECA1vbrP3r0CFtbW6ytrenZsyedO3dm8+bNjBs3Dn9/f/z9/VOEnlLj0KFDWR5VOHHiRNasWcPChQv5448/snYR/2LZsmWsXLmSdevW0aZNmzSPTd5gUFUZP0C7du3YunUrL1++pHjx4iqzow7q16/Phg0bCAkJUcuccHXhaFE40+O5vmlZkW9aVvzyej+3xvHnfza9ig9uRPHBjbLlYzISUNayaJpVQtntVf6S4GByxl7I/3mfbJtXoNTo5sT6h+E2dDPymAQCzj/CvlfdTNtM1ML+6tR4+PAh/fr1w9PTE2dnZyIiIjh48KBWVm7Z29tz9+5dTbuhFhRCwQnfOzlC/0FPknHK15VhZdtq2hWtxMTEhN69e7NlyxZmz56Nvr72hxJCCBYsWMC0adMYNWoUy5Yt+0wQWIeO3Ir2f0O/EnSZ/c9Zv379F/8uSRLffvttuoJ0GSG5X1sbg31XV1f69+9Pr169aNKkCeXKlSNfvnwMGzYMV1dXTp06Re/evWnYsGGqayQkJNCvXz/mzJmTpTYRa2trxo8fz8KFCxk/fjyFCn25PDkj7N+/n59//pkpU6YwdOjQdI9PDvZVldkHaNGiBYaGhri4uDBmzBiV2VEHTk5Jpdw3b95MdyMlJ1E6b2EkJK2Zx50WMklGWcu0+/wNZHpZViL/r+Bg3Idwnq8+T96yhTDMlwcj6382jM1KJW0AGH9jgYGFCQkh0cQFZG26hmE2RBLVhVwuZ/HixcyYMYOSJUty69YtqlevTv/+/T8Zu6dN2Nvb5wqhs4zgGxVEdGJcqq+HPvDh4S/7QYB9PyeKfJ9UwSLkCh5M3kOEtz9GNuZUXdWXwMveBF58TOTLD0ltN0C1Nf0xLfLpM0F8SBSvt10nxPUliVHxGBe0oGCbyhRqWyVNX+VCgVfo11NxkRUGDRrEmjVrOHXqFG3bavemiBCCiRMnsnjxYmbOnMnMmTO1cvNPhw5VodvW0hJ0wf7nTJ06lR9++IFOnTrx7bffUrNmTWrXrs2PP/7Ijh07lPJ+ubq6UqhQoWwFsaril19+4cmTJzg7O/Pzzz+zdu1arl27ho+PDwEBAdSpUydNsT0hBMuWLaNEiRKMHj06y36MGzcOExMTfvvttyyvcePGDfr06UOPHj0y3P+fXMavjE2d1DA3N6dp06a4uLiozIa6KFGiBAUKFMh1pfx5DIypbVNG68t/ISlIaFqoSprHGOsZZmntjAgOmpX+Bj3TpPUjnyeVIcd+CCchLGlMlkkhyyzZNvmC4KA28fz5cxo2bMiUKVMYM2YMd+/eTWkR8vPzo2DBghr28Ms4ODgQHBxMZGSkpl1ROU/DfNN8PTMTJ0Luviby5QcMLExTXU8em4Dn1H18OOeFPCYBowLmxPgE83L9Rd7suJGuv96hPrlylKmyqFatGlWqVNF6ob7ExEQGDx7M4sWLWb58ObNmzdIF+jq+OrR/u/4rQAihC/a/gDJF4VJDm/v1t2zZwq+//sqaNWu4c+cOd+7coUqVKiQmJvLw4UNatmyZZrl2dHQ0M2bM4Pz58xgYZE1oDMDCwoKJEycyc+ZMJk6cmOnxNM+ePaN9+/bUqVOHzZs3Z7h0LjAwECsrK5WXCLZv357Ro0cTGhqKpaWlSm2pEkmScm3ffpdi9bkV+FjTbqSJDIkKVsUoZp52FrmEeSFC4rwzXaeQUcHBoj3r8mrjZQLOPCT80fukMYMKgUE+U75p9eXWhvRI75o0hUKhYO3atUyaNImCBQty9erVlAqXZPz9/dMdNaop/j1+r3z58hr2RrU8CfNBT5Kl2cbi0L8+Ie5viPEJxnvJKUqNav7ZxAn4vw6HpSkfLj7m2fIzX1zL/9QDYt6FgASV/+hBnmI2vNx4mfeH7+F7wJWC31XGMF/qz1wx8njeRQdROI/qKstyOoMGDWLcuHEEBARga5s18U9VEhsbS69evTh69Cjbtm3LdeK1OnRkFO1PlXwFxMXFoVAodMH+F3j48CG7du1i2bJlbN26lcePHxMXl3opYGZIFufTxhJ+gIIFC7Jq1Sp8fHz46aefAPDw8MDLywtzc3PmzJmT6rlCCJydnendu/dnD79ZYdSoUVhaWjJv3rxMnRcYGEjr1q2xsbHh0KFDGBllPEMYGBio0hL+ZNq2bUtiYiKnTp1SuS1V4+TkxJ07d0hIyFmCaulRy8aRAsaWmnYjTRQIujrUT/e4spZFMl2lkBnBQbuO1Sg5qjmm9tbEBoShZ2KATZOyVFnaO81MaGrkMzTDysg80+epGh8fH1q2bMnIkSMZMGAAHh4eX7zXaXNm/9/Bfm7HO9QnXb2K5IkTkp4s1YkTAEbWZkh6aX+HQu6+BsCkUD7yFEv6HclfL0l0UyQqCL3vk67Ps9cu4vLly+ke97XSu3dv9PT00hUJ1gQRERF89913nDhxgkOHDukCfR1fNbrMvhaQXMKnC/Y/xd3dnaFDh+Lm5vbJ3xcsWMCkSZOyvf7z588JDQ3VumBfCEFoaCjXrl3Dzs6OKlWqsGrVKqZMmcKmTZswMzOjVq1aafodGhrKrl278PT0VIpPZmZmTJ06lYkTJzJ58uQMjT2Mjo6mXbt2REZGcvPmzUyLxgUFBalUnC+ZIkWKULVqVY4ePUqPHj1Ubk+VODk5ERMTg7u7O7Vq1dK0O0pDJsnoUqw+6x4f18refaFQYGlkToNv0s+cO1oWybRIX2YEBwG+aVGBb1pUyJSNLyEhUS5f5ip5VI0Qgm3btjF69Gjy5s3L6dOnadGixRePTUhIICgoSGuD/UKFCqGvr/9VBPuh8VEZOi554sTbXbe+OHEio8QFRgBgYPGP2rqBpem/Xk9bv0IIwbHzp9k46Q9+/fXXNFvmvlby5ctHly5d2LhxIxMmTNCa8viPHz/SunVrvL29OX36NI0aKUeAVYeOnIous68FREUl/Qjqgv1/+PjxI1OnTsXNzY1ChQpRvnx5ihZNEr6aO3cux44dy7aNZHE+bSvj37BhAy1atKBDhw7UqFGDpk2bsnfvXgoXLoyzszPjx4+nfv3UM4hCCCZNmsTcuXOVGiwPGzYMW1vbNCsKkpHL5fTp0wdPT0+OHTtGsWLFMm1PXZl9SCrlP3HiRI7PiFerVg1jY+NcWcrf2aE+tib5kKEdD5T/RpLJaCpKoC9Lf7Sbo0XmhTI1hSRJlLEoomk3UggICKBjx44MGDCATp064enpmWqgn3w8oLUCfXp6ehQuXPirCPYzM77xSxMnlEIm9gklAU6N6mNlZcX06dOZMWOGcnzIZQwaNAhvb2+t+c3x9fWlQYMGvH79mosXL+oCfR060AX7WoEu2P8cHx8fzpw5Q4UKFVi8eDF79+5l48aNdOrUiaioKPbu3ZttG25ubhQrVgxra2sleKwcbt26xYgRI7h79y758+dHkiSuXLlCjx49mD9/PomJiSgUqWcFhRAEBATw5MkTBg4cqFTfTExMmD59Ojt27ODRo0dpHvvzzz9z5MgR9uzZk+XNFHVl9iEp2A8LC+PatWtqsacqDA0NqVmzptY8eCkTYz1DfqnSC4WWZfZlkoxID18+XH6SoeNtTfJRKq8dkhZuWvwXhVDQMAPVCupg//79lC9fnlu3bnHo0CG2bNmSrsaGv78/gNZm9iGplP/169eadkNr+O/ECYDnq88naU9kAiObpNaTZHHKpP8/+l+v503zfJlMRvdu3blw4QKWlpYcOXKE6OjoNM/5GmncuDHFihVLVagvQZFIRHw0QbHhhMRFEJUQq7Lxi8+ePaN+/fpERUVx7do1qlWrphI7OnTkNHRl/FqALtj/nI8fPwLQrFkzunfvDkDZsmWxs7Pj0KFDBAcHZ9uGq6ur1pXwz5o1i8TERObNm0eVKlUIDg5mw4YNXLlyhb179zJixAjy5k39IUWSJH755RdWrVqlkhmygwYN4vfff2fWrFmpbrgsW7aM5cuXs3bt2myN5FFnZr9q1arY2dlx9OhRmjRpohabqsLJyYnNmzcjhNCaskplUdm6ON8Xa8D+V9e0o5xfgJFMn9IvDbnodTHDp3Up1oAF93er0LHsI0OifD57iufVbKAcHBzMqFGj2LVrF507d2bdunUZvi/4+fkB2pvZhyRFfm9vb027oXKM9NIXif3vxIlSo77l3sjtKRMnys3okGF7ltUcCPV4S8z7EKJeBZKnmA1BN54BIOnLsKycdsWKAoFMSFSqVIkNGzZQqFAhTE0zr3mR25HJZAwcOJD58+ezdNlS3ilCeRzqg3eYL49CXuMTFfTZvdpYzxBHi8KUtSyKo0VhKloVw9Ykc21+/8XDw4OWLVtiZWXFmTNnKFJEeyqSdOjQNLpgXwvQBfufEx8fD4C3tzevX78mT548mJmZcfv2bYBsZ3wTExO5d+8eHTpk/OFB1Xh5eXHp0iWKFSvGtGnTgCQ9B3Nzczw9PfH19eX58+ep7lYLIfDx8cHCwoLKlSurxEcjIyNmzJjB4MGDuX///md2Dh48yPjx45k0aRLDhg3Lli11BvuSJNGuXTuOHDnCkiVLcnSQ7OTkxIIFC3j58iUlSpTQtDtK58cy33HrwxPeR3/MdO+70pHAe/lpupRvwn63vwkLC8PCwiLd05oVqsIKr0Npzh3XNAoEXYo10KgPJ0+eZNCgQcTExLBjxw569eqVqe+mv78/MpmMAgUKqNDL7GFvb8+ZM19WlM9NWBvl5XVkQJrHZHTixKstV/l44xnymH9aA7xmHkTSl1GobVUKta9KwVYV8T/1gNj3odyfsBsjG/MkdX7ArlONNJX4U3w2TqoO6Ny5MwAvXrzgxIkTWFlZYW9vn2Y73ddE5z7dWe9xhO6XfiNaLxEJCZkkpXp/jpXHcz/4JQ9DXqccU8vGkc4O9alToCx6mRQwvXr1Km3btqV06dKcPHlSbRWBOnTkFHRl/FpAcrBvZmamYU+0hyJFilCmTBlOnTpFt27dmDt3Lj169GDo0KEYGhpmu8/+8ePHREdHa1W/fkJCAqampoSGhnLkyBGioqIwMzOjQ4cOmJubExMTk2bZqiRJLFmyhJkzZ6rUz379+lGyZEmcnZ0/+fvNmzfp3bs33bp1Y/78+dmyER0dTXR0tFp/tNu3b8+rV6/SbVHQdurVqweQK0v5ISkrtKzOcKyMzDP9UKhsBhdvQXm9gixbtgyFQpFh5W5jPUPaFa2TaVV+dWJhYKqxEv6IiAh+/PFH2rRpQ+XKlXn48CG9e/fO9Cacn58fNjY26Omlr6WgKezt7fHz81PalBltpYxlkTS/r5mZOJEQEk2sXxgJof+U1ccFRiT9LTIWAD0TQyrN/54CTcshMzYgNiAMk8JWFBvS6BNl/7QobZmkrxEaGsq6deto1aoVY8aMoW/fvjRs2JDJkydn/o3IRQTEhDDPfScjvP7EoX8DovUSARCIDG3E/vsYt6BnTHHdSNfzc9n78jKJCnmGfDh+/DgtWrSgevXqXLhwQRfo69DxBXSZfS1Al9n/nAoVKjBy5EgmTZqEm5vbJ4r8PXr0yLZqupubG5IkUb169ey6qjTs7OwoUKAAT58+ZenSpfj6+mJnZ4erqytv376lU6dOFC9e/IvnCiF49eoVTk5OaZb5KwMDAwNmzZpFnz59uHPnDrVq1eLZs2e0a9eOmjVrsmXLlmy3EAQFBQGoLbMP0KRJE/LkyYOLi0uOnnltZWVFuXLluH79Ov369dO0OyqhgIklK+uOYNTN1QTHRWgkwz+0zHf0KdmMPi7NmTx5MosXL2batGm0bNkyQyMmexZvgsvbW8QkxmlDQ8Jn/FjmOwxk6n9EuHz5MgMGDCAwMJD169czZMiQLFfaaPPYvWSSx+/5+PhkaMpJTsXRIu0pFJmZOFF6XEtKj2uZrk1DK7MMHfclEiPjOLnnCIMGDuLUqVMsX76cFy9eULhwYUaMGMG6detYtGgRYWFhrFq1Cn39r+dxWgiBy9tbrHx0mASFPOm/azaL4ZL7+INiw1j56Ainfd34pWpvipmn3oKza9cu+vfvz3fffcfu3bsxNjbOnhM6dORStDet8BWhC/a/zE8//cS6deto3749devWpUSJEowePZply5Zle/fW1dWVMmXKYG6uHfOj/f39sba2ZvDgwQBcuXKFyZMn8/3337NgwQLy5MnD7NmzUz1fkiT27dtH165d1eJvjx49KFeuHDNmzCAwMJA2bdqQP39+Dh8+rJQf3MDAQEC9wb6xsTEtW7bk6NGjarOpKpycnHJtZj8Zuzz5We80hsJ58qtN7E6GDBkS4yt0oU/JZkCSovoff/xBgwYNePToEc2aNUtRgU8La+O8/Fyhq9YF+nqSjOrWpWhXtI5a7cbExDB+/HiaNGlC0aJFefDgAT/++GO2Wmr8/f21ul8f/gn2c7siv6NlzplCgYA8EdCzR08Ajh07hre3N5Ik8e7dOypVqsTjx48pWrQox44dy/X/7f5NQEwI426vY5HnPmLlCSrbaH0R4ccPV/5gx/PzX8zyr169mj59+tCnTx/279+vC/R16EgDXbCvBURFRWFkZKTVpYbqxtPTk3nz5lG2bFkOHz7M/Pnz+e6770hISEhRWM4O2iTO5+HhQfPmzRk4cCDjx4/HxcWFatWqER0djbm5OXXq1GHDhg1UqPDludkKhYIXL17QuXNntfWa6+npMXv2bM6cOUOTJk0IDw/n5MmTWFlZKWX95My+ukvy2rdvz61btzIUrGkzTk5OeHl5ERISomlXVIqNiSUbG4yne/FGKX2iqkJCoohZftbXH0snh8/LgH/88UeEEDx79oyaNWvi4eGR7prN7arhZFte4+0I/8ZApsfUKj3Uqltx584dqlatypo1a1i8eDEXL15MtYopM+SEzH6ykFhuDxgLmlhhYZAzEhoymUSP+t9hamrKy5cvOX78OAA9e/YkX758fPfddyxbtoxvvvmG9+/ff1J5mJvxDvVhwOVFeHx8oXJbcqFALhSsf3Kcqa6biJMn6TgJIZg7dy4jR45k7NixbNy48auqqtChIytozxPGV0xUVJQuq/8fDh8+jLOzM+fPn+fu3bv07t2bFStWsHbtWsaOHZutB6O4uDju37+vNf36M2bMwMvLiwIFChAQEICBgQF9+/Zl+PDh7Nmzh2PHjqVMJPgSMpkMd3d3SpUqpUavoUOHDlhYWPD48WNcXFwoVqyY0tbWRGYfoE2bNgApD3c5FSenpGD05s2bGvZE9RjpGTKiXHvWOI2ioIkVEtmuKP0EPUmGhETfks3Y1GACZSy/rPKcPMVh9uzZFChQACcnJ/bv35/m2pIkMbHi95jqG6t0oyIzjCnfKUUZO1EhJyohluC4CELiIohOVO7YrPj4eGbMmEG9evUwNzfH3d2dcePGKW2SSE7I7BsZGVGoUKFcP35PkiTa2ddBliNGTgq+s0+qbClevDi1atXCyMiIUaNGcfz4cUqWLMm0adO4c+cONjY2lCtXTsMeqx7P4FeMvLmKaHmc2tumbgc+4efbfxKdEMu4ceNwdnZm3rx5LF68WCVTh3ToyG3otsO0gMjISF2w/x+8vLwA6NKlC2fOnCEgIIA+ffpw9+5dLl26hJ+fX0r5Y2bx9PQkISFBKzL758+f5/jx4zRv3pzff/895UcMoFy5cnTt2pV8+fKlOkZNLpfz5s2bbI24yyqTJ08mIiIChUJBeHi4UtcOCgrCxMRE7aOObGxsqFevHkePHmXgwIFqta1MSpQoQYECBbh+/XrKBkZup0I+B7Y2mojL21vsf3WNd9FB6EmyLD+YSkjoSTJa2FXj++KNKJm3UJrH29nZ4ejoyP3797l69SoDBw7k+++/x9nZmZkzZ6b6UGptnJeltYcy8uYq4uWJKDRY2N+2SG0UQvDHg314hbzhVaT/Z++foUyfEnkLUd7SHkfLwpS3dKCIWeY35Tw9PenXrx8PHz5k5syZTJkyBQOD9MezZRQhRI7I7ENSKX9uz+wDdChalx3Pz2vajTTRk2TUzO9IQVMrhBAIIahbty5nz55l2LBhHDx4kKtXr9KzZ0/u3LlDnTp1tKYdUFU8C3vHz7fXa+z+JBB4Br+i49YJnF+zjjVr1jB8+HC1+6FDR05FF+xrAbrM/ue8f/8eSHoIcnNzw8LCgo0bNzJp0iQeP36crbItV1dX9PX1qVKlipK8zTqrVq0CYP78+Vy+fJklS5ZQtWpVjI2NuXnzJqdOnaJBgwapXq+enh7h4eFKKXnNDMuXL2fp0qWsXLmS7du3M2PGDJo1a6a00l91jt37L+3bt2f27NnExMRgYmKiER+yiyRJX0Xf/n8x0jOka7GGdHFogPvH5xx8fZ1rAQ9TAtbUgv//jooqaGJF52L1aVO4JnkNM35vbtq0KefPn8fExIRdu3ZRqVIlpk+fzsOHD9m6dWuqE1ccLYuwuPZQjT5Q5zUw5ZjPbY753E5zkyRekcjj0Lc8DfNF/jrpmAr5HOji0IBGBSumK+onl8tZtGgRzs7OODo6ppTwK5vQ0FDi4+N1wb4W8Y2pFXULlOVOoLfmx2amglwo6FIsaaSeJElIksSsWbN4/fo127Zto2bNmsyfP5/p06dz6tQpnJyccHBw0KzTKiQ8Porxt9cTp0jQ6EakAkF0AQOG7J7L8M66QF+Hjsygq3/RAnTB/uckZ8H27NnD5cuXqVChAvr6+nz48AEgQ7OsU8PV1ZWKFStqXNAlJiYmRafhzz//pHfv3tjZ2XH+/Hm6dOkCJCnfpxboy+VyfH191b5pcejQIcaNG8fEiRMZOXIk8+bN49atW5w4cUJpNjQd7EdHR3PhwgWN2FcWTk5O3L59m/j4eE27onYkSaJa/lLMqzGA063m82f9sfxcsSutC9fE0aIweuEJSJEJFDSxwt6sAHUKlKF/qeYsqDmIQ9/OYm+zX+hRvHGmAn1ICvafPn2Kr68vkiQxdepUDh8+zJkzZ3ByckqzVLuSVXFW1R2JqYGxRnr4IxL+GWOW2bFZj0LeMNt9Ox3PzmLz09Mp/bX/5dmzZzRo0IDp06czfvx43NzcVBLoQ1K/PqD1Zfzw9QT7AN2KNdLaQF+GRCFTa2rZOH722pYtW1i2bBkmJiYMHToUNzc3pk6dSseOHdXvqBpZ+vAQ4fFRKITmpUQlmYSXYSB3g55p2hUdOnIUumBfC9AF+5/TunXSmJ2+ffvy8uVLunTpgiRJ3LlzB2tra/Lly5fltd3c3LSiX9/ExIRatWoBScF+njx5mD9/PoaGhmzevBmAAQMGpHq+np6e2jPPt27dolevXilTAgC+/fZbGjZsyIwZMxBKeiAICgrS2LxcR0dHSpYsmeNV+Z2cnIiNjcXd3V3TrmgUIz0DyloWpaN9PSZX7s6GBuMx2/UKq90+7G32CzsaT+H3WkP4oXRLnGzLk98466MrGzduDPDJRlGy6GNkZCQ1a9bk6tWrqZ7vaFmE7Y0mpwQb6uxuzs43NznjF54QzeanZ+h/eREPQ17/87pCwapVq6hcuTKBgYFcvXqVBQsWZGhEYVZJFnLNKZl9X19f5PKMzRbPydSwKU3TglW0RqPi3ygQTKncHVkqm22jR4/m1KlT7Nu3j++///4zQVqFQjs3MbLKVf+HnHt/T6MZ/f8iQ+JXj11EJ8Zp2hUdOnIMumBfC9AF+58zaNAghg8fTvPmzenZsyc//PADjx8/Jj4+njZt2mR5lnxUVBReXl5a0a8PMGnSJI4dO8aYMWPYtWsXnTt3Zvbs2Xh5eTF48OBU5y4nJiYSFBSEtbW12nx9/vw57dq1o0aNGmzdujWl+kKSJObOnYu7uzuHDh1Sii1NZvYlSaJ9+/a4uLjk6Ie3atWqYWxs/NWV8meE2NhYlVT25M+fnypVqnxWFVK+fHnu3LlDxYoVadq0KX/99VfqaxjnZWHNwUyv0gsTPSOtUurPCAKBX0wwP11fyepHR3n++iXNmzdn1KhRDBw4EA8PD+rVq6dyP3JaZj8xMTGlfS23UzXIioSI2OztMCkZGRJdHOpT1frLv7nJlC9fni5dunzWOqdQKIiLi2PJkiW5YtMmPD6Khff3qG2saUZRIPgYG87axy6adkWHjhxDznqKyKXogv3PyZ8/P6tXr8bFxYWdO3eSJ08eSpYsiaenJ+vXr8fQ0DBL67q7u6NQKLQm2IckBfilS5dSvXp1zp07x6JFiyhfvjwzZ85M9Rx9ff1sVTdklqCgINq0aYOVlRWHDx/+LFBq2LAhzZs3x9nZWSkPOkFBQRoL9iEpG+vn58fdu3c15kN2MTQ0pFatWrpg/wuoKtiHpFL+CxcufFblYm1tzenTp/nxxx/58ccfGTVqFAkJCV9cQ5IkWhWuwc4mU+hoXw8RLweRvUy/Oh/aFUIgEOx+cYnuR2by4t1rzp49y6pVq9T2W+fn54e5uXmO+G1NFpvN7Yr8sbGxjBkzhk6t2mFyOUC9pStpIEPCxtiCoWW+y/oaMhnnz59n4sSJtGvXjrCwMCV6qH4Ov7lJeEI0Qpt2ZP6PAsHRNzcJjAnVtCs6dOQIdMG+FhAVFZWqcNPXzr+DegMDA/LmzZuth3RXV1eMjY0pX768MtxTOk2aNOHatWts3LgROzu7Lx6TmJhIVFRUSr+/qomJiaFDhw6EhoZy8uTJVKsJ5s6di5eXF3v27Mm2zcDAQI2V8UNSCXy+fPlwccnZ2YNkkT5ltVfkFlQd7Pv4+PDixeezqA0MDFi9ejVr165l3bp1tGrViuDg4FTXym9sQZUgK272XktbgwrYm9mmvJZexl+GlPLf3VAywFCmn2p5ssqQwLRYfuqtHkT1BnXUajonjN1LJjnYz819+w8ePKBGjRqsX7+e5cuXc3b1XjoWVX2FR3pISOjJ9JhdvR8m+tlrK2nbti0nT57k5s2b1KlTh2fPcmZvuVwoOPj6mlYG+v/G5e0tTbugQ0eOQBfsawG6zL76cHNzo0qVKkod8aRM9PT0qFevXkov/5fQ19dX2+dFoVDQt29f3N3dOXbsWJqq/7Vr16Zt27bMmjWLxMTELNuUy+UEBwdrNLOvr6/Pd999lyv69gMCAnj58qWmXdEqVBnsN2jQAD09vTQFHocNG8a5c+e4f/8+tWrV4tGjR6keu3z5csqWKM2klj+wrdEk/m4ylVnV+tKtWCOqWJfA3MAUA5k+EkkbACZ6hjiY2dK6SE2656uD/+qrxIRGkKBIRKEJYTSZxPvYYMbdWkdkQozazOaUsXsAZmZmWFtb58pgX6FQsGTJEmrWrImenh5ubm6MHj0amUzG2IqdaVKwssZKxSVAJknMr/ED5fM5KGXNFi1acPv2bYQQ1KpVi7NnzyplXXVyM+ARH+OUO05X2SgQHHpznURFzm+Z0KFD1ehG72kBumBffbi6utKqVStNuwEkPQTJ5fJMbTwkB9HZGT2YGSZOnMihQ4c4dOhQmhsQycyZM4dq1aqxfft2fvjhhyzZDA4ORgih0cw+QLt27dixYwdv3rxJybzlNOrWrQvA9evXKVGihIa90R5iY2NVJm6ZN29eatasyYULF/jxxx9TPa5Ro0a4urrSvn176tSpw65du2jbtu0nx7x69YojR46wbt26lLGWhfPYUDiPDc0Kpa9iHy9P5Nr4Z7yPCdaoyJZcKHgV6cfsezv4vdZgpY3oTIuclNmH3KnI/+7dO/r378/58+cZP348v/322yeijHqSDOeqfdCTdnHuvXqFRCUk9CQZv9X4gdoFyip17dKlS3P79m169uxJq1atWLJkCaNHj1bL514ZHHh9DZkkaYUCf1qExkdx1d+TJoWqaNoVHTq0Gl1mXwvQBfupI4SgSpUqHDlyJNtrhYaG8uzZM63o1xdC0KFDB06ePJmpEmt9fX21BforVqxgyZIlrFixgvbt22fonKpVq9K1a1dmz56d5ZFvgYGBABrN7AO0bNkSAwODHF3Kb2VlRbly5XR9+/9BlZl9SL1v/78UK1aMGzdu0LRpU9q3b8/ChQs/OWfVqlXky5ePPn36ZMmPbc/P4hcXrBW/9AohuBX4mFO+bmqxl5My+5D7gv39+/dTsWJFHj9+zNmzZ1m8ePEXpy/oy/SYUbU3PYs3AZLaT1SNDAlLwzwsqzOcurblVGLDwsICFxcXxo8fz9ixYxk8eDBxcdqvIB8nj+de0DOtD/QhabPoxofUq6J06NCRhC6zr0aESFIp9g714UWEH1EJscQrErD4vjIvHRLZ8/IyjhaFKW1hh6m+ZmfAawuRkZHcv3+fmJjsl38mi61pw9i948ePc+zYMcaOHZvh3f7ExET09PTUkh04fPgwY8eO5eeff2bEiBGZOnfWrFlUrFiRjRs3Mnz48Ezb1pZg38LCgsaNG+Pi4sLIkSM16kt2SO7b1/EP6gj2f/vtN7y8vKhQoUKax5qbm3Pw4EFmzpzJlClT8PT05K+//kIul7Nx40aGDRuGqalppn3wDvVh27NzWtV1KwFLHx6gRv5S2JhYqtSWv79/jgv2T548qWk3sk1ERASjR49my5YtdOnShfXr16c7NUYmyfipXDvq2ZbjV49dBMSEqqRfXEJCIGhRuDqjy3XE3DDz36vMoKenx6JFi6hYsSJDhgzB29ubAwcOYGtrm/7JGuJ5+Ps0q4BCH/jw8Jf9IMC+nxNFvk+q+BNyBQ8m7yHC2x8jG3OqruzL2103CfN6R9yHcBRxCRjmN8emgSN2nWugb5qkxxT1Joh3B+8S4e1HfHAUSGBc0JKCbSrzTYu0751yocArJPdskOnQoSp0wb6KiZXHc+7dPc69c+dx2NuU2aB6kizlhyd/szK8lkWz+tFRBAIJKGhqTY38pWhftC6OlkU0exEaJDw8qW8sq6P2/o2rqyvm5uY4Ojpme63sIIRg5syZNGzYkKZNm2bonMTERCRJUkugf/v2bXr16kWXLl34/fffM31++fLl6dWrF/PmzWPAgAGZLpcOCgoC0HgZPySp8o8fP57w8HClfAY1gZOTE3/99RchISFqneCgzag62K9Xrx6GhoZcuHAh3WAfkpS8586dS4UKFfjhhx94+vQpHTp0IDIyMtObbQAJikTmeuxEkiStEmcUQLwikYUP9rKo1hCV3c9iY2MJCQnJkWX8QogcU+79X27evEmfPn348OEDmzdvpn///pm6lirWJdjWaBJ/eZ9g36uryCSZUnQmkp+1LA3zMKVyD+qpKJufGv369aN06dJ06tSJmjVrcuTIEapWTb8NRxN4h/kikfpURMtKRSjUrirvj7rzdtctrGoUI08xG3z3uxLh7Q8SlBrXksTIWN4fdUcy0MO0sBVxHyOJfR+Kz57bRD4PoPysTgBEPgvgw4VH6JsZYfyNBTHvQoh68YHnK8+SGBFD4S5pV2L6RgURkxiXbXFFHTpyM1pQ3Jc7eRv5gRVeh+lwZiYLH+zl3sfnKYE+JO1IJgo5cqEAmYQcRcpOtgDeR3/kuM8dBl9byqArSzjp40qcPGtl0TmZ5PE1FhYW2V7L1dWV6tWrp8yH1xRHjx7l3r17zJkzJ8MPQh8/flSL+v6LFy9o165dSt99Vt+rmTNnEhAQwPr16zN9bmBgIHp6eloRmLZr146EhAROnz6taVeyjJOTEwA3btzQsCfag6qDfRMTE+rVq5emSN+X6N69O1evXsXPz4+ZM2fSuHFjihTJ/GbvJb/7vIn8oBlBvnSQCwW3A5/wOPStymwEBAQA5KjMvoODA7GxsXz48EHTrmSaxMREZs2aRYMGDbC1tcXDw4MBAwZkadPCRN+I0eU78XeTqXQr1pA8/69yzJKInyLpmapU3kJMrdyDfc1+UXugn0ydOnVwc3PD1tYWJycn9u3bpxE/0sM7zDfdqR0O/etjUsQKkSjHe8kpIp7683Z3kjJ+ofbVsKxYBJmhPg4/NKD2jmFUXdGHWpsHY+6Y9H0MufuaxMhYAIxszCkz5buU46qt7Y9enqTA/cOlJ+n6KxA8D3+fnUvWoSPXowv2lUx0YhyLPffT+9ICDry+RrQ8KcDPSkma/P8Pas/C3/Hb/b/pdv5Xbn14rFR/tZ3kzL6ygn1N9+srFApmzpxJkyZNaNSoUbrHDx8+nAYNGmSpjDezBAUF0bp1aywtLTly5Ei2gqFSpUrRv39/5s+fT1RUVKb9sLa21vimDCRl2ypVqpSjVflLlChBgQIFdKX8/ychIQG5XK7SYB+SSvkvXbqEXJ45tejq1auzYMEC5HI5V69eZceOHZm2vf/VNbX0PmcVPUnGoTeq+zz6+fkB5LjMPuS88XvPnz+nfv36zJs3jxkzZnDlyhWliIEWzmPDiHLtOdJ8FlMr96B6/lIpgT8kfYb0Jb2U/6sv6aV85iWgkKk1Nv4Sb+ed4k+nsbQpUgsjPcNUrKkHOzs7rly5QseOHenWrRvOzs4oFNq1Ifcy3C/l2TM1ZIb6OI5vhaQnI/p1EJ5T9yISFZgWscKhX9LmsmG+PBT+V7m+zFAfs1L/b1+QSfD/33fLykXJ71QaSS/p38YF8mJkY550mEHGEhyvIwMyfZ06dHxN6Mr4lYh70HPmeewiKDYpG62srEryRkFIfCQT7/xFm8K1GFW+A2YGqlGT1iaSM/vZLaEOCAjAx8dH4/36hw8f5v79+1y5ciXdY48ePcq6devYt28f5ubmKvUrJiaGDh06EBoays2bN9PtscwIM2bMYPv27axatYrJkydn+LzAwECtKOFPpn379qxevZrExES1iSMqE0mSdH37/yI2NimjpI5g39nZGXd390zfd7Zv307VqlWpXLkyffv2xdPTk99++y1D1T3Pw9/xKFS7A0a5UHDunTsjy3XAwlD54rTJwX5Oyuz/O9jPyOQTTSOEYPPmzYwePRpbW1uuXbtGnTp1lG7HSM+QNkVq0aZILYQQBMSE8CTMh+fh74lOjCVOnoCepIehnj42xpaf6B65mrtS6/ZSLl++nOGWOVVjYmLCzp07qVSpEtOmTePhw4ds27YNMzMzTbsGQIw8YyKCZiVtKdK9Fm933UIRLweZROnxrZAZfvk3Mj40mo83ngFg08AxZRPgv4Q99CX67UcAvmlZMV0/JCTi5AkZ8lmHjq8VzafOcgFyoWCl12FG31pDUGyYykYcJQf9p3xd6X1pAQ9DXqvEjjahrMy+m1uSArQmM/vJWf1vv/2WBg0apHlsVFQUo0ePpmXLlnTp0kXlfvXv3x93d3dcXFyUNqLNwcGBIUOGsHDhwpRNm4wQGBiocXG+f9O+fXtCQkJydBl8/fr1uXPnTpYnJOQm1BXs16xZkzx58mS6lP/JkyecPn2acePGsWnTJpYsWcIff/xBhw4dUu6HaXH49Q300inD1QbkQsFxn9sqWdvf3x99fX2lbFqqi3z58mFmZpYjMvsfP36ka9euDBo0iO7du+Ph4aGSQP+/SJLEN6ZWNC5YmcGOrRldvhMTK3VjfMUujCzXge7FG1HFukSKwHGNGjUoXrw4u3fvVrlvmUGSJKZMmcKRI0c4e/Ys9erV4/Xr15p2C0ga15lRYt6H/vMPhSD2w5fvTzF+oTyYvIf44Cjyli1EiZ+affG4YLdXPJpzGBSCgu2qZCzYlyQSFBn3WYeOrxHtfyLQchIUicy6t529r5IyteqYZaxAEBoXyZiba7gT6K1ye5okOUjM7q63q6sr1tbWODg4KMGrrLF//34ePnzI7Nmz0z32119/xd/fn1WrVqlcrGny5Mns37+fXbt2Ubt2baWuPW3aNKKjo1m2bFmGzwkKCtKqzH716tUpWLBgji7ld3JyIjY2Fnd39c6y1kbUFewbGhrSoEGDTAf7K1aswNbWlm7duiFJEuPGjeP48eMpmdPnz5+nef4Vf890y3C1AYHgmv9Dlazt5+eHra2tVrQCZRRJknLE+L2zZ89SqVIlLl26xIEDB9i4caPKK8+yiiRJdO/enQMHDmjlRme7du24desWUVFR1KxZk8uXL2vaJQxkGateC7r+jMD/99QbFUiqvHy++jzxIZ+27YU/ec/9CbuJfR+KVa3ilJ/T+YtZfb8T93k09wjymASK9q5LiR+bZMgPIQQGMtXrGenQkZPJOb+EWkiiQs6se9u57PdA7bYVCBIUcibd+Qu3wKdqt68uwsLCMDc3z7Y4XXK/vqZUjuVyObNnz6Zly5bUq1cvzWMfP37MH3/8wbRp0yhZsqRK/Vq1ahV//PEHy5cvp2PHjkpf387Ojp9++oklS5YQHBycoXO0LbMvk8lo27YtR44c0Spl88xQtWpVjI2NdaX8/BPsZ3ZKRFZo2rQpV69ezXCgERISwtatWxk+fPgnM8lbtWrF7du3kcvl1KpVi/Pnz3/x/I+x4YTER6a6fugDH661X8q1dkvx2Xcn5e9CruD+hL+51m4prgM3kBgVx8u/LuE+die3eq3lRpcVuA3dzJsdN0iM/vRa4kOieLr8DLf7rON6pxXc/Wkr7495ZOh6n4W/U4mIoL+/f47q109Gm4P92NhYxo8fT4sWLShXrhwPHjygc+fOmnYrXXr06EFwcDDnzp3TtCtfpHz58ty5c4eKFSvy7bff8ueff2rUH2P99HUN4kOieL4m6R6Ur0YxKi/qjr65MYnhMTxf9c/7HHT9KQ+n7ycxPIaCbatQdnp79IwNPllLCMGrzVd4sfYCkkxG6Z9bUbRHxqtEBAJDmUH6B+rQ8RWjC/azwR+e+7nq76mSebAZQSBQCMFk1w0qVTbWJMoYeSaEwM3NTaP9+nv37uXRo0fpZvWFEPz000/Y29szadIklfp05MgRxowZw/jx4xk1apTK7EyZMoXExET++OOPDB2vbcE+JJXyP3/+HG/vnFlJY2hoSK1atbh+/ToRCTHcC3rGKV83jr65yaHX1znuc4fLfg/wjQrMsRsaGUVdmX2AZs2aER0dze3bGStX37hxI4mJiQwbNuyz1xwdHbl16xa1atWiZcuWrFy58rP/Vt5hvmmunzw2C+DtrltEvQoESHVsVvTbjxjlN0dmbJgyNsv79+Mp68ljE/Ccuo8P57yQxyRgVMCcGJ9gXq6/yJsd6be9xMoT8I0KSve4zOLn55ej+vWTcXBw0Jpy7n/j6elJrVq1WL16NUuXLuX06dPY2dlp2q0MUbFiRcqWLat1pfz/xtramtOnTzNs2DCGDh3KyJEjSUjQTB+6g5ltumr8z1aeJTE8Bn1zY0qN+hZDKzNK/r80P/jOS/zPPCTuYyRPFh5HES9H0tcj8pk/Dybt5v6Ev7k/4W8inyeJ6gVd8ebdwbsA6Jka4nfMI+WY+xP+zpDPRcy063lBhw5tI+epTWkJF957qKzfMDMIBIkKOTPvbmNb40kYa1htVtmEhYVlu1/fx8eHDx8+aKxfPzmr/91336VbJr9z504uXbrE6dOnVRqM3Llzh549e9KpUycWLVqkMjsABQoUYMyYMSxfvpyxY8dSoECBVI8VQmhdGT8kBW0mJiYcPXqUMmXKaNqdTBGREMPZd3ex+qEm76UI2pyenubxJnqGlLYoTPl89jQrVJXSFoXV5Kl6UGewX7lyZfLly8eFCxfS1elITExk1apV9OjRA1tb2y8eky9fPo4dO8bkyZMZPXo0np6erFq1CkPDpPu+d5gPepIszTJ+h/71CXF/Q4xPMN5LTlFqVPPPxmbFh0Th8EMDvmlVCX1TQxTxiXhO20+Et1/K2Cx9M2P8Tz0g5l0ISFD5jx7kKWbDy42XeX/4Hr4HXCn4XWUM86UtwOcd5kNRs9TvCVnB399fa+eYp4W9vX2Wpi+oCoVCwYoVK5gyZQqlSpXC1dWVSpUqadqtTCFJEj169OCPP/5Q+cjN7GBgYMDKlSupWLEiI0aM4NGjR+zbt0/tuhOOFoU5++5eqq/7n/YkxPUVACWGN8XQKqnFMn/90tjcfkHgpSe82nAZy8pFSM6DiUR50mbiv0iMSaoQUiT8M60kMTyGiPCYTPtcOm/u+o3SoUPZ6IL9LBASF8GiB/uQQEM5/U9RIPCPCWGD90lGluugaXeUSnh4eLaDfVdXV0Bz4nx///033t7e6T7EhYaG8vPPP9OtWzdatGihMn9evnxJ27ZtqVKlCtu3b1dLX+uECRNYvXo1CxcuZPHixakeFxkZSVxcnNZl9k1MTGjRogUuLi4qr7hQFs/C3nHw9TXOvLtLgiIRKb+EPukrn8fI47kf/JKHIa/Z9eIiZSyK0KVYA5oUrIyRXs4vl1RnsK+np0fjxo25cOECM2fOTPPYo0eP8ubNG8aMGZPmcfr6+ixevJgKFSowbNgwnjx5woEDB7CxseFN5Id0KzOSx2bdn7A73bFZ/z7HrJQtEd5+n4zNCrn7GgCTQvnIUyzpO5u/XineH76HSFQQet+HAo1T3xzTk2S8icz8XPk4eQIvwt/jHeaLd5gvz8PfEZUYR4IiET1JhmxIJQKNLdj27ByOFoVxtCyMpaF2qJ2nhb29PeHh4YSGhmJpaalRX96/f8+AAQM4e/YsY8eOZf78+VobKKdH9+7dmTlzJidPnqRTp06adidNfvzxR8qUKUOXLl2oWbMmLi4ulC9fXm32HS2KpFmt+k3LiqkK5zn+3BrHn1un/Lu+y7h07dl+Wx7bb7N+fQVNrMhjkDM/lzp0qAtdsJ9JhBD84bmfaHmcVgT6yQgEe15epuE3lahkVUzT7iiNsLCwbJfxu7m5YWdnp5GyzsTERGbPnk379u3TbSOYPn06MTExLF26VGX+fPz4kTZt2mBhYcHRo0fV0rcMYGVlxfjx41mwYAHjx49PtQQ0KCippFfbMvuQVMo/ZMgQrWwz+Dc+kYEsfLCH+8EvP8nyZrbdKPm8p2G+/Oqxi+VehxhZtj1titTSmPaFMlBnsA9Jffvjx48nOjoaU1PTVI9bvnw59evXp1q1ahla94cffsDR0ZHOnTtTs2ZNjhw5Qpw8PkMiscoamxUXGAGAgcU/9xEDy3+uMS4w7ekBEhKx8ozpGSiEAregZxx8fY2bHx6hEAIJkH2hksGwkAUfUbDx6UkU/9/8sDcrQBeHBrSwq661wcG/x+9pMtg/dOgQQ4YMwdDQkNOnT6t081kdODo6UqVKFXbv3q31wT5Aw4YNcXV1pUOHDtSpU4ddu3bRrl07tdguZWGnNYms9JBJEuXz2WvaDR06tB5dz34muR34hCv+nioRFcouMiQW3N+tlb5lFWVl9jXVr79z506eP3/OrFmz0jzOzc2NtWvXMmfOHAoVKqQSX2JjY+nYsSMfP37k5MmTag+ox44di6mpKb/99luqxwQGJvUQa2Mw/d133yGE4MSJE5p25YsohIK9Ly/T/8qilLGcylBlTw4eIxNiWPBgDz/fXs+HmNBsr6spNBHsJyQkpCmO6OHhwZUrV9LN6v+XevXqpUwaqVevHm/93mX4XGWPzUohk1FCQjqjvmIS49jz8jI9LvzGz7fXc+vD45QAXpD6ZzxZ0yaZt5EfWPrwAB3OzmSx537eZqGiQNX8O9jXBJGRkQwaNIjOnTvTsGFDHjx4kOMD/WR69OiBi4sLkZGpC1hqEw4ODly/fp3mzZvToUMH5s+frxY9FVN9I8rnc0CG9m/oKoSglk3OaqvToUMT6IL9TLL35eV0xUs0hQKBT1Qg94LSHs2Uk8huZl+hUODm5qaREv6EhATmzJlDp06d0uwflcvlDBs2jEqVKjFy5EiV+KJQKOjfvz9ubm64uLioXOX/S1hYWDBx4kT++uuvVB9mtTnYt7W1pXbt2lo5gi8gJoSfbqxk5aMjJCgSVTp67d7H5/S+tIBTvm4qs6FKYmKSekLVFeyXLVsWW1vbNEfwLV++nKJFi2ZpIkaRIkW4evUqbdu2xd31bobOUdbYLCObpJFrCWH/9NkmhEX/6/X07936aYz6cg96Tp9LC1n96Cj+MUnTPLL62Rb//1+cIgGXt7fod/l3djw/T6JCnt6pasPW1hZDQ0ONBPu3b9+mSpUq7Nmzh40bN3LgwAGtrLDKKt27dycmJoZjx45p2pUMY2Zmxv79+3F2dmbatGn07t075f6lSro41FfLGOnskkffmKaFKmvaDR06tB7tjFq1lHdRQbgGPdXqzLmeJOPg62uadkNpZFeg7/nz54SFhWkk2N++fTsvX75MN6u/bt067t69y9q1a9HXV01nzZQpU9i3bx+7du2iTp2Mj7VRNqNGjSJfvnzMnTv3i69rcxk/JJXynz59OiU7rA28jgjgx6vLeBLqoxZ7cqEgVh7Prx672PH8yyPgtBl1Z/YlSaJp06apBvsBAQHs2rWLESNGZPn7b2pqyu7duynvWBYhT/v3SZljsyyrOQAQ8z4kRdk/6P/l/pK+LEmkKw0E4os6ENGJcSx9eJDRt9YQFBuGUPLMG7lQIBcK1j85ztBry3gV4Z/+SWpAJpNhb2+vVkX+xMRE5syZg5OTE/nz58fDw4OBAwfm6FadL+Hg4EDt2rW1WpX/S8hkMmbNmsXevXs5fPgwDRo0wNc37akb2aXhN5XIa5B6y5E2IJNktCtaB6NcJkqtQ4cq0AX7meDwmxvoaWlWPxm5UHAtwCtHl9n+m+yO3nNzS8o+Vq9eXVkuZYj4+Hjmzp1L165d01Qv9vf3Z/r06QwZMoS6deuqxJfVq1ezaNEili5dqvF+xTx58jB16lS2bNnCs2fPPns9MDAQc3PzT2aMaxPt27cnKiqKS5cuadoVICnQH35jBaEJUSrN5qfG+ifH2fz0tNrtZofY2FgkScLAQH1ig02bNsXNzY2wsLDPXlu/fj16enoMHjw4WzYkSaJlzUboyfTSPE6ZY7MKtqqIcSFLEHB/wm7uDtvC+8NJSt52nWqkq8QvFwoK5/l0Y+991EcGXF7EoddJbQ+qzjC+iPDjhyt/cPZdxqoiVI29vb3aMvsvX76kUaNGzJ49m+nTp3P16lWNVH2pix49enDy5ElCQ0M17Uqm+f7777l+/XrKZKFbt26pzJahnj4d7OtpdSm/QijoaF9P027o0JEj0O7IVYtQCAXH3t7SyAN1ZpEgx5bY/pfsZvZdXV0pXry42sfXbNmyhTdv3qSrwD1hwgQMDAyYP3++SvxwcXFh9OjRjB07NtP9wKpi2LBh2NraMnv27M9e03bxu3LlylG8eHGtKOX3jw5m9M01RCfGabTaaNPT0+x/dUVj9jNL8vgtdWYumzZtikKh4MqVT9+n+Ph41q5dS//+/bGyssq2ndIWhVFIqQfHaY7N+r9q/qsNlxGJ8s/GZv37f8ljs/RMDKk0/3sKNC2HzNiA2IAwTApbUWxIoxRl//QoY/FP9v9VhD9Dry/nQ2yoknP5qZOc5Z/jvjNlg0GTqCPYF0KwdetWqlSpgp+fH1evXmX27Nlq3QDTBN9//z0JCQkcPnxY065kiapVq+Lq6kqJEiVo1KgRW7duVZmtzg71MdYz1MpwXyZJfFuoKnZ5tLMCUIcObUOnxp9BfKOCiExMvXQ39IEPD3/ZDwLs+zlR5PtaAAi5ggeT9xDh7Y+RjTlVV/Ul8LI3gRcfE/nyA4q4JHGiamv6Y1rk04e9F+svEvbQl+i3H0EhMLA0pfb2oen6KoCHIa+yfrFaQkJCAjExMdkO9tVdwh8XF8evv/5Kt27dqFChQqrHXbx4kZ07d7Jp0yaVbEa4urrSo0cPOnbsyB9//KH09bOKsbExv/zyCyNGjGDatGmUK1cu5bWgoCCtLeGHpOxpu3bt2L9/P6tXr9ZYqatcKJh5bxvhCVFa0Va0wusI5SztKZcDlJFjY2PVNoUimWLFimFvb8+FCxc+UdXeu3cv/v7+jB49Wil27GSWab6u7LFZAIZWZpQe1zLDPv4bA5k+Rc0KAEltcqNuriYiIUZjn+klDw9gKNPnu6K1NWIfkoJ9VW4mBgcHM3ToUPbv38+AAQNYvnx5tife5BTs7Oxo2LAhu3fvZsCAAZp2J0vY2tpy/vx5RowYwYABA/D09GThwoXo6aVd0ZNZ8hvnZWyFzvx2/2+lrptdJMBM34SxFTpr2hUdOnIMusx+BnkalnaPlGWlIhRqlyTC9nbXrZT+Rd/9rkR4+4MEpca1RN/UiJC7r4l8+QEDi7R7oj5cfExCSBQG5pnrLRUIHoW+zdQ52kh4eJI6dFYfRBITE7l3757ag/1Nmzbh4+OTZlY/Pj6en376CScnJ/r37690H169ekXbtm2pVKkSO3bsUPqDQHYZNGgQRYsW/ew90vbMPiSV8r979w53d3eN+bD/1VUehb7VmkojSYK5HjuJkydo2pV0Sc7sq5Mv9e0LIVi+fDktWrSgbNmyWVpXLpdz584d5s2bR8OGDSljV5yECO3Rk0iPkuYF0ZfpEZkQw5iba4jUYKCfzMIHe7n94YnG7Nvb2xMYGEh0dHT6B2eSCxcuUKlSJc6fP8++ffvYvHnzVxPoJ9O9e3fOnTuXog+TEzEyMuKvv/5i+fLlLF26lLZt26qkNaFV4RrUtimjVe2rAphcqRsWhmm3COnQoeMftOcbrOU8CfNJ94bn0L8+JkWsEIlyvJecIuKpP293J/VVFWpfDcuKSeWKJYY3pe6eERTtmbZQWrWVfam9Yxj5qhfLtL9h8VEExX7eH5qTSA72s5rZf/z4MTExMWoduxcbG8tvv/1Gr1690nyAX7x4Mc+ePWPt2rXIZMr9GgYHB9O6dWvy5s3L0aNH1Z7FzAiGhoY4Ozuzf/9+PDw8Uv6u7Zl9gAYNGmBhYYGLi4tG7L+N/MC6x9qlKK0QgndRH3NE/74mgn1IKuV/8OBBysSJmzdv4ubmlun2mrdv37Jhwwa6deuGjY0NtWvXZtGiRVhbW7NkyRLyh+mjSNSOTaC0kCFRp0DSPXKl1xECY8O0ZvPqV49dRCSoXvX8SySP33v7Vnkb9nFxcUyYMIFmzZrh6OjIgwcP6Nq1q9LWz0l06dIFgAMHDmjYk+whSRKjR4/m1KlT3Lp1izp16vD06VOl25hSuTtGMgOt6N+XIdG0YBUaFkxdB0mHDh2fowv2M8iTUJ90H0Rkhvo4jm+FpCcj+nUQnlP3IhIVmBax+qR/0cjaDEkv/bc+eaxRVvFOpxpB20kWs8pq5sHV1RVJkqhWrZoy3UqTDRs28P79e5ydnVM95tWrV8ydO5exY8dSseKXS2qzSmxsLB06dODjx4+cPHlSq7Pk/fr1o2TJkp+8Vzkhs29gYECbNm001re/8P4etfUzZwaBYNeLizwLy/isd02gqWC/SZMmACnijsuXL6d06dK0atUqzfMiIyM5duwYo0ePpkyZMtjb2zN06FB8fHwYNWoU165dIygoiFmzZrFhwwZurD6MTD9n/LS3K1qHWx8ec8L3jtaM+hIIwuKjWOF1SCP2k4N9ZSnye3l5Ubt2bVauXMkff/zB2bNnKVy4sFLWzokUKFCAZs2a5ThV/tRo3rw5d+7cQZIkatWqxenTyt1wzW9swYJag5BJEkKhue+oTJJRyqIwkyt315gPOnTkVHLGE4EW8DEuIkPHmZW0pUj3pH59RbwcZBKlx7dCZqh+eYTQ+Kj0D9JikoP9rGb2XV1dKVu2LObm2ds0ySgxMTHMnz+fPn36ULp06VSPGzNmDNbW1umO5MssCoWCAQMG4ObmxtGjR7VeVVlfX5/Zs2fj4uLC7du3gZwR7AO0a9eOe/fuqXwE0n95HPqWByGvtCYD+l9kksTeV5c17UaaaCrYt7Ozw9HRkQsXLuDj48OBAwcYNWrUZ5U9CoUCNzc3fvvtNxo3boyVlRXt2rXj6NGjNGrUiP379xMUFMTNmzeZPXs2tWvX5vfff09pV7qw/SjFzL/Rgjxc6uhJMhp8UxFjfSN+89iNpGXeKhCc8nXjZsAjtdsuXLgwenp62RbpE0KwcuVKatSoQUJCAnfu3OHnn39WeiVZTqRHjx5cvnyZ9+/fa9oVpVCqVClu3bqFk5MTbdq0YenSpQihvMC8hEEB3q++AkJo5JsqkyQczAqwpPaPmOpr56QeHTq0Gd1dP4PEZ6IXNeZ96D//UAhiP4Qr36F0kMicz9pIdnv21S3O9+effxIQEMCMGTNSPebIkSO4uLiwfPlyzMzMlGp/2rRp7N27lx07dqhsjJ+y6d69O+XLl2fGjBkkJCQQFham9WX8AK1atUJfX1/tpfyHX1/Xqv7J/yIXCs69cydMizcaY2JiNBLsQ1Ip//nz51mzZg158uRJ0evw8fFh06ZN9OjRgwIFClCzZk3mz5+PhYUFS5cu5enTp7x69Yr169fTpUsX8uXLB4C3tzdOTk44OzszceJE7ty5Q5UqVejq0EBL8uRfRi4UdHZwYveLi4TFR2plpYqExNKHB9WuIaCvr4+dnV22gn0/Pz9at27N6NGjGTJkCG5ublSuXFmJXuZsOnXqhL6+Pvv379e0K0rDwsKCo0ePMmHCBMaPH8+gQYOIi4tTytpmZmYs/smZmWV7YiDTV+tvkIREGYuirKo3iry6Pn0dOrKE9j41ahkZfRgJuv6MwEtJ4j5GBZKC1OerzxMfov6HX218gMoM2cnsx8XF8eDBA7X160dHRzN//vyU0vQvERUVxejRo2ndurXS592vXbuWhQsXsmTJkpSexJyAnp4es2fP5uzZsxw7ltSHnhMy+/ny5aNhw4ZqLeUPj4/izLt7WpvVT0YuFJzwuaNpN1JFU5l9gGbNmqVodTRt2pQZM2ZQrlw5ihYtyuDBg3n16hXDhw/nypUrBAcHc+TIEUaMGEGpUqU+mfygUChYvnw5VapUITQ0lOvXr/Prr79iZJSU9WpRuDo2xhZa0Wf7X/QkGeUsi1IhnwOH3/yPvbMOiypt4/A9M3QJqIAoYWCjYitioGJ3d7euta6u3a7dLubaYncrNoqY2E1ICUj3zJzvDz5ml6Ub3bmvi0uZOec97wzD4f29z/P8HpdCk77/bwQE/GK+8zjoQ75fOyft906fPk21atV4/vw5Fy9eZMOGDYXSt6Ug0dfXp3Xr1j9NKn8SEomE5cuXs2/fPo4cOcKNGzdyJcIvFotp164dLcvXY1ujSVjqGOf5nSXp3tW9dCPWNxiDrqryM6xESXZRiv1Moi7OuP9sfEgUH7dcB8Cgdmmqr+yFiq4G0vAYPm66ltdTTIZA5uZcmAkPD0dVVTVbC3N3d3cSEhLyLbLv6OhIcHAws2fPTvOYRYsW8e3bNzZt2pSrLdvOnTvH+PHjmThxIpMmTcq1cfOLLl26YGNjw+LFi4EfQ+xDoiu/s7MzkZGR+XK9y18fF3qhD4ki6YTH3YKeRpoUhNiXy+U8efJEYUYZFhbGqVOnOHHiBLa2thw5coSgoCBcXV1ZtGgRdnZ2afY89/DwoHnz5kyaNImRI0fy9OlT6tdPbvaqIVFjVo2+hVJIixAxq0Zfbvu/JDwh9x3ncxOJSMxJj3v5ft3siP2oqChGjhxJ586dsbW1xd3dPUM/iP8yvXv35v79+7nmjVCY6N+/P97e3jg4OOTaWiNpnLJ6puywm8LQ8q2RiMR5EuUXIcJIU59NDcbzS5UuaEjUcv0aSpT8l8j/QvIflCJq2nyNTr9Vy4eNV5GGx6Ciq4HVhBaoGepQbmxz3i4/z/eHn/G/8hITh6p82X2HYJcPyGL+TrN/Ne8EIhUxpu1tMO2Y2MLP/fejxAdHkBCa6AqcEB7Do5G7gMSeyLoVSqQ7H1219Fv7FXbCwsLQ09PL1h8rNzc3VFRU8iV1MSoqij/++IPBgwdTpkyZVI95/fo1q1evZu7cuWkekx0ePXpEr1696NSpE6tXr861cfMTsVjMokWLaN++PcAPkcYPiXX7kyZN4sqVK3Ttmvc9f58Gf0QEhVC+pcQ/JoSg2HCKaRS+tl6xsbFoaeX9vdHX15crV65w5coVrl69SlBQENra2ojFYvT09Hjw4AHly5fP9P1NEAR27drF5MmTMTAwwNnZWWH6lxq1ilnR2bwhZ7zuFyrRP6pSO8x1jFj23AkxokI1t38jE+TcDXjFt5hQjDT18+26FhYWCiPHzODm5ka/fv3w8fFh27ZtDB8+PFc3lH9GOnbsiKamJkeOHOG3334r6OnkOkmlPpnh8OHDREREEBUVRbt27ShdunS67XpVxBIGl3egkUlVNr0+nZj9IhdAnP3PnAgRAgKaEjW6WjZicHkHpchXoiSXUIr9TFJR34x3Yd5I04is+V9+QYjbFyCxtZ6aYWI9drFG5Snu+onAm2/5suMW+tXNSAiJJtYveVu8uMBEA8CEyL97JMd9Cyfun/X+ckFxnixemuGcy+uVzPwLLISEhYVl25zv0aNHVKtWLV8ieFu2bCE0NJRZs2al+rwgCIwdO5bSpUvn6qLiy5cvtGvXDmtra/bv35/uH+fCTtu2bSlXrhwfP378YcR+mTJlqFKlCmfOnMkXsf861CtNYRTq7s3L2cdAAIuBtpj1SDQJFWRy3KcfJuKdP+rFdbHZNIDAW+8IvPGGyM/fkMcl3kdqbhmElplhqmNHfvrG81+dEKSyDI/9J+/CvCmmUSU7LzVPiY2NxdAw4/lnlejoaO7cuaMQ+C9fvkQkElGrVi1GjhyJg4MDMTExtGnTBjU1tSwJfV9fX0aMGMGFCxcYNmwYa9asyZSXyZjKHbj37RXBcREF3r9eIhJToUgpepRuTFBsGC9DPAp0Plnhht9zepVpkm/Xs7CwwNfXl/j4eNTU0hY8MpmMP/74g/nz52NjY8P58+exsrLKt3n+yOjo6NC+fXsOHz78U4r9zDJgwAAOHDig+P7QoUP07t07U1mC5fRMWVd/DPPWLePg66uU7lyXGHk8EpEYuZDxNp5YJAIh0RDTUteYHqUb08LUBk2lCZ8SJbmKUuxnkor6Zhz3SHuxZNLKGpNWqbdRqzC1DRWmtlF8X35yK8pPbpXhNevsHJb1if4fbRUNjDUzv7NbGAkPD8+ROV/Dhg1zeUYpiYiIYPny5QwdOhRLS8tUj9m3bx+3bt3i6tWripranBISEkLbtm3R1dXl7Nmz+RKpzEtEIhGtW7dm06ZN3Llzhw4dOhT0lDJFx44d2bZtGzKZLE83W0LjIwmOS9voU7+aGaYdbPA98xSvgw8wrF0a7dLF+XrMjYh3/iACq8mtUNFSJ+SxB5Gfv6FaRCv5ZmIqyOKkvFt1USH0M4tEJOZ92FdsjQun2M+NGma5XM6LFy8U4v7OnTvExcVRsmRJWrVqxezZs2nevHmyzauOHTtiaWmJh4cHnz59ylTHDCcnJ8aOHYu6ujpnz55VZMBkBi0VdVbVHckYlw3ESuMLLIouEYkprlGEpbWHIhGJeRvqne7xmd682jgAr4P3CXvlQ9y3cORxCagV06W4XQVKdq2NilZKoZzVzSuRSMS7DOab21haWiKXy/n69WuamWBfvnxhwIAB3L9/n99//5158+alWfqhJHV69epF9+7def/+fboddH5GBEFg8ODBHDhwgBo1atCnTx+mT5/Ow4cP0dDQwM7Ojlq1amU4jlwu58CmnTRo0IDtrRby8Ntb3oZ95W2oF29CvYmUxqQ4RwSU0CpKFQMLKhQxo7phGSoUKaXMRlGiJI9Qiv1MUqGIWUFPIdOIgMr65j/8jTO7kf2oqChev37NxIkT82BWydm0aRMRERHMnDkz1edDQkL49ddf6d27Ny1atMiVa8bFxdG5c2cCAwNxcXH5YWrcM8LQ0BA1NTXmzp1Lu3btfogWUR07dmTZsmXcv3+fRo0a5dl13oVm3OLPclAjQp56EuP9nXdrLmE1oSVeTg8AMO1YE33rxHtY2TH2qOlr8e3GGz6sv5LumF923iLm63eK2VoRdC/zRmVyQchQ0BUUOanZ9/f35+rVq4rU/ICAALS0tGjatCnLly/HwcGBihUrpnrv/fTpE+fOnWPDhg1MmjQJZ2fndMV+UFAQ48aN48iRI/Tq1YvNmzdTtGjRLM+5jF4J1tYbzcQHfxIvT0Ceiy25MoNEJEZfTYf1DcZS9P9lHW/DvJGIxGl6UGR280oaGYvvmaeIVCVolTIkLjiSWN9QvA+7EvkxgCrzkxuhZmfzSi7IeRWaszZ4WcXCwgIAT0/PFGJfEAT279/PuHHjKFq0KLdu3crTe8/PTNu2bdHR0eHw4cPpdtH5Gbl79y7Hjx+nUqVK3L9/X2FWaG5uTp8+fYiOjiYoKCjDTDtnZ2c+ffrEnj170JCo0bhENRqXqAYkflaD48KJTIglXp6AWCRGXaxKUQ1dtFQKxiRViZL/IoV/NV1IMNcxQkPyY+yai0ViKhtYFPQ0ckx4eHi2xP6TJ0+Qy+V5bs4XHh7OqlWrGDFiBObm5qkeM3PmTGJjY3Otnl4ulzN48GBcXV05c+bMTxWNCAoKwszMjGfPnnHixImCnk6mqFu3LkZGRnnegu9bbGiGx4jVVKgwpTUiiZhojyBe/H4EQSpHy8wQy4G2iuPUi+ogkmR86w9++An/i+6UaF8Dg9qlszRfAQG/6O9ZOie/yIrYj4mJ4erVq0ybNo3q1atTokQJBg4cyOvXrxkyZAjOzs58//6d8+fPM3HiRCpVqpTmJuvGjRsxNDRk2LBh1KlTB2dn5zSve/bsWapWrcq1a9dwcnLCyckpW0I/icoGFmxuOB5tFY18bZslFokx1jRga6OJmGr9Pf+3od4ZbjpYDmqEppkhglTGuzWXiHjvn2LzSqymguUQO+rtH43Nhv7U/Wu4wssm5LEH0n+UxUHyzaus4BsdTFRCbMYH5hJJf0/+bdIXEhJCnz59GDhwIJ07d+bZs2dKoZ8DNDU16dy5M4cOHcrVvvQ/Ah4eHkRHR1OvXj0WLVrEkCFDMDc359SpU9SqVYtmzZpx+fLlDMd5/fo1VatWTTWTUiQSUUyjCJa6xpQvUopyeqaY6RRXCn0lSvIZpdjPJBKRmNal6hTqHtdJyAQ5rUvlT8u5vCTJoC+rPHr0CA0NDSpXrpwHs/qbDRs2EBUVxe+//57q8w8fPmTr1q0sXrwYU1PTXLnmrFmzOHz4MAcOHMiXMoX8JCgoCAsLCxwcHJg3bx4yWdZSxwsCsVhMhw4d8rwFX7wsAVEmmh3plDPGrFdiyrM8XgZiEeWntEaslrUkrviQKD5uuIqWZTFKD7HL1pzj5AkZH1QApCf2BUHgxYsXrF69mlatWmFoaIiDgwMHDhzAxsaGgwcPEhAQwOPHj1m2bBnNmjXLVGlOeHg4u3btYtSoUWhqamJvb4+zs3MKgREWFsbQoUPp2LEjderU4dWrV/Tq1StXXnf5IqXYaTeVqgaWuTJeeiR9UpuaVGNbo0kpSsreh/lk2Bo2M5tXagbalPpHur5YTQUdK+P/DyCCf2QH5WTzCuBThF+Wz8kuGhoaGBsbJxP7N27coFq1aly+fBknJyf27t2bbU8bJX/Tu3dv3rx5w8uXLwt6KnlOWFgYCQmJ9+WkUqbdu3ezdOlSatasyZUrVzAwMKB3795IJJIMNxgFQSA8PJzRo0f/8JmkSpT8zBR+5VqI6GzRsNC3vhKLRNQqZkUp7R8/tTu7kX03NzdsbGzytH4xLCyM1atXM2rUKEqWTGmEKJPJGDNmDNWrV2fs2LG5ck1HR0f++OMPVq1aRbdu3XJlzMJEYGAgxYsXZ9GiRbx+/fqH6YHcoUMH3r59y/v37/PsGjJBnum+xjG+oX9/IxeIzaAuPzU+br6GLCaeCr+2yfJGQRKF9V75b7EfEBDAgQMHGDRoEKamplSrVo3Zs2cjEolYsmQJL168wMfHh927d9OnTx+MjIyyfM3du3cTExOjuBfY29sTGBjIq1evFMdcv36datWqcezYMXbu3MmZM2cwMTHJ+Qv+ByW0DNnQYCxTqnZDTaySJ5vXYpEIXVUtltQazIJaAymipp3imGhZ5qLkWd28ig+NJtglsdykuF0FxSZAbmxeRUvzL7IPf7ffi4+PZ/r06TRv3pxy5crh7u6eaxtASqBly5YYGBhw+PDhgp5KnvL8+XPatWtH69atEQSBpk2b0q5dO8XzjRo14tWrVzRv3pzPnz8zY8aMDFs3CoJAREQE/fv3z+vpK1GiJAcoxX4WKKtnSlUDS8SZXnbnP3JBoJtl9hYzhY3sRvbd3NzyPIV/3bp1xMbGMmPGjFSf//PPP3n69CmOjo6oqOTcGuP8+fOMGzeOCRMmMHny5ByPVxgxMjKifPny1K1blw4dOjB//nyk0oy7ThQ0LVq0QENDI09T+dUkqpkyVwu694HAm28BUDdK/N35uPk68SFRWbpe1Jcg5FI5z391wqXHJj5uua547tnkA3zZfSfjOYsLpyVMdHQ03t7eTJ8+HRsbG0xMTOjfvz/Pnz9nwIABXL16lZCQEC5dusSUKVOoWrVqjqJWcrmcjRs30r17d8XGYMOGDVFTU8PZ2Zno6GgmTJhAixYtKFu2LC9evGDo0KF5FikTi8R0sbRlX9PpNDSqjAhRzv+mCYnRfBWRhLal6nKw2e+Kut3UkMozn7WT2c2rGL9Q3KcfJv57FHqVTCk7trniudzYvIqT5W+mioWFBa9fv6ZevXqsXbuW5cuXc/36dczMfhz/oB8BNTU1unbtipOT00+byn/v3j1sbW1xcXFBKpXy6dMnihUrRv/+/RVlIBs2bKBbt258/vyZX3/9lQULFqQ7piAIREVFERsbq8wwUaKkkFM4V2OFmB6lGzMvZG9BTyNVRIgopqFHA6NKBT2VXCE7Bn0hISF8/PgxT8V+SEgIa9asYcyYMZQoUSLF835+fsyaNYsRI0ZQr169HF/v8ePH9OrViw4dOrB27dqfNl3un5H8U6dO4e/vT1hYWI5qlfMDbW1tWrRowdmzZ5k6dWreXCMTrYjiQ6IUotygdmmsJrTgyfh9SMNj+LjpGpXndMraReUC8tiUAkceJ0VIyFis6ajm3PE+NxAEgdevXytc88PDw9m2bRvGxsY4ODgwdepUWrRoketR9CQuXLjAx48f2bdvn+IxTU1NGjZsyLFjx9i0aRNfv35lw4YNjBs3Lt+MKU21irK0zlACYkI46/WAU54uhMVH/b9tlpBxmj0iECVuMEuipETe/sy1tU7oq+tkeG0xIjIj9/+9eRX3LZyPm6+jV8kUNYO/MwbC3/ryetEZpOExGNYtQ4VpbZFo/J3Z9c/NK0h09U/i2eQDlGhfg9KD098kz88SPkEQCAkJ4eHDh1SsWBFXV1dsbGzy7fr/NXr37s3OnTt5/PgxtWv/+CWQ/+Tdu3cMHz6c6OhoFi9enMxMuHv37lhZWbF7926ePn2KlZUVLVq0oG/fvhmOKxKJGDNmzE8bfFCi5GdCKfazSLMS1TlVtBzu3z8XujRVAYHfqvVERfzj9ltPIqkWLKuR/cePHwPk6R/stWvXkpCQwPTp01N9/tdff0VNTY1ly5bl+FoeHh60b9+eKlWqcPDgwTxt71aYEIvFueZzkB907NiRMWPGEBwcnCebE2V1M34vPmy8ijQ8BhVdDawmtEDNUIdyY5vzdvl5vj/8jP+Vl5g4VOXL7jsEu3xAFvO3kH817wQiFTGm7W0w7WiTou1nwLVXCuf+jFqVQaIwKl+kVDZeae4QGBjItWvXFALf19cXdXV1GjduDMC8efOYN29evmycrV+/nrp161K/fn3FY3FxcchkMu7cuUO9evU4d+5cgZltGmsaMLxCGwZbOfAo6D1vQr14E+rF61AvwuJTzwiRhsZQu0RF6llUpYqBBb4P3tH+z/Z8GPImw43WqKgoJIhJyEDuZ3bzKujee96vuYQ8XkaJ9jUoM6IpInEqP9ccbl6p55NBb0BAAEOHDuXatWuIxWIePnyIjk7GGyhKsk/Tpk0xMjLCycnppxP73t7e+Pn5UbVqVUWHoqRSpoiICGrWrEnNmjWRSqVIJJJM3xPXr1/Pu3fvMtWeT4kSJQWLUuxnEZFIxMzqvel/c3mhEvtiRLQqVZv6P0lUPzo6GplMluXIvpubG3p6enm2cP7+/Tvr1q1j3LhxGBsbp3j++vXrHDx4kL/++gtDw/QFUUaEhITQtm1btLS0OHv2LFpaWjkaT0ne0b59e0aOHMnFixfzpH7RXMcIVbEKCfLUyxr8L78gxO0L8P/WeoaJ4qBYo/IUd/1E4M23fNlxC/3qZiSERBPrF5bs/LjACAASInOnLlkmyKmQj2I/Li4OFxcXhbh/8uQJANbW1vTp0wcHBwfs7OwQiURoampSrly5fBH6L1++5Nq1axw4cEDx2LNnzxSO/pBYElQYumqoiCXUN6qU7G/I97gIwuOjiZMnIEaEmkSFqG9h9OvWi78+7KP5/v3YdC5HtdalKVmyJDt37qRixYp4eHjg6emJh4eH4ivp+6CgIGpuGYiWWfqbYpnZvDKoZcnb5ecTywhUJER+8Mf9t78zhMqOtkennHGON68AimvoZ+HdzB5nz55l2LBhiMVi5s2bx4IFCwgLC1OK/TxGRUWF7t27c+TIEVasWPFDtH3NiKdPn1KpUiU+fPhAeHg43t7eeHt7U7FiRYVnydChQ7GysmL58uWoqKhkuozh27dvTJ48me3bt+flS1CiREkuoRT72cBEy5AJVTqx6sWxgp4KkJi+X0RNhwlVOhf0VHKN8PDEuszsiP1atWrl2R/r1atXI5fL+e2331I8FxcXx7hx47Czs2PQoEE5uk5cXBxdunQhICCA+/fvZ8sUTEn+UaJECerUqcOZM2fyROyriCWU0zPlTahXqs+btLLGpJV1qs9VmNqGClPbKL4vP7kV5Se3ytL1jVtUwbhFlSydk5diXxAE3r17pxD3N2/eJCoqiuLFi+Pg4MDEiRNp0aJFiuyQ0NBQ4G8n6rxmw4YNlChRgu7duyOVSvnjjz9YsGABVapUwdXVlSZNmnDr1q1kUf/ChKG6LobquskeC5Np8OeffzJ16lS6dOlCw4YNMTY2RiaTsXXrVrZu3ao4Vk1NDXNzcywtLalRowadOnXC0tISt+JBPJd+TXPDPCubV0nVBoJURsQ7/2TjSGPic+V9UBOrYKaTd6a3UVFRTJ06la1bt9KhQwd27NhBQEAACxYswNPTM1UTWCW5S+/evdmyZQv379/H1tY24xMKMUuWLGHz5s0sWLCAypUrY2Zmhre3N+PHj2fr1q2UKFGC9evXc+rUKWxtbQkJCcHAwCBLUX1dXV169+6dx69EiRIluYFS7GeTjuYNcAl4w4NvrzNlnJVXiP7/NdemH7qFpEY2NwgLS4w8ZjWN/9GjR/Tp0ycvpkRQUBDr169n/PjxFC+ecuG3atUqPn36xLFjx3Js6DVkyBAePHjAtWvXCkXUT0nGdOzYkRUrVhAfH4+amlquj19Z35z3YWkLpMKEikhCad3crYEPDg7m+vXrCoHv7e2NmpoadnZ2zJ07FwcHB6pVq5buRl9sbGLmQlqt93J7vvv27WPWrFl8/vyZgQMH8vjxY37//Xfmzp2LmpoajRs3xtnZOc2SoPwmqVY8rai8h4eH4t4MiRFRFxcXjI2Nady4MUePHmXUqFEMHDgQS0tLTExMUv15aH65w9NX3mnOIyubV43OZr1mOKubV1Z6JfOsZv/x48f069cPLy8vHB0dGTlyJCKRSPEZ9fT0/OnarBZGbG1tKVmyJE5OTj+02H/79i2bN28mLi6OihUrYm1tTe3atQkMDMTZ2ZlGjRphaGjImzdv0NXVZfXq1RgYGKQ7piAIijVNfHw8O3fuZODAgWhrp+y0oUSJksKHUuxnE5FIxMJaA5jquo0X378UmOAXgHk1+1OrmFWBXD+vyE5kPyAgAG9v7zyruVu5ciUikYhff/01xXNfvnxh8eLFTJ48mapVq+boOrNnz+bQoUMcOXJE4ZT7M5OUOvijGw927NiROXPmcOvWLVq2bJnr4zc3teG4x91cHze3kYjENClRDdUcuvHHx8fz4MEDhbh/9OgRgiBQpUoVunfvjoODA40bN85SeUt+iv3t27cjlyduzNjY2GBhYYGLi0sy0057e3vmzp2bZxtE/0YQBIKDg1MV8Un/j4iIUByvqamJpaUllpaWNGjQgD59+mBpaYmFhQWWlpYYGRlx8uRJBg4cyKdPn7C1teXVq1cZitMK+mYZGgAWFlREYiobWOT6uDKZjBUrVjB37lyqV6/O06dPqVChguJ5PT099PX18fT0zPVrK0mJWCymV69eHDhwgHXr1v2Q/jg9e/YkPDyciIgIDh8+jJ1dounkwoULEYvFuLi44OfnR3R0NNWrV2fPnj1Uq5Z21wwAqVRKSEgIPj4+1KhRg9OnTxMQEMCoUaPy4yUpUaIkF1CK/RygLlFjRd0RTHfbwfPgz/m6eEmM6IuYVaMvzU1tkMvlCILwU9SaQfYi+25ubgB54sT/7ds3Nm3axOTJkylWrFiy5wRBYMKECRQvXpy5c+fm6Drbtm1j2bJlrFq1ih49euRorB+FH13kJ2FtbY2FhQVnzpzJE7Ff1cCS0jomeET6F2qZJBPkdLXMemRMEAQ+fPigEPc3btwgMjKSYsWK0bJlS8aOHUvLli1zlNKcX2I/ISGB9evXY2hoyJw5c5g0aRJLlixJsTFhb2/PtGnTcHV1VSzMc4IgCAQGBqYZlff09CQq6m/TPW1tbYWYb9y4MQMGDFB8b2lpSbFixTL8/ezWrRvlypWjY8eOhIaGEh4ezrt375IJ139jpWeKuliVOHn+trPLDlJBTnXDMrk6pqenJwMGDODu3bvMmDGD+fPnp7rZY2FhgYeHR65eW0na9OrVizVr1nDr1i3s7e0LejpZYvfu3Rw7llhaqqWlpfg8yWQyqlSpwsaNG/H398fV1ZVy5cpRrVq1VDMU/41IJGLcuHGcPn2arVu3sm/fPho1apTjoIYSJUryD6XYzyFaKuqsqjuSJc8OcsPvOSLI84W4GBHqElXm1RyArXFiKmKSyI+Jicm3etS8JEnsZyWy7+bmRrFixbCwyP0ozIoVK1BRUWHKlCkpnjt9+jTnz5/nxIkTOTJSunDhAmPHjmX8+PGpXudnJCoqinPnzhEZGYm1tTWVK1dGEAR0dXUzPvlfxMukeET6KwzFINFBW19NB0sd4zzvUiESiejQoQNnzpxhw4YNub6JIRKJ6F7ajpUvjubquLmJCDDXMcbaoHSmjv/+/TvOzs4Kge/p6YmqqiqNGjVi1qxZODg4UKNGjVzbxMwPsS8IAuPHj8ff3x9TU1Nu3LhB06ZNUz22evXqGBgY4OzsnCmxL5fLCQgISDMq7+npSUxMjOJ4XV1dSpcujYWFBc2bN08Wlbe0tMTQ0DBXPqfVq1fHzc2Nrl27cu/ePSZPnsyFCxfSPF5dokYbszqc9XpQ6MtSiqhp09C4cq6Nd+DAAcaOHYu+vj43b95UdIhIDUtLS2VkPx+pU6cOpUuXxsnJ6YcR+0kp9oMHD8bFxYUdO3YQHR2Ni4sLderUUayhTExMMDExoUaNGlkaXyKRsH//fsaOHcuQIUMA2LNnT26/DCVKlOQhIiGz9ptK0kUQBK77PmP1i6NEy+KR58ECJummbhgmYXvXWRhp6id7PiEhgcuXL9OkSZNsiaXCxK5duxg2bBgJCQmoqGRuT6pdu3YIgpDuIjM7+Pv7U6ZMGaZNm8aCBQuSPRcZGUnlypWpVq0aZ8+ezfbC+cmTJzRu3JjmzZtz4sSJHzKFMKtcu3aN6dOn4+vrS2xsLCNHjqRu3bo8ePCAyZMnZ9h6LyIhhlt+z3kd6sXrEE88IgPSFA4qIglldEtQ2cCcKgaWNDGxRjMTveuzytWrV3FwcODZs2dUr14918ePlsbR6eo8YmW5YzyWF0y17k5ni9TTuBMSEnB1dVWIezc3N+RyOZUqVcLBwUGRmp9X7uMPHjygQYMGvHz5kipVsmY4mBl8fX0ZPnw4Fy9epESJErx79y7De3HXrl0JDg7m1q1byOVy/Pz8Uo3Ke3h44OXlRVxcnOJcfX19hXD/p4hP+l5fXz9fM2fi4+OxsbHh9evX/PLLL6xevTrN+/fncD8G3V6Zb3PLDmJEDLBqwfAKbTI+OANCQ0MZO3Yshw4dol+/fmzatAl9ff10z5k4cSJXr15VdG5QkvfMnDmTrVu34ufnly+lNTkhNDSUUaNG0bJlS4YPH058fDyDBg3i8OHDaGhosG7dOvr165crtfWCINC8eXNu3LhBixYtOHr0aIafXyVKlBQOlJH9XEIkEtGipA01i5VjlftR7gS8RCIS51rUQoQIDYkqL9ddQPI6BKN+KRdJqqqq2Nvb0759e06cOPFD34jDwsLQ1tbOtNAXBAE3NzdGjx6d63NZvnw5ampqTJ6c0ghq4cKFBAYG5iiS6+npSbt27ahcuTKHDh36qYW+XC5HLBYrjMqePn0KJEYPzMzM8PDwYPXq1dSvX59u3bopjv8nH8J8OOFxlys+j4mXSzP1eyYVZLwP/8rnCF9OebqwWqJGe7N6dLZsiIVOyhaK2SVpo+3MmTN5Iva1VNQZVbEd61+dzPWxc4pYJMZMuzjtzOoqHhMEgU+fPinEvbOzMxERERgaGtKiRQtGjBhBy5YtMTc3z5c5JkW9czuyLwgChw4dYvz48Yrf3y1btqQQ+jKZDB8fn2Qi3t/fnwcPHlC2bFm8vb1JSPg7tb1o0aIKEd+hQ4dkgt7CwiLL3UryGjU1NQ4ePEiNGjXYtGkT7969w8nJKdW/RWX0SmBtYMmrEM8CNblND4FEM96ccuvWLQYOHEhYWBgHDx7MtImshYUFnp6eyQzSlOQtvXv3ZtmyZVy7do22bdsW9HTSJCYmhs6dO3P79m28vLwoVqwYnTt3ZuvWrURGRnL+/HlmzZqFjo4OXbp0yXHGZ2xsLM+fP6dHjx5cu3aNevXqcebMmXTLdZQoUVI4UIr9XMZQXZcltYfwIuQLJzzucdPvOYIgZGsxI8jkiCRiimsUoZtlIxxK1KT5jIu8Dwri2bNnqaZjaWpqUrlyZZo3b86VK1coWjT9XsaFlfDw8CwtZL28vAgMDMz1en1fX18cHR35/fffUyxYX758ydq1a5k/fz5lymSvpjM0NJS2bduiqanJ2bNns2Q29iOSlEh0584dHj9+zIwZMwgODmb79u1UqFCByMhIAPz8/JIdD4kif9WLY7wO9Uwm8LOyoSb9/7GxsnhOet7jmMcdahW1Yop1N8x1ct7eUE1NjTZt2nD27FnmzJmT4/FSo6ulLTd8n/Eq1LNQpUALgsCcGn2JCo9Mlpr/5csXVFRUaNiwIdOnT8fBwYGaNWsWyKZWXqTxBwYGMnbsWI4dO0avXr2IiIjgyZMnhISEsGDBgmRRem9vb6RSqeLc4sWLY2xsjCAI1KxZkylTpiiEvIWFxQ+ZoVW9enVq166NRCLh4cOH6YqCvmXt+f3RrgKYZcaIRWKamlRLkUGXFeLj45k3bx7Lly/Hzs6OvXv3ZqnMzMLCgujoaIKDg1N4xSjJG6ytralYsSJOTk6FWuxramrStWtXPn/+jJubG6tXr0ZTU5NWrVqxY8cO+vXrh7OzMwMGDOD+/fvUrVs340HT4dixY3z//p0lS5awdOlSOnbsSL169Th8+DCtWmWtlasSJUryF6XYzwNEIhHVDMtQzbAM3+M6c87LlSs+j/CKDERAQIQIsUiEXBAUpn5iRIhEIsXiXR4rJfSFF7+1HEK7yo34HhTMmsUrePnyJebm5mnu0opEIpYvX07p0qVp1qwZ165d+yF7tIeFhWXLnC+3nfj/+OMPNDQ0mDhxYrLHBUFg7NixlC1bNlV3/swQFxdHly5d8Pf3V7Sv+tlJEu8fP34EYPDgwQpTISMjIwIDA4HELJUkEuRS9n24xp4PV+H/0a3cELlJYzz7/olBt1YyulJ7upe2y3GLrY4dO9K/f398fX0zLEXIDmKRmJk1+jDw1opCI/YFQUDzWQhDlvbC1dUVuVxO+fLladeuHQ4ODjRt2rRQCNeciv34+Hi+fv2qEPBXrlzh9OnTSKVSihUrxrFjx5DJZAAMHToUY2NjRSS+bt26ydLszc3N0dbWRhAESpQoQbly5Rg3blyuvdaCZPjw4YwdO5Zbt24xcuTINEVBI5OqNDGpxp2Al3lS+pZdRIjQkqgxsWqXbI/x9u1b+vXrh7u7O8uWLePXX3/N8gZX0saAp6enUuznEyKRiN69e7N69WpiY2PzpXNHVvD09CQ6OppKlSrxyy+/IJfLWbJkCffv32fVqlVoaGjQpEkTduzYQbNmzahWrVqOhT6Ao6MjLVq0wMoqsfPT/fv36devH23btmXlypVMnjxZmX2iREkhRSn28xhDdV0GWrVgoFULYmXxfAz35W2oN5/CfYmWxhEnT0AiEqMmVsFIU58KRcyoUKQUhxx389uiTcze9RinqlUJDw/n/v37QGKqcHqpU9ra2ty/fx87OzuaNGnC9evX80R05CVZjew/evSIkiVLUqJEiVybw9evX9m6dStz585NMZe9e/dy584drl27hrp61mu/BUFg2LBh3L9/n2vXrv1nUuGSFgNJi95nz57x8OFDINH/4MGDB0CimRDA5wh/Fj0/gEfE/x3o88BiJEkwb3p9mhu+z5hj04+S2tlfWLdp0waJRMK5c+cYOXJkbk0zGSW1i/FLlc6senEsT8bPCoJMTpRXMC4LD1La3JKNGzfStm1bLC0tC3pqKchI7MfFxeHl5ZVmn3kfHx/+bXNjYGBA06ZNqVixIu7u7ly7do07d+5QtWrVTKXOikQi7O3tcXZ2zvkLLCT07t2byZMnc+vWrQxFwVTrbjwO/kBUQkyhSeYXEPi1Wg8M1bO+QSUIAo6OjkydOhVzc3MePHhArVq1sjWPf4r97I6hJOv06tWL+fPnc/HiRbp0yf6GT25z9uxZunbtysiRI5k0aRJWVlZMmjSJyMhI5s+fz71791i7di0aGhrUq1cPV1fXXAn2uLu74+LiotiYh0Tz5NOnTzNr1iymTp2Ku7s7jo6OhW5zRIkSJUqDvkJLaGgoY8aM4fDhw8keb9SoEevWraNmzZoA6dbyffjwAXt7ezQ0NHB2dsbMzCzP551b9OjRg7CwMK5cuZKp45s3b46enh4nT+ZeLfO4ceNwcnLCw8MjWVTy+/fvVKhQgZYtW3Lw4MFsjT179myWLFnC4cOH6dmzZ25NudCT9Hk9cuQIgwYNwtjYmOjoaGJiYmjWrBm3bt1CW1uba9euEWesxm8PtxMvl+Vb1E8iEqOlosH6+mOwKpL9Fm9NmzZFR0eHc+fO5eLsUrLt7QX2fbyWp9dIF5mAplTCtBLt+eT+lokTJ2JjY8OxY8coVapUwc0rDbZu3cro0aM5f/58sgh9kqD39fVVHCsSiShZsmQK87vv37+zdu1aoqKi2LBhA4MGDUIkEhEXF4e5uTk9evRg06ZNWZrXjh07GDVqFN+/fy90dfjZZfDgwdy+fZuPHz8iCAIzZ85kxYoVDB48GEdHx2SbpM6+z5j3ZG8BzvZvxCIxjYyrsLjW4CxHKr99+8awYcM4d+4cY8aMYdWqVTkqzRIEAR0dHRYtWvSf6dBSWLCxsaF8+fIp1mAFyZgxY9i6dSs6OjpMmjSJIUOGULp0YueTVq1acfXqVQBatmzJgQMHci0bZNy4cZw4cQIvL69kWXdJHDhwgGHDhmFjY8PJkycVm/VKlCgpHCgj+4UUfX19tmzZQps2bTh16hQlS5akadOmdOvWTXHM3bt3adSoUZpjWFlZcfv2bezt7WncuDHOzs6KPwyFnbCwsEwveuVyOY8ePWL69Om5dn0vLy+2b9/OwoULU6Qfz5w5k/j4eFavXp2tsbdv386SJUtYsWLFf0row9+R/Z49e3Lt2jV27NiheO7cuXOIRCKWLVtGmL7AzAdbkQvyfDXvkglyoqSxjHPZyMYG46ign70Nso4dOzJr1iyioqJyxQk5LUZUaEOCXIrT55t5do20ECPGWEefjQ3HYaxpQMuGTalVqxbdunWjZs2aHD58mGbNmuXrnKKjo9OMynt4eBAQEAAkdu4Qi8WUKlUKS0tLrKysaNmyZTJRX6pUqWRu3FFRUUyfPp3Nmzdjb2/PX3/9lcxY0MnJiW/fvjFhwoQsz9ve3h65XM7t27fp0KFDzt+IQsDw4cPZs2cPN2/exN7enuXLl2Ntbc3w4cN59+4dJ06cUIgCe9MauH//zHGPuwU6Z4lIjImmIdOq9ciy0D9//jxDhw5FEATOnj1L+/btczwfkUikMOlTkr/07t2bBQsWEBkZmWfdQbLKn3/+SWRkJAcOHGDDhg1oaWkxYMAASpYsiZGREVpaWsTExNC1a9dcE/qRkZHs27ePiRMnpir0Afr164eVlRWdO3emTp06nDp1SpmJokRJIUIZ2f/B8PDwwNHRkX379uHn54ezs3OaPZyT8Pb2xt7entjYWJydnRU1V4WZ+vXrU6VKFXbu3Jnhse/fv6dChQpcuXKFli1b5sr1R48ezfHjx/ny5UuyP/Surq40aNCA9evXZ2tRf/HiRTp06MCoUaPYtGnTf7rGLTY2lpMnT3Ljxg2Cg4PR0tLC3t6eup3t+eX+ZhLkMoWnRX4jFonQkqjzp+1ELHWz7qUQHh7OmzdvqFGjRrbKPLKCIAjs+3id7e8uIEaUL5sjIkSU1jVhbf3RKVKdg4KC6NOnD87Ozixbtoxp06bl2uc8IiICT0/PNAV9kucDJJaKmJubJxPw796949SpU7x+/ZqSJUumuXj9Ny4uLgwaNAgfHx9WrlzJmDFjknWJEASBWrVqYWJikq3Wn4IgULp0abp06cLatWuzfH5hRBAEKlWqRM2aNZNlQD18+JDOnTsjkUg4ffq0IktNLshZ+uwQl30eF8h8JSIxhuq6ONpOzJIpX3R0NNOmTWPLli20a9eOnTt35qr/Sps2bVBXV+fUqVO5NqaSjPny5QtlypTh0KFD9O7du8Dm8fXrVyBxszGp3K9jx46cO3eOYsWK0adPH/T19dm9ezfDhw+ndevWuWpUvH37dkaPHs2XL18y7Jri6+tL586defHiBX/99VeBvm9KlCj5G6XYL+Qk/XhOnz7N+vXruXXrluI5FRUVVq9enSnR6efnR/PmzQkJCeH69etUrlw5z+acG1SqVIk2bdqwZs2aDI89cOAA/fv3Jzg4GENDwxxf28PDAysrK5YuXcq0adMUj0ulUoXRjZubW5bNlp4+fUrjxo1p1qwZJ06cyHRbwZ+ROXPmULVqVXr16kVISAhxcXGYmJgQGhtB/5vLiZDGFHg7LrFITAlNA/Y0mYa6pHD3WwZ4GvSRxc8OEhgblmebJGLECAj0L9ecwVYOqElS/wzLZDLmzJnDsmXL6Nq1K3/99VemDDfDwsKSCfl//z84OFhxrKqqKubm5qn2mbewsMDU1DTF79iyZctYu3Yt3759y9TrjYuLY+7cuaxatYp69eqxZ8+eVDdL79y5Q+PGjbl06VK2namHDh3K48ePef78ebbOL4ysXLmSOXPm4Ovrm+ze7OPjQ5cuXXj58iV//fUXvXr1AhIza1a7H+Os94N8nWdSRH9Dg7FZEvpPnz6lb9++eHp6snr1akaPHp3rG7ijR4/G1dVV0aZUSf5Rv359TExMCmyjZdWqVRw6dAhvb29UVVUZNmwYCxYsQCQSKcrektDU1OTBgwdYW1vn2vWTNjFLlSrFmTNnMnVOTEwMI0eOZP/+/cycOZNFixalaJ+rRImS/OW/qzZ+EEQiESdOnGDQoEFERUWhqqpK7dq1adKkCfXq1cu0aC9RogQ3b96kRYsWNG3alGvXrlGtWrU8nn32yYpBn5ubG2XLls0VoQ+wePFiDA0NGTt2bLLHt2zZwrNnz3jw4EGWhb6Xlxft2rWjYsWKHDp06D8t9CMjI1myZAnt2rWjV69eGBgYAImbKUMPzCfMSK5w3S9I5IIc3+jv7Hp/mTGVCn9qtU2xcuxrOp2tb89zwuNurkf5RUAp7WLMselHxQzKGyQSCUuXLqVevXoMHDiQOnXqcPz4cUqWLJlumn1oaKhiDHV1dYWYTyoP+KegNzExyfLvYVbctZ8+fcrAgQN5//49S5cuTddNff369VSsWBEHB4cszeefJJUGBAYGUrx48WyPU5gYOHAgM2fO5MCBA8k2pUuWLMmtW7cYPnw4vXv35sWLFyxcuBCJWMy0aj0ooW3IzneXgNzpvJERNYuWY45NfwzUM5euLZPJWLVqlWLT8vHjx1SqVClP5mZhYcGRI0fyZGwl6dO7d2+mT59OaGhoita7ec2vv/7KmjVrFKVE8fHxLF68mKioKFavXs2FCxcYN24c3t7eREZGsm7dulwV+pBofPz06VMWL16c6XM0NTXZu3cv1tbWzJgxg5cvX7J///5C0Y1FiZL/Kv9dxfGDEB0dzc6dO4mKisLOzo6+fftSq1YtSpcuTdGiRbM0lpGRETdu3MDBwYFmzZpx5cqVQltXlZXWe25ubrmWtvbp0yd2797NypUrk9Va+/n5MXv2bEaNGpXlNjahoaG0bdsWdXV1zp07l6c13IWZhIQEgoKCFKnW/05vv+bxiEBjgURZWTgQEDj06SaNTaypYmBZ0NPJEC0VdSZX7Upzk+oM3TITzRqmiEQihGy+pRKRGJkgx0y7ON1L29HerH6a0XxBEPj+/XsKEV+7dm1cXFxSLEQ1NDQUwr1evXr06tUrWYTe2Ng41yNCMTExGYr9hIQE/vjjDxYuXEjVqlV59OhRuotoT09PTp48meOyHHt7ewBu3Ljx03h5GBsb06FDB3bs2MH48eOTvT+amprs37+fatWq8fvvv/Py5Uv27duHrq4uA8q1oIFRZRY/PcDnCL88yVORiMSoilWYVLUrbUvVyfTPzsvLi4EDB3L79m1+++03Fi5cmMzbIbexsLAgJCSE8PDwLLWjVZJzevTowZQpUzh16hSDBw/Ot+tu376dNWvWYGpqysGDB/Hz8+Ps2bMcPHiQtWvXUr9+fXr06MHWrVsRi8VERUXlyWfD0dERCwuLLGcriUQifvvtN6pUqUKfPn1o0KABZ86coUyZMrk+RyVKlGSMUuwXcrS0tEhISAASoyTDhg1L9ryLiwvPnz9nzJgxmRqvaNGiXL9+ndatW9O8eXMuXrxIgwYNcn3eOUEmkxEVFZWpyL5UKuXp06fJjAtzwuLFiylevDijR49O9viUKVPQ0NBg6dKlWRovPj6erl274uvri4uLS67Wcv5oPHv2jHr16iki+Xfu3KF9+/bo6upiVKoE7vUFBBUBkaRwpfyJRLDo6UH2N52OijhrkeR/Ex0dzatXr/Dy8sLOzg4jI6MUHTUEQVCU72RV7EZGRnLr1i02b97M44sXUTXQpkQra8w61UKkkyhIkgR8akhEYuRCYj6ARCTGzsSarpa21DAsCyTW46cVlff09CQyMlIxlpaWlkLMDxgwADc3N549e0afPn1YsWIFJUuWzHfPiowi+2/evGHgwIE8ffqUmTNnMnv27AyF3ObNm9HT02PgwIE5mpupqSkVK1bE2dn5pxH7AMOGDaN9+/Y8fvyY2rVrJ3tOJBIxffp0qlSpQt++fWnYsCFnzpyhdOnSlNMzZYfdFPZ/vM7ej9eQymWQCwUqSZ//OsUqMK1ajyyl7Ts5OTF69Gj09PQy5ZeTGyS1sPT09Mz1yK2S9ClZsiR2dnYcPnw4X8V+UgvakSNH0rhxY+RyOZUrV+br16/cvn2bixcv0qlTJyQSCRKJJE+EfmhoKIcOHWL27NlZzqBKol27dri6utKxY0fq1KnDsWPH8t20VYkSJUqx/0PQv39/Hjx4gKurK8OGDcPb25vLly9z/vx5Hj16hI+PD82bN6d8+fKZGk9fX5+rV6/Srl07HBwcOH/+PI0bN87jV5F5wsPDATL1B+z169fExMSkWERmhw8fPrBv3z7WrFmTrD/2tWvXcHJyYs+ePQqhmhkEQWDYsGHcu3ePq1evUrFixRzP8UcmKUU7JCQEVVVVAgMDFWZmJm2qUaZxM0SiwiX0AeSCgE90EHcDXtK0RPXsjSGXIxaLOXnyJAMGDADgzJkztG/fHqlUikQiUQh7kUiUaREsl8t5+vQpV65c4cqVK9y7d4+EhATU1NQoWbIk69evx97eHn19ffxjQngX5s27sK+8CfEiICaEOHkCMkGOulgVbVUNzNWKUiRGFZWgOCK/BOJ97gGzPA8rBH1MTIzi2jo6OpQuXRoLCwuaNWuWom6+aNGiKTYxNm3axJQpU/j69StHjhzJ9xZNaYl9uVzOunXrmDlzJqVLl8bFxSVTGTxRUVFs376d4cOH50rGjr29vaJ91s9Cq1atKFmyJDt37kzzPt2+fXsePHiQTBQ0bdoUFbGEweUd6GbZiItf3Tj25Q5+Md/T3bBKjaSSFg2JKm1L1aWzpS2ldTP/2QsLC2PcuHEcOHCA3r17s2XLliz9LcgJFhYWgFLsFxS9e/dmwoQJBAUF5ZrDfWrI5XKioqLQ1dVVdA15/vw5np6eWFhYYG1trTDIMzAwyNNsEoB9+/aRkJDA0KFDczROpUqVcHV1pVevXjg4OLBhw4ZMB6eUKFGSOyjF/g9A//79CQkJYcaMGTg7OxMeHk5ERARxcXHo6uqip6eHi4tLpsU+gK6urmJ3uHXr1pw5c4YWLVrk4avIPGFhYQCZiuy7ubkhFosVjs45YdGiRRgbGzNy5EjFY3FxcYwbN47GjRsrRFpmmTt3Lvv37+fQoUOFajOloKhevTouLi44OTmxYcMG2rVrR9OmTfH08uJlfUgo6AmmgxgRx7/czZTYT4rMJ0XnJRKJQvTa2NiwfPlyihYtqhA+/3SEl0qleHt74+7ujlQqpV69epQqVSpF9B8SswTMzc0JDg5GR0eHZs2asWbNGnR1dRk8eDC7du1KVkNurKGPEBqL2vcodD3C8PQMxcPDFw8PD9793+E+NjZWcXyRIkUUwr1ly5YpjPAMDAyyFJkXiURMmDCBmjVr0qNHD2rWrMmRI0fSbR+a26Qm9j9//syQIUO4c+cOkyZNYsmSJck2+9Jj3759hIeHM378+FyZn729PVu2bMHb2xszs+y1fSxsqKioMHjwYDZu3Mjq1avT7DtfuXJlXF1d6dmzJy1btmTjxo2KDCtdNS16lmlC99J2PAn6yE1/d16HePIlwh+pIFOMIcgFROLkn0ljTQOq6FtQs1g5WpasiZZK5jwbkrhz5w4DBgwgJCSE/fv3069fvyy+AzmjRIkSqKqqKtvvFRDdunVjwoQJHD9+nFGjRuXJNcLCwpg6dSpfvnxhz549lCpVCkiM8B8+fFjhuP/ixQuAPDdYFgQBR0dHunTpkisbsoaGhly8eJGpU6cyduxY3N3d2bBhQ6a7oShRoiRnKMX+D4BYLEYmkxEXF8fnz5+RSCQUK1aMChUqYGtrS+PGjWnYsGGWx9XW1ubs2bN069aN9u3bc+LECdq2bZsHryBrZCWy7+bmRqVKlXLcB/fdu3eK3rX/FAMrVqzg8+fPnDhxIkvCZufOnSxevJjly5cr28/8HyMjI4yMjIiKisLPz48RI0bQokULHvq9Yerj7QU9vXSRI/Ds+yc8IgIwVTdARUUFkUiEXJ4YXfxnmmNqkfmk7ytXroyBgQHv37/H19cXExMTRTvHWrVq0blzZ7Zt24a3tzcikYju3buzdevWVM2htLS0GD9+PPb29tSvXx+JRIKvry89evTA3NwcV1dXjh49qojKe3l5ER8frzjf0NBQIdzbtm2bws0+rwypbG1tefLkCb169aJZs2asWrWKX375JV9S+v8p9gVBYPv27UyZMoXixYtz48YNmjRpkumx5HI569evp3Pnzoroa05JSgu/ceNGjssCChNDhw5lyZIlHDt2LN3XVbRoUS5dusTUqVMZM2YML168YN26dQpRIBaJqV28PLWLJ25sS+UyvkT48znCj6DwEH77fTrDhgylXs06mGgZUr5IKXRVM7dx828SEhKYP38+f/zxBw0bNuTmzZuKlPr8RCwWY2ZmphT7BYSRkRHNmzfHyckpT8T+169fadOmDa9evUJfX5/g4GCWLl3KvXv3ePXqFX/88QeOjo7ExcXh5+dH9+7dU5Rz5jZ3797l9evXbNy4MdfGVFFRYf369VhbWzN27FjevHnDsWPH8jRbQokSJYkoW+/9INy/fx9bW1tsbGywtramadOmNG7cOJnhyffv37PlSB8XF0evXr24cOECR48epVOnTrk59SyT1MbqzZs3Gaa+165dG2tra/76668cXbNfv37cvn2bjx8/KozjPn36RJUqVZg0aRJ//PFHpse6fPky7dq1Y+TIkWzevDnf65ILO1KpFJFIhEQiITY2loXPDuAS/CZfXLdzgkiA7mXs+KVKlzSPCQ8Px9vbm3fv3vH582diY2OpU6eOwuDIx8eHVq1a8fr1a7p168bRo0d5+fIl1apVQyKRoKKiQqNGjdDV1eXUqVOoqqry559/pplKOXPmTFxdXRViXiqVKp4rVqxYqi3pkv4taLOvhIQEZsyYwZo1a+jduzfbt2/P8aZdRnTs2BGRSMSWLVsYPnw4ly5dYuTIkaxatSrLbtGXL1+mdevW3Lp1K1czd2xsbKhevTq7d+/OtTELA82bNychIYHbt29n6vjt27czduxY7OzsOHr0aIaGtMHBwRQrVozjx4/TtWvXHM31/fv39OvXj2fPnrFgwQKmT5+e7brl3MDe3p7ixYtz+PDhApvDf5ldu3YxfPhwvn79iqmpaa6N6+npSdu2bXnz5g3jx49n7dq1vHjxgsDAQIKDg/ntt98IDw8nPDwcfX19evbsiaOjY65dPy369evHo0ePePv2bZ6sX+7evUvXrl3R1tbm9OnThbozlBIlPwPKyP4PQoMGDdi0aRPW1tbUq1dPUa/l4eHBqVOn2LJlCyYmJpleSP0TdXV1jh49Sr9+/ejevTsHDhwoUIOopMh+Rmn8cXFxuLu7M2TIkBxd7/Xr1xw6dIgtW7YohL4gCEyYMAFjY2PmzJmT6bGePXtG9+7dad26NRs2bFAK/VRQUVFh69atHDp0CJlMBhNrgkbBLaQziyCCh4HvuHnzJpGRkVhZWXH+/HlFOczw4cOxt7fnyZMnyc4rVaoUw4YNY968eejr61OpUiXev3+vSPP/Z7TQ3t6e8+fPA4mZLbGxsbi6uqYp9gVBoFixYtSqVQtLS0uOHTvG27dvefXqVb7VFGcXVVVVVq9eTb169Rg6dCj169fnxIkTWSpHyioxMTFERERQtWpVNDU1uXDhAm3atMnWWOvXr6dGjRrY2dnl6hzt7e05evRoqqUbPzLDhw+nb9++vH//PlM/4xEjRlChQgW6detGnTp1OHPmDFWrVs3wvJy8Z0nZHpMnT6ZUqVLcv38/V/xgcoqFhQVv3rwp6Gn8Z+nSpQujR4/m2LFj/PLLL7k27qVLl3j37h0DBgxgw4YNrFmzhj///JNPnz5Ru3Zt+vfvT+PGjUlISMDIyIh69erl2rXTIjAwkGPHjrFs2bI8u/80atSIR48e0bFjRxo2bMj+/fvp3LlznlxLiRIlSrH/Q5HU9z02Npbz589z8OBBTp8+TXR0NAAfP34kLCws0/3p/4mqqioHDx5kyJAh9OnTh/j4ePr375+r888sSTX7GUUenz9/TkJCQo7b7i1cuBAzM7NkgurkyZNcvHiRU6dOZdp4y8vLi7Zt21KhQgWcnJxQUVH+ev2TJJO6Xbt2sXDhQvz8/FArqkMdjaz9/ELdvXk5+xgIYDHQFrMeiUZqgkyO+/TDRLzzR724LjYbB+B18D5hr3yI+xaOPC4BtWK6FLerQMmutVHRyrrBkVdkIC26OyCPl2JnZ8edO3dQUVHBwsICVVVVfHx86NSpE82aNcPU1JSTJ09y6NAhVq5cyYwZM9DW1kZfXx+ZTIafnx8JCQno6Oigo6NDZGQkjRs3VqSaly9fnidPnhAQEEBUVFSqn8Nly5b9PTcvL3755RdWr15d6IX+P+nZsydVq1ala9eu1K5dm7179+bJwi8wMJCnT58SHBxMv3792LBhQ7YyoSCx7OfixYv89ddfub4gtre3Z82aNXz69Ily5crl6tgFSZcuXTAwMGDnzp0sX748U+c0btwYNzc3OnXqRIMGDThw4AAdO3ZM9dicJikGBgYyfPhwzpw5w8iRI1mzZk2haZNqYWHBxYsXC3oa/1kMDAxo3bo1Tk5OuSr2/fz8kMvl3L59m+bNm3Pjxg1sbGxo0KAB9+/fx9LSMssdgHLK7t27EYlEDBo0KE+vY25uzr179xg0aBBdunRh0aJFzJo166fa4FSipLBQ+KyvlaSJXC5nzpw52NjY0KFDBw4dOkR0dLRC3Hfu3Jnv379ne3wVFRV2797NkCFDGDhwIDt37sytqWeJsLAwJBJJmkZOSTx69AhVVVWqV8+eQzrAixcvOHLkSLIWW5GRkUycOJH27dunubBMbc7t2rVDTU2Nc+fO5Xk68o/MiRMnFDX7ZnWy3qFAv5oZph1sAPA6+ICoL4EAfD3mRsQ7fxCB1eRWSCNj8T3zlGivYNSL6SLWUCPWNxTvw668W3E+W3MXECha2QxVVVXu3r3LunXrePLkCX/88QcSiYTbt2+ze/duGjRoQFxcHN++fUNdXZ3o6GieP38OJNaAqqio8P37d4KCggAUhkyxsbGKVPySJUsCiV0MkjoZpMe6devQ09PL83rOvKBy5co8fPgQBwcHunTpwu+//56sJCGnnD59mqpVqxIWFkaLFi3Yv39/toU+wMaNGzEyMsoTPw47OzskEgnOzs65PnZBoqGhQf/+/dmzZ4+inWxmsLS05N69e7Rs2ZLOnTuzbNmydIV9dsTCxYsXsba2xsXFhdOnT7N169ZCI/Qh8T0ICAhIZqCpJH/p3bs39+/fx8PDI9fGHDlyJHZ2dnh6euLn58ecOXN4/PgxPXr0ABL9GqKjo3O8kZVZ5HI5W7dupWfPnhmWzeQG2traHDlyhAULFjBnzhx69+6tCF4pUaIk91CK/R8IsVjM2bNneffuHYaGhnTt2pXt27ezZcsWpk6dytmzZ1P0h88qEomEbdu2MWbMGIYPH87mzZtzafaZJzw8HD09vQwXbW5ublhbWytS77PDggULsLS0TNZDd8GCBQQHB2c6DT8+Pp5u3brx9etXLl68mO/txH40Xr58iYaGBn/88QeapYsiyLJeq285qBGaZoYIUhnv1lwi4r0/Xk6JvYlNO9ZE39oMsZoKlkPsqLd/NDYb+lP3r+HoVigBQMhjD6SRWV84iwCTGmVJSEigadOmjBkzhqpVqypMhm7fvk3VqlWpV68eAwYM4Pr164qFWpLBlpGREWpqaoSFheHv75/4ev6fyh8YGKhob1e6dGkg0XU/ODg43XmFhISwbds2xo0b98NuNOnp6XH06FFWrlzJihUraN26NYGBgTkaMzQ0lEGDBtG5c2fq169PuXLlcuxkHRoayu7duxk9enSqbfxyip6eHnXq1PnpxD7AsGHDCAgIUJSqZBYdHR2OHTvGnDlzmDlzJv369UvWBhKyF9mPiYlhwoQJtG3bFhsbG168eJHpDd78JMkA0svLq4Bn8t+lQ4cOaGhocOTIkVwb09TUlHPnznHq1CmuXbvGggUL2LdvH7/99hsikYj+/fujpaWVb9Hu69ev8+nTpxyvI7OCWCxm7ty5HD9+nHPnztGoUSO8vb3z7fpKlPwXUIr9H4zNmzfz66+/KqIPgwcPpk+fPqxcuRI7OzuuXr3K06dPc3QNsVjMpk2bmDx5MuPHj2fNmjW5NPvMkdlSBDc3txyl8D9//pzjx48zZ84chdvzixcvWLt2LbNnz1aIrfQQBIERI0Zw584dTp8+TaVKlbI9n5+dpD7ysbGxmJmZJaaa62dvo0aspkKFKa0RScREewTx4vcjCFI5WmaGWA60BUDNQJtS/0jXF6upoGNl/P8BRCDO+u1PLBJTrGyiQVPVqlWJiopSPPfq1StWrFihSOW/cuUKK1aswNg48ZpJC3VjY2N0dHSIj49X9FO2srIC4Nu3b4oxkyLPb9++xcfHB0hb0Pz5559IpVImTJiQ5ddUmBCJRPz6669cu3YNd3d3atasycOHD7M11tWrV7G2tubUqVPs2bOHU6dOIZVKcyzQd+3aRXx8fJ72ira3t8fZ2TnfInr5RfXq1aldu3a2ssbEYjELFizgyJEjnDp1Cjs7O75+/ZriuMwKo2fPnlG7dm127NjBxo0buXDhQqHdqLWxseHw4cOFdn7/BXR1dWnfvn2umyTq6urSsWNHwsPDad++PYMGDUIsFnP06FHat2+fq9fKCEdHR6ytrWnQoEG+Xhega9euuLi48P37d+rUqYOLi0u+z0GJkp8Vpdj/wbC1tWXRokXY2tpStGhRJBKJov3X9OnTmTdvXq5E9kQiEatXr2bmzJlMnTo1X+vGkiL76REZGcmbN29yJPbnz59P2bJlGTBgAJCYwjZmzBisrKz49ddfMz3G3r172b17d646cv+syGQyNDU1FVE5iboqZDNqoVPOGLNeifX68ngZiEWUn9IasVrqXgnxodEEu3wAoLhdhWzV7COAQbHE9Mbv378nS6v18fFRCI0qVapQtGhRXr58qRDvSemfRYsWJT4+nu/fv/P+/XsgsZc2JG50JaU4t2/fniVLlnDkyBHF4is1IZOQkMCGDRsYPHgwRkZGWX9NhZBmzZrx5MkTSpUqhZ2dHY6OjpkWvlFRUYwdOxYHBwcqVqzIy5cvGThwICKRKFnrvewgk8nYuHEjvXr1ylPhZW9vT2BgIK9evcqzaxQUw4YN48KFC4oNrKzSo0cP7t27x7dv36hTpw4PHiRm9GT28yGXy1m1ahV169ZFVVWVx48fM378+EJdK1ykSBG6detW4B00/uv07t2bJ0+eKO7buUl8fDzu7u40aNAAZ2fnHHeUyCq+vr6cPn2a0aNHF9jvQvXq1Xn48CHly5enWbNmOe6ypESJkkSUYv8H5N9p62KxmNevX6OiosLEiRMVUcKcIhKJWLJkCQsXLmTWrFnMnTs3XyJNmYnsP336FLlcnm2x/+TJE06dOsXcuXMVRnp79uzh3r17bN68WVG/nx5JRnPLli2jT58+2ZrHf434+Hhq166Nmpoanz9/xriESWJufDaJ8Q39+xu5QOy38NSP8wvFffph4r9HoVfJlLJjm2fregICegaJn83v378nqy+sWLEiNWrUAGDp0qXUqlWLz58/K5zHP378CCQaE3Xr1o1Ro0ZRt27iZsX48eMJCgri8uXLWFlZIQgCNWvW5Pfff6d169bp9rx/8uQJ3759Y+rUqdl6TYWVUqVKcevWLUaMGMGYMWMYMmRIitTtf3Pv3j2qV6/Onj172Lx5M5cvX8bMzEzxfE7F/tmzZ/Hw8GDixInZHiMzNGzYEDU1tZ8ylb9Pnz6oq6uzZ8+ebI9hY2ODm5sbZcqUoUmTJuzdu1fxXHpCxdvbmxYtWvDbb78xceJEXF1dc1zWkR8ktSpVUrC0bdsWHR2dHEX3Y2NjU/WsqFatGnfv3uX48eM0bNgwJ9PMFjt37lT4ahQkRkZGXLt2jUGDBjF06FCmTJmSq/4tSpT8F1Hahf/gPHr0iM2bN3P//n3i4+Px8/Nj6tSpDBs2LFNp6Jlhzpw5qKurM336dOLi4vjjjz/ydOc3PDw8Q7Hv5uaGpqZmthdq8+fPx8rKir59+wKJPZqnTZtGv379sLe3z/D8y5cvM3LkSEaNGsX06dOzNYf/Ipqamhw5ckTxM64eUA2XoNfZGivo3gcCb74FQN1Ij7hv4XzcfB29SqaoGfxtrhX+1pfXi84gDY/BsG4ZKkxri0RDNVvXFAQBQz19ILFlY3BwMGXKlEEul2Nubs6qVaswMTHhy5cv1KlThy5duqCjo0NoaKjCWb1ChQps27Yt2bj/zsbJyu/XrVu36Nq1a65t8hUm1NTU2LRpE/Xq1WPUqFGK0psyZcokOy42Npa5c+eyatUqGjRowKVLl1J1ss+p2F+/fj0NGzbM83ZsmpqaNGzYEGdn51x1/y4MFClShB49erBz505mzJihKO/JKsbGxjg7OzN27FgGDRqUYVnFkSNHGDVqFDo6Oly7di1T93klSv6JpqYmnTp1wsnJKUsteZNYs2YNf/31Fw8fPkRFRSXFfd7c3Dy3ppolpFIp27Zto2/fvoUie0RNTY2tW7dSrVo1Jk2axKtXr3BycvqhuswoUVKYUIr9HxRBEIiIiGDlypWcP3+e6OhoNPTM0SvVkiM34dE3T9T1VImNlyOVJpYnq6qIMDKQUKm0OuXN1ShvroaVmRpqqhkLi99++w0NDQ0mTpxIbGws69atyzPBHxYWpnAiTws3NzdsbGyy1d7u0aNHnD17lv379yvOT3L/XrVqVYbnP3/+nO7du9OqVSs2bdpUqNM/CwtJPcNfvXrFjBkzKF++PJqamvhWFiHSFZHVfJH4kCg+brkOgEHt0lhNaMGT8fuQhsfwcdM1Ks/pBEDQvfe8X3MJebyMEu1rUGZEU0TiHPy8BDApaqToiJH0OU0SLKVKlWLdunUpTksy2MoLdu7cmSyy+TMyYMAAqlevTteuXalVqxYHDhygbdu2QGJmw8CBA/nw4QPLly9nypQpaUZBY2Nj0dTUzNYc3N3duXnzZq7X7KaFvb09q1evRiqV/nRtPIcPH87evXu5desWzZo1y/Y46urq7Nixg2rVqjF58mSAFG7e4eHhTJgwgb1799KzZ08cHR2VokFJtunduzcHDhzg5cuXVK1aNVPnCILAnDlzWLJkCb///jsaGhqFat1w8eJFvn79yqhRowp6KgpEIhHjx4+nUqVK9OjRg/r163PmzBkqVKhQ0FNTouSHQyT8bA5A/yEOHz5MvwFDMbbqRPl64xBpJKarCvIEEEkQiVKPmEjEIBdAEEBTXUSbhjp0bKyDuXHG0c6tW7cyevRoRo0axZYtW7IdlUmPpD6zW7ZsSfOYcuXK0b59+1SFVUa0a9eOz58/8/LlSyQSCQ8ePKBBgwZs2rSJcePGpXvu169fqV+/PsbGxty6deuHdT7Pb+RyOWKxmOPHj9OjRw80NDQQBIHi7awxH9gQURY/R68WniLE7QsquhrU3DQANUMdgu6+5+3yRJfvchNaYlDLErch20EAkYoEnbLFk41RdrQ9OuWMs/xaZtfoS6tSeRvZzSwRERG0b9+eW7duFfRU8oXQ0FAGDhzIuXPnmDVrFhKJhCVLlmBtbc3evXvTXXxLpVJUVVX566+/knXfyCzDhg3jypUrfP78WWHomZe4uLhga2vLw4cPc+RNUhgRBIGKFStSu3ZtDhw4kCtjOjk50adPH0qWLImzszPly5fn3r17DBgwgKCgIDZt2sSAAQMKlchS8uMRHx+PsbEx48aNY/HixRkeL5PJGD9+PI6OjqxcuTLTfkD5Sbt27QgMDMy2GWpe8+nTJzp27IiPjw+HDh2iTZs2BT0lJUp+KJQ1+z8owWEyjt1Rx3bQIyo0XoZY8++6VJFYNU2hDyCTJwp9gJg4gVO3Ihi8wI/JawNwe51+TeyoUaP466+/2LZtG8OGDUMmk+XK6/knGRn0hYSE8OnTp2wtgB88eMCFCxeYN28eEokEqVTK6NGjqVWrVobtZsLCwmjbti0qKiqcP39eKfT/gVwux8/Pj/v37xMZGZnmcSoqKujq6hIbG0tcXBxy38gsC33/yy8IcfsCQNkx9qgZJv4cijUqT/GmFQH4suMWglRGUsqAIJUR8c4/2Zc0Jj4brxQqFDHL+KB8YubMmfz2228FPY18Q19fn1OnTjFhwgQWL17MwoULmTx5Mq6urhlG2eLi4gCylcYfGBjIgQMHGDduXL4IfYA6deqgra39U9bti0Qihg0bxvHjxwkJCcmVMZs2bar4f926denXrx+NGzfG1NSU58+fK0waf3QiIiIICAggPj579y8lOUNNTY1u3brh5OSUoYdRfHw8/fr1Y9u2bezYsaNQCn0PDw8uXryYr+32skrZsmW5f/8+dnZ2tG/fntWrV/90nUqUKMlLfq7cwP8AgiBw3S2adU7fiZbXQKIq/v/j2R/z/2b+vPgYx/QPgTjU02JcD0N0tVIXYYMHD0ZNTY2BAwcSFxfH3r17czXNNCODvkePHgFkq252/vz5VKlShR49egCwadMm3N3defjwYboGSPHx8XTv3h0vLy9cXFz+cy2QksS8h4cHHh4eeHp6Kv7v4eGBl5eXQkyFhoamOD9pkV21alXKly9PiRIl+O2334iSxrI48kKW5mLSyhqTVtapPldhahsqTP1717/R2clZGjsj1MWqmOkUz/jAPEAulyOTyVBVVSUuLg5HR0eOHDlC9erVuXTpEiVLlsTU1BRDQ8OfQtSkhkwmY926dWzduhVzc3NCQ0M5evQoffr0wcbGJt1zkzonZEfsb9u2DbFYzIgRI7I17+ygqqpK48aNcXZ2/il9QQYOHMjMmTM5cOAA48ePz/F4SYv/X3/9lfnz53Pw4EHatm3LqVOn8m2DJi/5+PEjR48exdXVFX9/f0JCQrC2tmblypW55s+jJHP07t2bnTt38vjx4zTXIdHR0XTr1g1nZ2eOHj2a7+76mWX79u3o6enRq1evgp5Kuujp6XHq1Clmz57Nr7/+iru7O1u3bs1xK1UlSv4LKMX+D8T3MBmrD37n/ouY/xuY525ihvz/GwbXHkbz8HUsv/UvSn3r1Otb+/bti7q6Or179yYuLo5Dhw5lysE+IwRByNCgz83NDT09vSwbkrm4uHD58mWOHDmCRCLBx8eHOXPmMGbMmHQ3DgRBYOTIkdy6dYsrV678EO7NWUUmk+Hj45NMxP/z/15eXskchIsWLYqFhQWWlpZ06NBB8X9LS8tUszLkcjkSiYS9e/fy5MkTzp49S6NGjQDY6fwAv+jv+fZac4JVkZJI0smayQukUimRkZEEBwfj5+fH+/fvOX78OBcuXEBXVzeFAFVTU8PU1DTFV9JmQNKXrq7uD7Up8PnzZwYPHszdu3eZPHkyixcvJiAggO7du9OwYUO2bNnCkCFD0jw/u2I/ISGBLVu20L9/f4oWLZqj15BV7O3tmTt3LvHx8blyfy1MmJiY0KFDB3bs2MG4ceNy/FlMEvszZszAzMyM9u3bc+DAAUaPHs2WLVtSdLH5kfj+/Tu//PILly5dSvb4hw8f+Pz5M4cPH1Z08fiRfqd/VJo2bUrx4sVxcnJKde0QEhJC+/btef78OefPn6dFixYFMMuMiY+PZ+fOnQwcOBBtbe2MTyhgJBIJy5Ytw9rammHDhvH+/XtOnDihaF2rRImS1FGK/R+ED97xTNvwjciYxDB8XiYwyQUIi5Qz889ABrTRY3D7IqkuILp168aJEyfo3r07Xbt25dixYzneZU1qS5NeGr+bmxu1a9fOsl/AvHnzsLa2plu3bgBMmTIFLS0tlixZku55CxYsYM+ePRw4cCBZquiPhFQq5evXr6lG5T09PfH29k7W3qZ48eJYWlpiYWGBjY2NQshbWFhgYWGBrq5ulq6ftBB//fo1giBw8eJFqlatSvHixamrW47Tka6QE+O8fECEiGYlquf7dVVUVNDX10dfX5+yZcvSqFEj7t69S8mSJfn8+TMA/v7++Pr64uvri4+Pj+L/vr6+vH79Gl9f3xQZF9ra2uluBiR9ZdfQLrcQBIFt27YxdepUjIyMuHnzJo0bNwbA0tKSu3fvMmHCBIYOHcqDBw/YsGFDqsIuu2L/2LFj+Pr6Fogrvr29PdOmTcPV1RU7O7t8v35eM2zYMDp06MCTJ0+oVatWtscJCgpi6NChADRp0oTjx4+jo6NDy5YtGTlyJO/eveP48eMYG2fdo6MwsH79ei5duoSRkRFt2rShRo0aBAQEcPDgQZ49e8aTJ0+wsrIiISHhp9sUKoyoqKjQo0cPjhw5wooVK5KtRfz9/WnVqhVfv37l+vXr1KtXrwBnmj6nT58mICCgUBnzZYa+fftiZWVF586dqVOnDqdOncrzDilKlPzIKMX+D8DLT3H8tvEb8VJBkXKf1ySVBey7GE5kjJzxPQxSFfwdOnTgzJkzdO7cmU6dOnHy5Em0tLSyfd3w8MQ+6Rml8ffr1y9L496+fZtr165x4sQJxGIxV65c4ciRI+zbty/dHua7d+9mwYIFLF26VNGmrzASHx+vEPOpCXofH59k/grGxsYKAV+3bl3F/y0tLTE3N8/1Xf6kEokkJ93du3fz8OFDTE1NCZFHIwyvTOGW+qAiltDGrG6ujCWVSomIiMiWK7ivry/79+9n6dKlioW9ubl5hm2boqOj8fPzS7EZkPT16NEjfHx8UriZ6+vrp7kRkPRlYmKSJyLj69evCmO80aNHs3LlyhReGRoaGmzfvp169eoxfvx4nj59yrFjx1K8HzExMYrjs8L69etp3rx5pp23c5Pq1atjYGCAs7PzTyn2W7dujampKTt37sy22L98+TKDBw9WlBFNnDhR8RkZNGgQFSpUoEuXLtSpU4fTp09nWO5RGEnyQenXrx8LFixAVVUVdXV1TExMmDRpkuKzrRT6+Ufv3r3ZsmUL9+/fx9bWFoAvX77QsmVLYmJiuH37NlWqVCngWaaPo6MjdnZ2hX6eqVGnTh0ePXpEly5dsLOzY9euXfTp06egp6VESaFEKfYLOR+84xOFfoKgSLPPb07ejERdTczIzvqpPt+qVSsuXrxI+/btadeuHWfPns22eV1YWBhAmpF9f39/vn79muVd3Hnz5lGjRg06d+5MbGws48aNo2nTpuluGly9epURI0YwcuRIZsyYkaXr5TZxcXF4eXmlGpVPEvP/NKwxNTVVpNbb2toqovJJYj6/o7VJG0WzZs3i48ePHDlyBDc3N8XzlWtqY1DTksKq+CUiMQ6mNdGW5E4qcO3atalbty7btm3L8rnr169HU1OTkSNHZuk8LS0typYtS9myZdM8JqmMJrXNAF9fX96/f8/Nmzfx9fVNVtYBYGRklOZmQNJmQfHixdP1xvjnPJJqubW1tbl06RKtWrVK95zhw4djY2NDt27dqFWrFocOHUqWPpudyL6rqyuurq6cOXMm0+fkJhKJhKZNm+Ls7My8efMKZA55iYqKCoMHD2bTpk2sWrUqSxvFsbGxTJ8+nQ0bNtCqVSuWLl2a6oZB/fr1cXNzo3PnzjRq1Ijdu3crPFt+FOrXr4+WlhYGBgbJ/rZKpVLKlCmDtbU13t7efPr0CS0tLerWzZ1NSSVpY2trS8mSJXFycsLW1paXL1/i4OCAtrY29+7dw9LSsqCnmC7v3r3D2dk517phFAQlSpQgAGDJAAEAAElEQVTg5s2bjBw5kr59+/Ly5UsWLVqUJ12ilCj5kVGK/UJMSISMaRv+H9EvYONRpyvhmBZToX2j1EV806ZNuXz5Mm3atKFVq1ZcuHAh3eh8WiSJ/bTOTRKIWXHiv3HjBjdv3uT06dOIRCJWrFiBh4cHZ86cSbO+0d3dnW7dutGyZUs2b96c53WQMTExeHl5pZlm7+vrqzhWJBJRsmRJhYBv0qRJsjR7MzOzQmtao6mpybZt2xgwYAAPHjzg+/fvqKuro1/Wgqsiz4KeXprIBDldLG1zbRHRokULDhw4oGhJmFnCwsJwdHRkzJgx6Za6ZBeRSESRIkUoUqQIlSpVSvM4QRAIDg5OsRmQlDXw7NkzLly4gL+/P/J/pCNJJBJMTEzS9RNQVVVl1qxZnDhxgv79+7Nhw4ZMZ0DUqlWLx48f07dvX1q1asXixYuZPn06YrE4W2J//fr1lC1blnbt2mX6nNzG3t6eKVOmEB0dnaOsqcLK0KFDWbp0KcePH2fAgAGZOsfd3Z2+ffvy8eNH1q9fz/jx4/Hz8wNI9V5dqlQpbt++zbBhw+jZsydz585l3rx5P4woaNasGQ4ODmzfvh1I3CR58eIF586dQ1dXl3HjxhEYGIi/vz9169blxo0bBTzjnx+xWEzPnj05ePAgvXv3pkOHDpibm3P58uUfolxk27ZtFCtWTFHW+KOioaHBnj17qFatGr/99hsvXrxg//79efL3UYmSHxWRoOxfUSgRBIF524NwcY/Jt9T9jFBTFbF7bglMiqa9R/Tw4UNatWqFlZUVly9fznKa8vXr12nRogWfPn2iTJkyKZ6fN28ef/75JwEBAZkS4IIg0KRJE6Kjo3Fzc+PTp09UrVqVyZMns2zZslTP+fr1K/Xr18fIyIhbt25luT49NaKjo9M0v/Pw8CAgIEBxrFgsplSpUslS6/9pgFeqVKmfIl1TJpMhk8lQU1NDLsj55f4WXoZ4IBMKyQf+/4hFYuyMq7K49uBcG/P27ds0adIEV1fXLEXhVq5cyaxZs/Dw8MDU1DTX5pNXyGQyvn37lqafQNJXYGBginOLFy+OlZVVun4CaZkMymQy5s+fz+LFi+nUqRN79uzBzc2Nli1b8uXLl0xF3Xx8fLC0tGTVqlVMnDgxN96ObPH69WuqVKnClStXaNmyZYHNIy+xt7dHJpNx69atdI+Ty+WsW7eO33//nYoVK3LgwAFFecXXr18xMzPjwoULafbhFgSBZcuWMWvWLLp27cqePXt+iBaqnp6e2NjYKHw3xGJxsk00SNxIk8lkWFhY8OXLlwKY5X+Phw8fUq9ePTQ0NKhVqxbnzp1LtyywsBATE0OpUqUYNmwYK1asKOjp5BoXLlygT58+mJmZcfr06XSz2JQo+S+hjOwXUm4+jubus/R73uc3MpnA8r3BrJ5ohDgNM7W6devi7OxMy5Ytsbe35+rVqxQrVizT18hMZL927dqZjrQ7Oztz584dzp07B8D48eMxMTFhzpw5qR4fHh5Ou3btkEgkiqhJZoiMjEwh4v/5/3+KGYlEgrm5ORYWFlSqVIk2bdokE/QlS5b8KVpFZYREIlGkdItFYmZW78OAW8sLldgXAdoq6ky17p6r4zZs2BBDQ0POnDmTabEfHx/PunXrGDBgQK4IfalchndUIKFxkcTLE1Py1cSq6KvrYKZdHBVxxun2GSGRSChRogQlSpRItyb727dvjBkzhhMnTlC3bl06depEREREpk0GU9sMcHBwwMzMjN9++43atWsrBHtmS1j+/PNPNDU103X4zw8qVaqEsbGx4r76MzJ8+HD69evH+/fvKV++fKrH+Pj4MGjQIK5fv86UKVNYunRpqkaM6f1tEIlEzJw5kypVqtC/f39sbW05ffp0oU+5NjQ0JDQ0FFVVVdTU1JBIJGhra6Ovr4+hoSElS5akWLFiis++kvzB0zMxG6148eJcuXLlh8m8OXbsGN+/f89yKVhhp23btjx48ICOHTtSt25djh49ir29fUFPS4mSAkcZ2S+EhETIGDjfl+gYIU9d97PLxN4GdGqcvgh++fIlzZs3p3jx4ly/fj3TaW27d+9myJAhxMfHpxC8giBgZGTE2LFjWbBgQYZjCYJAo0aNkEqlPHjwgOPHj9OjRw9Onz5Nx44dUxyfkJBAu3btePjwIffu3UtmWhMeHp5mVN7T05Pg4GDFsaqqqpibm6calbewsMDU1BQVlf/mPlvS7SatBfkJj7usfXkiP6eUIQtrDqKZae678A8cOJDnz5/z/PnzTB2f9Lvx+vXrdFPs0yJGGsdt/xe8DvHkdagXnyL8SJBLUz1WVaxCWd0SVNY3p7KBBY1NrNFUyZvWZVeuXGHo0KFERkayceNG+vfvn+bnIyoqCj8/vzQ9BXx8fPDx8VEYliUhkUiQy+UIgkCfPn2wtLRMUUJgYmKiuOfExsZiZmZG3759Wb9+fZ687qzQt29fPn36hKura0FPJU+IiYnB1NSUUaNG8ccff6R4/tixY4wcORJNTU327NmTaiszb29vzM3NuXjxIq1bt87wmi9fvqRjx45ERERw4sSJQm+AuHDhQkxNTSldujRmZmYYGxujp6eHSCQiLi7uh24t+COyfft2Ro8eTcWKFfHz88Pf3/+HybiztbVFW1ubK1euFPRU8oSQkBB69eqFs7MzGzZsYMyYMcqWlEr+0yjFfiFk28kQjlyPKDTp+/9GR1PEsT9Koaaa/s3z7du3NG/eHF1dXa5fv07JkiUzHHv9+vX8/vvvKRzBATw8PChdujRnz56lffv2GY51+fJlWrduzcWLF7G1taVSpUrUqlWL06dPJztOEARCQkIYMmQI58+fZ9SoUaipqSUT9P+MKKqrqycT8/8W9CYmJpkyIfuvEBgYyIcPH/D39ycyMhI9PT1KlSqFiYkJenp6yWrr5IKcSQ/+5Pn3z8gL+NaU1GpvQa2BeTL+sWPH6NGjR6bSyuVyOdbW1pQrVy7F5zcjPCMDOOXhwjlvV2Jl8aiIxEgzmT2RdKymRI12ZvXobNkQC53cqUeNjIxk2rRpODo60rJlS3bt2kWpUqVyPG5qJoMeHh78+eef+Pn5YWxsjLq6On5+fmmaDMpkMl68eMH48eOxtrZOljGQWZPB3GTHjh2MGjWK79+/Z8sL5UdgwoQJHDt2DC8vL8WmS0REBL/88gu7d++mW7dubN26laJFi6Z6fpLYz4yZYxJBQUH06NGDu3fvsmXLFkaMGJFrrye3+fr1Kx8+fODLly+8ffuWt2/f8v79e3x9fYmMjOTu3bs0bNiQ+Pj4H0Z0/qgsX76cGTNmMHbsWIYPH07NmjU5f/48bdu2LeipZYi7uzvVq1fn+PHjdO3ataCnk2dIpVKmTZvGunXrGDVqFBs2bFD+Xij5z6IU+4WM+ASBbjO+EhVTuH8sMwcXpUXdjNuzffr0CXt7e1RUVHB2dsbCwiLd4xctWsSWLVsUZkv/JEkc+fn5YWJiku44giDQoEEDxGIxd+/eZfz48ezatYt169YRHR2dIkqf1PIPEg1f/i3g//m9sbHxD2PsVBCEh4dz8+ZNrly5wpUrV/jw4QMSiYT69evj4OCAg4MDtWvXZs6cOTg5OaWoL41IiGGcy0a8Ir8VWEq/GBFVDSxZU38U6pK8WSCEh4dTrFgxVq9ezYQJE9I99ty5c3To0IE7d+7QqFGjTI3vGRnAmhfHeRL8EYlInOP3MmmMmkXLMdW6O+Y6Rtke686dOwwePBh/f39WrVrF6NGj8zzysn37dkaOHImqqip169bFyckJDQ2NFH4CPj4+HDx4ELFYjLa2doYmg2n5CRgaGubaa/r8+TMODg4cP36c6tVzP8ukMPDs2TNsbGw4deoUnTp14v79+/Tv359v376xceNGBg0alO776eXlhYWFRZbEPiSKAkdHRxwdHWnXrh2LFy8ulGVUVapU4c2bNykeV1FRQSqVcvHiRVq1aoUgCMooZh4hCAIzZsxgxYoVzJ49m4ULFwJQuXJl6taty549ewp4hhkzbtw4Tp48iaenZ6H8nOc2u3btYvTo0TRo0IBjx45RvHjxgp6SEiX5jlLsFzKuuEbxx57gjA8sQMQiKG+hxpbf0hfcSXh6emJvb49UKsXZ2Tld05Rff/2Vs2fP8u7duxTPTZ8+nYMHD+Lt7Z3scUEQCAoKSibgb926xblz57CwsCAwMDBZpoCWllYyAR8cHMyRI0cYPXo08+fPx8jISLlYygIymYzHjx8rxP39+/eRSqWULVtWIe6bNWuWIiI5fPhw3N3defjwYYoxv8dF8Mv9zXhHBSHPZ8EvRkRFfTPW1BuNtmredjVo1aoVcrmcq1evpntckyZNSEhI4N69exl+NmWCnCOfb7Ht7QUEhFzfMJGIxIgQMapiO3qUaYxElPmNr9jYWObMmcPq1auxtbVl9+7d+WaitGnTJqZNm4azszPdu3dHJpNx5MgRGjdunOy4GzduKPxGWrRooTAZTMtcMC2TQXV1dUqUKJHmZkDSV2Zco5ME3M8u5GrXrq3wd1i8eDF169Zl3759mfqMJIn9y5cv4+DgkO05JCQkIJFICt2G7u+//46TkxOVK1fGwMAAAwMDXrx4we3bt2nWrBmOjo5YWVn99J+RgkImkzF69Gh27NjB2rVrmTRpkuK5BQsWsHr1ar59+1ZoO+FAYjaVqakpkyZNUmxU/Be4d+8eXbt2RUtLi9OnT1OtWrWCnpISJfnKf7NwuBBz8mYEIhEU5i0YuQBvPeL56B1PObOUUU9/f3++ffumuKFaWFhw+/Zt7O3tady4Mc7OzlSoUCHVscPCwlKIQkEQCAgI4Nq1a5QoUYLly5enMML7p5jX0dFBJpNhYGBA+/btOXfuHFKplKNHj2JlZUXRokUVi6Fr167Rpk0bhg8fzpYtW5SLpEzi6enJ1atXuXLlCteuXSMkJAQ9PT2aN2/Oxo0badmyZYYL9KCgoDTNGw3VddnScAJTXbfxLuwr+eleUbOYFUtrD8mzGvV/0rFjRyZPnpzq5z6JBw8ecPv2bU6ePJnh59M7MpCFT/fzNsw73eNyQtLmweY3Z7ju+5S5Nv0x08k4WvL48WMGDhzIx48fWbFiBZMnT87XdPiYmBg0NDRo0KABT548oXfv3tjb2yvmkvTerl+/nipVqtC8eXMguclgesTFxeHv75/mZsDLly/x9fVVmJAmoaOjg6mpKRYWFrRu3ZoGDRpQuXJlxefhn+LtZ78/dejQgfnz53PhwgXmzp3LrFmzMu1vkltxi8Ia7Rw3bhxdu3alaNGiaGlpoa6ujra2NuvWrWPGjBlcuXIFKysr5HK5sowsl4mLi6N///6cPHmS3bt3M2jQoGTP9+rVi/nz53Px4kW6dOlSQLPMmEOHDhEVFcXw4cMLeir5iq2tLW5ubnTq1ImGDRuyb9++Qv1zUqIkt1FG9gsRwWEyevzuU9DTyBQSMfRrrcfg9vqKxwRBYM+ePUyYMAFVVVW+f/+e7Bx/f39atGhBUFAQ165dU7RMksvl+Pv74+HhwdSpUwkMDKR58+YKQe/p6anokQ2gp6dH6dKlk6XZ6+joULJkSerXr8/du3fp1KkT169f58uXLwwfPpwbN27QtGnTZPN58eIFjRo1omHDhpw5c6bQLvIKA5GRkclS89+9e4dYLKZevXqK6H3dunWzZDxoa2tLuXLl0k19jJdJ2fPhCvs+XkeECDl5E+VPilaPqNiGXmWaZilanROSopGHDx+mZ8+eqR7TrVs3Xr58yZs3b9KNNr4N9Wbygz+JkcXnW/mDRCRGU6LG2vpjqKhvluoxCQkJLFmyhMWLF1O9enX27t2bzPwyv/h3iZBUKmXmzJmsXLmSHj16sHPnTgIDAylXrhxbt27Ns/rt1EwG1dTU6N69OyYmJiQkJPzn7kWCIPDXX38xYcIEYmJiGDVqFH/++WeWxvD09MTS0vKnblGYGk+ePKF27dq0bduWc+fOIZPJlGI/F4mMjKRr167cvn2bw4cP06lTp1SPq1GjBhUqVODw4cP5PMPMIQgCtWrVolSpUpw5c6agp1MgREVFMWTIEI4ePcrChQuZPXv2T7+BqkQJKCP7hYr3XvF5On6Iz32enekNQP1+d9HUS1ycx4R78+BA2nXAlrUnUbrO5GSPyQV46/n3fH18fBg+fDiXLl1SPJYUrZTJZPj5+eHh4cG4ceNYuHAhtWvXpkaNGgQHB+Pl5UV8/N9jqaqq4ubmhqWlJW3btsXCwgJVVVVFrVnnzp1TzLFp06bcvXuXXr164erqSpMmTbC2tqZHjx70798/hdD38fGhbdu2lClThiNHjvznFtcZIZPJePr0qULcu7i4kJCQgKWlJa1atWLp0qU0a9YMAwODbF8jKCiIBg0apHuMmkSFERXbYmdizeJnB/CKDMyTKL+VXklm2/TNNfO5zGJubk6NGjU4c+ZMqmL//fv3nDx5kq1bt6Yr9F+FeDDpwZ/Ey6TI8zELQibIiZbGMeH+JtbVH0MVA8vk83r1StF1YPbs2cyaNavAftdiY2OTpdiqqKiwYsUK6tWrx+DBg6lXrx5169bFwMCAfv365dk8tLW1KVeuHOXKlUv1+dx8f75//86GDRtSlA4UhMlgWgQHBzNy5EhOnDjB0KFDiY6O5urVq8jl8iyl0v8X4hapvSempqYMGDBA0cKzsPxcfwa+f/9O27ZtefXqFRcvXqRZs2ZpHtu7d28OHjxYaDsjPHr0iKdPn7J48eKCnkqBoa2tzeHDh6lWrRpz5szhxYsX/PXXX2hrZ+w/pUTJj4xS7Bci3nnGIRGDLJ89ycQSNfSMbJI9Jo0PJzr0EwBqWimNuIT/p/LL5XJ27drFxIkTiYuLS3aMg4MDQUFBeHl5IZX+3eKraNGiSCQSnjx5Qs+ePZk4caIiSj9s2DCqVq3Krl27ko21f/9+ILF2OTUiIiKQyWQcPHgQSOxJPmrUKGQyGatWrUp2bHh4OO3atUMkEnH+/Hl0ddNvI/hfwdvbO1lqfnBwMLq6utjb27Nu3TocHBwoW7Zsru2EBwYGppnG/28q6puxy+5XTnjc5eiX23yLDUUsEme7nj/JbK6UdjF6lWlKB/P6+RbN/zcdOnRg48aNqUZ016xZg5GREQMGDEjz/I/hvkx5sDXfhX4ScgTiZVKmPNjKZtsJlNNLdLNfu3Yts2fPpmzZsri6ulKrVq18n9s/+bfYT6Jbt25UqVKFzp07s2fPHjp37vzD9MvOCENDQy5duoSbm1uqJoMZ+Qnkpslgaly9epXBgwcTGxurcAe/ffs2Tk5O3L59O8UmbWb4mSN1YrEYT09P3r9/j5mZGRUrVsTExIS//vor2d9YJTnH19cXBwcHAgICuHHjBrVr1073+MmTJzNjxoxkv2eFCUdHRywsLLJkXvkzIhKJmD17NlWqVGHAgAHY2dlx6tQpzM3NC3pqSpTkGUqxX4h45xWPPJW1+v39tsRGfMW8xmhk0mgCPpxBJJJgbNWRsg1nIxarIJfF4fl4MwEfTxMb4YOKmh5FLe0pW38mapqGfHFbi8ejdYoxkyL5JhW6U8l+NbW6nUp2zfd35hAd+gkV9SIYl++c6nzDo+R07j6Esyf3pvq8qqoq3bp1S2aGZ2FhgY6ODmFhYbRt25YzZ84wZswYbG1tgcQ0q9QMq9zc3ChXrlyakeR//4H19vbG29ubxo0bJ3NfTUhIULQ7u3fvHqampqmO918gKiqKW7duKaL3b968QSQSUadOHcaMGYODgwP169fPk0hsQkICISEhWXLGVZOo0LtsU3qWaczDwHcc/3KXB4GJ7tRikRhBENKM+otJFAByBMQiEXYm1nS1tKWGYe5tXmSXjh07smjRIu7du5dM3AQEBLB7927mzZuXpulTjDSOGW47iZUlFIjQT0KOQKwsgRluO1lg1p1RQ0fg4uLC1KlTWbRoUaEwrUpL7ANUrFiRESNGMG3aNE6dOsVvv/3G0qVLs1SWkp8IgoBUKs3U7+aDBw+QSqV8+/YtTT+Bu3fv4uvrS1BQULJz1dXV090MSNosyOqGaWxsLDNnzmTt2rW0aNGC3bt3K1qz2tnZYWVlxY4dO7Ik9nMzsv/27VuATBso5heenp5MmzYNd3d3JBIJM2bMoG7dujRq1IhKlSpx5cqVQvG79qPz8eNHWrZsiVQq5c6dO1SsWDHDc5Ki+YXN2BEgNDSUQ4cOMXv2bGXmx//p0qULLi4udOzYkTp16nDixAnFOlSJkp+NwrmS+Y/y6WtCusZ83u47kahqI1HRIC7Kn68v/kLbsAKmlfvw4tIovnvdQCSSoGVYntiIr/i/PUp4wDNqdz+HurYJWgbliA75CIBOscqIxepo6qXczUyIDcHv7VEASlbpj4pq2ilOrTsN46vHC168eIFUKkUsFiOXyxGJRPTs2ZNffvkl1fOKFCnC5cuX6dChA61ateLcuXM0bdqU8PDwVI3KHj16RJ06ddKcR1oLvdu3b2NoaMjFixepX78+o0eP5saNG1y6dEnhGfBfQS6X8+zZM4W4v3fvHvHx8ZiZmdGqVSsWLFhA8+bNMTQ0zPO5JPk5ZDay/0/EIjH1jSpR36gSIXGRvAvz5l3YV96GevMm1IvIhBgS5FIQgapIhfCA71TQK0mr6nZUKFKKikXM0FUrPJHbmjVrYmpqytmzZ5OJm40bN6Kqqsro0aPTPNfx7XkCY0ILVOgnIUfOt5gQuq7/BamfH7dv3850m8D8IDY2Fk1NzVSfk8vlbN26le7du9OgQQOmTZuGm5sbTk5OGBvnb2lHRnz//p0TJ07w9OlTPn36RJEiRZg+fTrVqlVLc3NCRUVFIdDTIy2TwaROBBmZDKa1GWBqakqJEiXQ1NTk5cuX9O3bl3fv3rF27Vp++eWXZAJJJBIxbNgw5s+fz8aNG7NcKpSdzTu5XI5cLkcQBFRVVRk7diw3b97EysoKNze3QiP4//jjD44dO6b4fu7cubx8+ZIaNWpw48YNfHx8KFu2rNKRPwe4u7vj4OBAkSJFuHXr1k8R8d23bx8JCQkMHTq0oKdSqKhWrRpubm50795d0dFC+R4p+RlRiv1CRGx8+ulf6tom1OlxAZFEjQcHGxMfFUCIzz009Uvz3esGADU6HkLftB5xUQE8ONiY6JAPBHw4hWnlPmgWsVTU7FdttU1Rs/9vfF7uRS6NQSxRp6T14HTnVLVabZ48eUJ4eDgnT55k79693LhxA0EQ+Pr1a7rn6ujocP78eTp37kybNm04ffo0YWFh6OrqEZ8gEJ8gIJMLiEUynj57Tvfu3dMcK73UubCwMFq1akW/fv3YtWsXe/fuxd7ePt25/Sz4+PgoUvOvXr1KUFAQ2traNGvWjFWrVuHg4ED58uXzfWGY1KYspz1vDdR1FMI/LUqUKEG70aPp3615jq6VV4jFYjp06MDp06dZtWoVIpGIyMhItmzZwogRI9IUO0+DP3LC424+zzZ9BMCojTXLf19Dw1LWBT2dZKQX2b906RIfPnxg9+7dNGzYkFq1atGzZ09q1arF0aNHM/SWyC/OnTvHpEmT+Pz5c7LHb926xZ9//kmXLl1yZNCmrq6uyMBKj3+bDP6zLeHXr195+PAhPj4+xMTEJDtPU1OT2NhYtLW1adWqFYGBgfz555/JNghMTEwYNGgQs2bN4uDBg4wbNy5Tc89JZF8sFifbcBCLxaiqqlKyZEn09PQQBEFRLy8IQoFFbz98+AAkinxXV1cuX76Mh4cHTZs25fr163z8+FEp9nPAvXv3aNeuHWXLluXixYsYGaUsYfzREAQBR0dHunTpgolJ5tol/5coXrw4V69e5ZdffmHYsGG4u7uzatWqQpvVpURJdlB+mgsRCRmU3BWzbImKemKEQVPXjPioAOKjA4kIeKY45unplCZf4QFPMa3UO1NzkMvi8Hm5DwBjq86op1Kvn3zOiQssPT09Bg0axKBBg/D39+fUqVMp+lenhpaWFnsPnGLw2CWMm3ed0o03cc3TlgsTk7cOqzfgBfcDZMTvDaa8uRoVLBK/JOLEBU1oaGiKsUUiESoqKiQkJBAVFYWjoyMDBgxIt/75Ryc6Oprbt28rovevXr1CJBJRq1YtRo4ciYODAw0aNEBNLWXLxPwkt8R+ZrC0tMTDwyPPr5MTOnTowNatW3n79i2VKlVi586dREREJOvl/E/iZAkseXoQMaJCEdX/J2JErHl7klolKqIuKTzGl+mJ/fXr11O7dm2FqG/cuDFPnjyhR48eNGnShLVr1zJ27NgCFVBBQUE4Ojry+fNndHV1qVOnDmXKlOHZs2c8evSIv/76K8diP7NkZDIIiSIjPDwcX19fnj9/zuLFi3n16hU1atTA0tKSgIAADhw4gK+vLwkJCYrzRCIRxYsXR1tbm5kzZ/L8+fNUswbSMhnM6s8oMjKStWvXEhAQQJ06dRQZZgkJCYqNNpFIpLhWQX4G6tSpg7OzM/369aNGjRpcvnyZz58/K0ogvnz5Avw3zApzm0uXLtG1a1fq1q3LmTNnCk02R065e/cur1+/ZuPGjQU9lUKLmpoaf/75J9WqVeOXX37h9evXHD58OEcGxEqUFCaUYr8QIckgWJAk9AFE4tR/dP822gNQ08q8oPJ/d4L4mEBAhFmNjFtPSSQpFz4mJibpph5D4mLE/UMcp25FcOdZDPLiozArJkMA4mWpLODEEoLCJVx7GMUV1ygEAYrpS+jcRIe2DXWIjIxERUVFYVKkqqrKlClTWL58OfB35H///v3Y2toyatSoDF/bj4BcLsfd3V0h7u/cuUN8fDylSpXCwcGBOXPm0Lx582yly+clSbXB+TEvCwsLPD098/w6OcHe3h4tLS3OnDlDuXLlWLNmDX369EkzhfSm33MCYkPzd5KZRI5AQGwoN/2e06pU+qZW+UlaYv/NmzdcuXKFffv2JRNypqam3Lhxg2nTpjF+/HgePHjA1q1bC8y87+PHj1y4cIEiRYqwevVqunXrhrq6Ol+/fsXOzk7x2tTU1JBKpQUemRKJRBQpUgRnZ2fGjx+Pmpoaly9fxsHBIdlxcrmc4ODgFKUDLi4uXLp0ibt37xIaGkpAQEAKk8ESJUooxH+So/alS5dISEhQlBEYGBikKdD9/f355ZdfFKnxqqqqtGnTRlGmYG5uTmBgIMbGxgwcOJDt27cjkUjSjOzfv3+f169fU7x4cTp27Jjhe5QkyjObLdCrVy9u3rzJmjVrFNkX27ZtU5SnREdHZziGkpQ4OTkxYMAA2rRpw+HDh9Ms98kOR48exd3dnc6dOxeISamjoyPly5dPt5OAksT71dixY6lYsSI9evRQbPpUqpR21qASJT8KSrFfiFBTERGdjSidrlF1xf/Na46leOnExZRcLiXk61209MsCIFH5+w+YXJo8vRISFxzez7cDUNTCHm0Dqwyvra6atSiHIAhcfhDFwcvhfP0mRSLmb1NCkYSMRvtnp4KgUBk7z4Tx19kwhsxypXHlIDq3bUiVKlU4deoUDx48SPX6Y8eOpWfPnj/srq2fnx/Xrl3j8uXLXL16lW/fvqGlpUXTpk1ZsWIFDg4OVKxYsVCncQYGBiKRSNDX18/za1lYWODm5pbn18kJmpqaODg4cObMGUqVKoWXlxfTpk1L8/hjX+4Uyqh+EmJEHPtyp9CJ/dT8QDZs2ICJiUmqrQ/V1NRYv3499evXZ/jw4bi7u3P8+PF0I9p5RZLHiLGxcbK60nLlyiEWi7G0tGT//v08fvyYK1eu4OjoiJ2dXb7PM4nIyEgmTpzIrl276NKlC9u2bUt1c08sFlO8eHGKFy9O9ep//y2TSqWYm5vTrFkzNm/enKbJYFIJwZs3iWadK1euZOXKlYpxatSowdOnT1Od44ULFzh27Bj6+vr069ePihUr4ujoyIcPHxCLxZiamuLn54e2tjbTpk1DJBKlKcqvX79Ou3btFG1khw0bxvbt29N9j5Lu0Zm9V2trayOVSjl+/Diampqoqalx/fp1YmNjsbS0pEaNGoCy/V5WcHR0ZOzYsfTv35+dO3fm2JA2MjKSqKgoxQZRUiehI0eOsHXr1mx1mMgugYGBHDt2jGXLlhXq9UBhwt7eHjc3Nzp27Ej9+vU5dOgQbdu2LehpKVGSI5RivxBhWlyF0Mj4jA/8FwYlG2Bo1oTv3rd4eWlEorgXiYmL8EEmjaZGRyc09czQLGKBSKyKIE/g2dm+aOiUwqzGCIzKtgMg2OOaot2eeY3MRb5NimZ+UeEfLGXlvmCevv+7RV9O2wwKAsgEcP+izivPkvzp9IER3csgkYiZNWuW4rikBVqnTp2YOHHiDyX0Y2JiuHv3riJ67+7uDiQauw0dOhQHBwcaNmxYKHv7pkVQUBDFihXLlwWIpaUlXl5e+ZLenBM6duzI0KFDCQ0NpXXr1lhbp17z/i7sK2/DvFN9rrAgR+Dt/40TKxQpVdDTARJ/j/4d2Q8JCWHv3r1Mnz493dKWPn36YG1tTdeuXalduzb79u2jQ4cOeT3lZOjo6LBgwQJWr17Nvn37qFu3Ls+ePWP//v34+flx5MgRduzYQXR0NPHx8Zw8ebLAxL6rqyv9+vXD39+fnTt3MmTIkCz/rquoqDB48GC2bNnCqlWr0NTUTNdk8OPHj1hZWXHp0iUqVqyo2AxIS5zHxcVx//59AGxtbZkzZw5GRkbo6OgwZMgQ1NTUKFWqFF+/fmXfvn1UqFAh3WyJdevWER8fT5s2bfDw8GDnzp34+fmxb9++TP29yUydvb+/P48fP07xuJaWFiNGjMDe3j5ZCr9S4KWNIAgsW7aMWbNm8csvv7B27docezG4ubnRr18/unbtypIlS/D19UVdXZ3OnTtz+PBhtm3blq9if/fu3YhEIgYNGpRv1/wZKFOmDC4uLvTv35/27duzYsUKpk6dqvx9UvLDohT7hYhKpdV55xWPTJb1c6u23obXky0EfDxDTLgXElVttAzKYWjeBG3DCgCoahhg1Wg+nk82ExfpR3x0IPHRgYoxvJ5vA0DXqAb6pvUyvKaqCpibZLwLLggC5+9FsflYCFJp3kQiZfLEryO31Hjz9RvTBxXjzJkzQGJd+IQJExg2bNgP0WpPEARevnypEPe3b98mNjYWU1NTHBwcmDFjBs2bN/+hzYNKly6dZqeG3MbCwgKpVIqfnx+lShUO4Zka7dolbrq9fv2aTZs2pXncaU8XJCIxMqFw9nNOQiISc9rDhd+qp4yYFwSppfHv2LEDqVSaqbKeqlWr4ubmxqBBg+jYsSOzZ89m/vz5+bqB1LJlS3bv3s2QIUOQy+Voa2sTFRUFgJeXFxKJBFNTUwwNDVPNYshrpFIpS5cuZeHChdSuXZtLly7lKAti6NChLFu2jOPHj9O/f/9MnZNZk8H4+Hi+ffsGQIUKFRTvl1gsRl1dHUEQKFmyJNra2tSsWTPNhX58fDxqamq0b9+eK1eu0K1bN4YOHUq3bt04efIk8+bNY+XKlaipqaUrFjIjJCpXroy9vT2VKlXCwsICMzMzLC0tqVatmiL1XClIMkYQBH799VfWrFnDggULmDNnTq68b2FhYXz8+JGgoCAkEgnx8fFUqFCBQ4cO8fjxY06fPp2ud0huktRhpGfPnhQtWjTPr/ezoaenx6lTp5gzZ46i3eW2bduUrS2V/JAoxX4horyZWqpCv0H/eykes+l0ONn3EhUNStedQum6U9K9Rskq/SlZJfVFU83ORzM/WaBcqb8N8tJCJhNYtT+Yy675V0v4+ks8I5b40WfoXGpXKcLIkSMLvH41IwICArh27ZpC4Pv7+6OhoUGTJk1YsmQJDg4OVKlS5adZyA0YMCDdDgq5iaWlJQAeHh6FWuwbGRlRpEgRRCJRutGfh9/eFnqhDyAT5DwMfFvQ01Dw70W2VCpl06ZN9OnTJ9Pt9YoUKcKJEydYsWIFs2bN4uHDhxw8eDDfFtNyuZwvX76goqKCSCQiNjaWokWLYmFhQd26dWnRogUWFhZUqVIl3xelnz9/ZsCAATx48IDZs2cze/bsHKdElytXjqZNm7Jjx44MxX5WTel0dXWJjY0FIDg4WBHVff36NXFxcejp6VGmTJl07xmCILBo0SJsbW3p0aMHx48fZ9SoUWhqav6PvfOOiuLs4vAzu0vvTUFEEMWO2ECNvZfYe9fYTUxsMSYm0cQee4ldY2+x9957L1jB3pCO9LK77/cHHxuJgIDAAtnnHM7RnZl37uxOu++993dZu3Yt1apVw93dPcuyrmxsbDh27FiKy2JiYnj//j329vbcu3eP+/fv07Zt21z/7MtplEolAwcOZNWqVSxYsIChQ4dm2dienp6YmJhoysZcXFw4fPgw4eHhNGrUiMWLF3Pu3DkaNmyYZftMjePHj/PkyRPWrl2b7fvKr8hkMiZPnky5cuXo27cvjx49YufOnXkiaKRDx4fongK5iBJFtKuQnhHkcijtkra9SpVg4sogzt36WB8gO1GpIS5e8EbenW/qF8iVLzuxsbGcP39e49zfunULAA8PD3r27Enjxo2pWbNmvp5Fzqn2VUkRvhcvXuSqvu//5vr167x//x59fX3i4uJS/O0j4qPTFOYLu/OKu79sAwHOvWrg1NELAKFSc2fMFiIevcPAzoyKf/Yk8PQjAk8+IPJpAOq4RGHLSot6Y+xkrRnPZ85hAk7cT3V/NfeOSPOY/GPDiIiPxkxfO6J2H/JvZ3/37t28fPmSYcOGZWgcmUzGjz/+SJUqVejatSuVK1dm27ZtVKmS/foEVapUwcTEhKJFi1KlShUaNGhArVq1KFKkCOHh4Rw/fhwXFxcMDQ1JSEj4bGc7PQghWLt2Ld9++y22tracPXuWL774IsvG79+/Pz169MDX1xc3t0/ryGRkQrRMmTIcPXqUffv2MWnSJCwtLdm0aROQWDbh4OCgabmXEt7e3kybNg1HR0fOnDnDunXrqFOnDr/++isuLi7cuHGDly9fsmfPHiIjI7GxsaFJkybpti8lHjx4wNu3bwkKCiIgIEDzFxoaiq+vLydPnuTvv/9mypQp3L17l5IlS37W/vITsbGxdO3alb1797J+/Xq6d++epeNbWFjwxRdfcPToUXbt2oVSqUSpVPL48WPNhGJSNkl2s2TJEtzd3XNN29C8TNeuXXFzc6NNmzZ4enqya9cuPD09tW2WDh3pJvd5Qf9hChdUYGUmIzQiD0TtVFCxZOqOqFot+GNtMOduxWhFQkwtQKjg50UBzBpekLKu2q1nF0Jw//59jXN/+vRpYmJiKFiwII0bN2bUqFE0bNhQ1wc3GzAxMcHW1jbXt9+bMWMGTk5OvHr1ipMnT9KsWbOP1nkU/jrNMSzLO1GoZUXe7rnJy42XsK5SFJOidrzedpWIR+9AArcRTVAYGxB6/TmRTwPQszAmLiA8xfEMHSwwK5n8nIx6EYw6NgE9q/Q58I/CX1PFtkS61s1OYmNjk6lsz5s3j1q1alGx4scdTNJDw4YNuX79Oh06dKBGjRosXLiQ/v37Z5W5KaKvr8/9+/dxcnIiJiaGK1euMG/ePHbv3s3Tp08BGDp0KPPnz8+RybSQkBAGDRrEtm3b6N27N/Pnz8/ylmXt2rXDwsKCv/76i6lTp6a6Xmbazf3666/4+vpy4MABJk6ciKurq6YswsPD45MlGmXKlGH48OHMmjWLZs2asWzZMqpUqcLGjRu5e/cu5ubmNG3alDdv3gCJwnnt2rVj7dq1mY72T5w4kWPHjiGXy4mKiiI+Pp6EhATkcjlKpZLnz59jaWmJSqXi1atXOmf//0RERNCmTRsuXLjArl27aNGiRbbsp1+/fhw9epROnTqhVCoxMjLC3NycwYMH07Bhwxxxvt++fcvu3buZP39+vskG1DZVqlTh6tWrtG3bltq1a7Ny5Uq6deumbbN06EgXOmc/FyGXSbSuY8ba/e//UajPpViby6hWLvX2NOsPhXP8qnbbAAkBShWM+TOA1eMcsLXM2dM9MDAwWWp+klhP7dq1mTBhAo0bN8bd3V33MM4Bcnv7vWfPnrF161bmz5/PnDlz2LNnT8rOftjrT6rwu/SuSejNF8S8CuHR7EO4fduIl5sTO1MUalUJS3cnAIoNqY++pTEBJx/gO+9IimMV6VKNIl2qaf4fFxzJtf5/JY7V4tNOsgyJR2G5x9lPiuzfvHmTs2fPalquZZYiRYpw9uxZhg0bxoABA7h06RJ//vlntmbk+Pr64uXlhb+/f7LPFQoFcrlc03M9u7UETpw4Qa9evYiOjubvv/+mY8eO2bIfIyMjevTowerVq5k4ceInM7Uycj+1trZmyZIl3L59m7dv3+Ll5cWxY8fYvn07ZcuW/eT2CoWCGTNmIJPJmDFjhkYQ0d7envj4eDp16sSbN28oUKAAjo6OREVFsXXrVl68eMGuXbsyNbmrVqsJCgrCysoKU1NTzM3Nsba21oylr69Pu3btcHFx0XQ3SGpvGBERQaFChfJ1xlhKBAUF0axZM3x8fDh8+DC1a9fOtn0liQBv2rSJokWL0rVrVyIjIzl06BDm5uYULlw41ZaqWcWKFSswNDRMt86FjvTh4ODAqVOnGDRoEN27d8fb25tJkyblauFfHTpA5+znOpp/YcLa/e+1bUaaSBK0rmOGXJ7yS9XjV/G55hjUIjGlf9aGEKZ8bZetjnVcXBwXLlzQOPc3btwAwN3dna5du9K4cWNq1aqVpT18daSP3O7sz549G2tra7766iuePHnCli1bWLRo0Ufnq190cOJnaUQxZfoKSo5syu3vNxP9PAjvn/5GKNUYO1nj0quGZj0DG9MM2+m39yZCqUJmqIdD8/KfXF+SJPyigzO8n+zgQ2d/3rx5FClShNatW3/2uAYGBixZsoRq1aoxZMgQbt26xfbt2z8pEPc5+Pv7Y2xsjIuLC6VLl8bCwoKLFy/y/PlzTeu37CIuLo6ff/6ZWbNmUb9+fdasWZPtWhj9+vVj4cKFHDhwIF396zNC4cKFk9nv4eHBqFGjMjTGH3/8gbu7OwsXLiQ6OppGjRqxb98+Hjx4gL29Pd9//z39+vXDwsKChg0bcuLECbZs2ZLhEhKAQYMG8cUXX+Dm5kbBggUpWLAgtra2H2UKfHj+yWQynj9/jpdXYlmPtbW1prPBh3+Ojo6afxcsWDBHykCym1evXtG4cWOCg4M5depUpjN50ouBgQGzZs2id+/ebN26lSVLljB8+HDN8pIlSzJ16lTatGmTLftXKpUsX76cbt26ZXmWjQ4wNDRk9erVeHh4MHr0aO7evcuGDRt037WOXI3O2c9l2FoqqFnBiPO3Yz67LV12IQFffpGyo6BUCaasDkaSILe0AFep4fK9WI5ejqJxtYw7OKkhhODhw4ca5/7UqVNER0djZ2dH48aNGTZsGA0bNvxPi7kIIYiMjERfXz/FtFW1Wp0s/Ta7ZshdXFzYt29ftoz9uQQFBbFy5Up+/PFHjI2NadmyJXPmzOHGjRtUrlw52bpx6oR0XVamxQvi1NmLlxsvoY5XgUyixMimyPQzf8tXxcTjd8gbgIKNyqIwTV90ME6tzPQ+swohhMbZ9/f3Z9OmTUyaNClL9Tz69OmDh4cH7du3p1KlSmzcuPGz67NTon79+owdO5YSJUrg5uaGo6MjFhYWWFhYUK9ePcaPH0+TJk3w8vJKs948M9y7d4/u3bvz4MEDZs6cyYgRI3KkXKBixYpUqlSJlStXpursJ91HtJUp1aNHDxo3bqxp4ZjkyFeqVElTigBoMi+SdFoySr169ahXr95Hn0dHR/PixQvi4+Px8PD4SLOhYsWKHD16VNOS8O3bt7x584aHDx9y4sQJ/Pz8SEhI0KwvSRIFChRIdTIg6c/Ozi7H9Fcyio+PD40aNQLg3LlzlCiRMxlGMpkMR0dHrl+/zsOHD1EoFBQvXhx/f398fHwYOnQotWvXxtra+tODZZADBw7w+vXrdHUY0ZE5JEli5MiRlC5dmi5dulC9enX27NlDsWLFtG2aDh0ponP2cyFdGplz5mbOitqlF5kETaqbYG2RslO28XA4z/0SUlymbeZtCaVSKcMU0/nj4+PZtm0bHTp0SLPfdnBwMMePH9c4+K9evUJfX59atWoxfvx4GjduTPny5XPty09GSer9LITQvEwnHZvq/60jktaRJCnZcb9+/ZoWLVpw584dNm7cSJcuXT4aNydF+l6+fJmuXtY5zcKFCwH4+uuvAahZsyaWlpbs2bOHSpUqERsbS0REBBEREQQGB6UZ1f+QmLdh//xHLYgNCMe0ePpU51Pi3eG7qKLiQCbh2LpSurYRQqDMBc5+QkICQggMDQ1ZunQpCoUiW+rrK1asyLVr1+jRowfNmjVjwoQJjB07NsvP859//jnFDKHOnTtz+vRprl27hpeXV5btVwjBn3/+yQ8//ICrqytXrlzRpIjnFP369eO7777Dz88PBweHHN13evmwHWpSpK9o0aKajiDe3t6aDKOwsDDi4uIwMDDg7NmzmhKATxEaGsrixYsJDAzEx8eHFy9e8Pr1a8LDE3U3rK2tCQoK+ug+p1Ao0lSBT0r1//dkQNK/b9y4wb59+/D390/WSUWhUGBvb5/qZEDSn5WVVY7ee2/cuEHTpk2xsbHh6NGjOd6J5fLlyxw5cgRDQ0O+//576tWrh7W1NXPnzmXNmjVs3bo1WxzyJUuW4Onp+dFEsY6sp1mzZly+fJlWrVrh6enJ1q1badCgQbbsKzJGzdM38UREq0lISHyP0deTsLGQ4+Kgh75e7nqv0ZG70Dn7uZBSLgZ0bGDGthMR6X2vzxEkCSxMZQxpZ5Xi8sgYNRsPpyz0lRuISxBsOxHB4H/ZHx4eTps2bTh58iRKpZJevXpplsXHx3Pp0iWNc3/t2jWEEJQtW5YOHTrQuHFjateujbGx9tXGs4Okl7MkZ/5DUovCJ0UTDQ0NMTVNzKR49+4dL1++JDY2VtO7OioqisuXL3Pnzh1CQ0OxsLCgY8eOODk5ZflxuLi4EBsbi7+/f7aLIKpUKiIjI4mIiCA8PFzjqKf0FxISwqpVq3B0dKRbt26az+Pj45k8eTJTpkxBqfzHWXb7rhEFG5RNnHVLg6DzvgSeSmx7Z1DAnLiAcB4vPI556ULoW5lk+JiESs3bPYllKbY1S2BYMH093CVJQl+u/VTgmJjEyVO5XM6iRYvo1asXVlYp38c+F2tra/bt28eECRMYN24cly9fZt26dVhaWmbZPlIrBWrRogXFixfP0hd9Pz8/vvrqKw4fPsy3337LH3/8oZVSpG7dujFq1CjWrFnDjz/++NFybUf2/02dOnVYtGgRq1atol69esTGxrJ3717OnDkDJGaCGBgYcPLkSRo0aIC7uzs3btz4ZHZTaGgov/zyy0efy+Vy1Go1ZcqUAchw1opMJsPOzg47O7s0J3KUSiUBAQHJJgI+/Dt79qymW8CHGBoapjoR8OFEQdIz43M4c+YMLVu2pESJEhw8eBBbW9vPHjOjJGVu9O3blwkTJmg+HzRoEGvWrGH37t1Z7uw/e/aMQ4cOsWLFiiwdV0fqlCpVisuXL9OlSxeaNGnC3Llz+eabbz77PhQYquTUjWgePI/jwbN4/ENS6Mv9f+QycHbQo7SLPu7FDKhV0Rgjg/wRcNKRNeic/VxK35YWnLsdjX+wKteI9QkBP/SywdQ45ZvI0ctRxCfkEmNTQK2G/eci+aqFBQb6icfw7t07GjVqxIMHD5DJZBw+fJhq1appnPuTJ08SGRmJra0tjRo14uuvv6ZRo0aaVMz8ilKpJCgoiPfv32NjY0NUVBS3b98mIiKCxo0bk5CQwIEDB3jw4AGvX78mPj6eQoUKMXDgQDw8PDh16hRff/21JoVx5MiRjBw5EgcHB3bv3k2VKlWYN28eU6dO1ahfA2zcuJFZs2ZRp06dLI3Cf9h+79/OflKK978d8U856qmtEx2dtjClnp4eZmZmmJubEx8fT1xcHIULF8bCwoLChQtjZmbGq1ev2LlzJ5MnT6ZIkSKYmZlhZmbGUfGIS7FPUIrUa3ziQ6N4vOg4AFZViuL2bUNuDF2HMjyGx38eo8yvGa9TDzzrQ1xgBACF26bfkZSQMJRrv6VoUj/1a9eu4e/vz3fffZet+5PJZPz22294eXnRvXt3qlSpwvbt27M8Gh4TE4OPjw/Gxsa4ublhZ2fHtWvX2LlzJ7179/7sspjdu3fTv39/FAoFBw8epGnTpllkecaxtLSkQ4cOrFy5kjFjxuQapz41OnTowJQpU/jpp5/o0KGDJkMKYNSoUbRu3ZpXr15phA0NDAwICQnBzs4uzXGLFClCrVq1sLe3x9bWFjs7O/T09Dh+/DiXLl2iffv22XpcCoVC46CnRVxcHH5+filOCLx9+5Y7d+7w9u1bTUZCEmZmZp/UE3BwcEhVZHDfvn107NiRL774gl27dmFmZpZlx54RKlVKzH6KiEi8b8bExBAYGMj69euBxAm7pMyOrGL58uWYm5vTuXPnLBtTx6exsrJi//79jBkzhm+//ZY7d+7w559/oq+vz08//cTly5c5fvz4J+9ZQghuPopj1+kIzt+JQQKQEt9d00KlhqdvEnjhl8D+81HM2xJKsy9MaVXblCIFtT/ZrkP7SCIz/Wp05Ah3n8Tx3Sz/T6+YA8gkaFTVhDG9bFJcLoSg1+9+vAnQfsrupxjTy5om1Uzx8fGhQYMG+Pn5aVLSZTIZarUaPT09atasSePGjWncuDEVKlTIN6n56WHWrFn8/PPPxMfH06hRIyRJ4siRRMX2c+fO4evry1dfffXRdsWLF2ft2rUUKFCA4cOHc/LkSaKioihTpgzly5enaNGifP/99+zcuZP+/fvj7OzMjz/+SKVKlViwYAHr16+nTZs2zJ8/P820S5VKlSFHPDg4mE2bNuHu7o6JiclHy5N+/9QwNTXVONxJjvqH///3X1rLk17ulEolJUuWxNPTk82bNyfb3/v377G1tWXevHma9H6AXS8uMNt7W5p1+/cm7CL06jMUZoZU+rMn+tamBJ3z4eEf+xN/o28bYd+4HM9WnyX4gi+qmAQSwhInKAzszJAUMgq1qEihVv8IWd0cvoGoJwFYlHfCfXKHNL+rfzPKvQNtnLOu73pmePHiBS4uLri5ueHq6sqhQ4dybN9Pnz6lffv2PHr0iGXLlmWpQvbs2bPZunUrYWFhdO3alZ49e9K0aVN8fX25fPkynp6emarbj4qKYsSIESxfvpzWrVuzfPnyTzqhOcHp06epW7cup06dok6dOsmWPXjwgDJlynDu3Dlq1KiRygg5z+7du5k9ezb+/v4YGhrSokULJk2ahBCCKlWqcPPmTSpUqMBvv/3Gl19+ma4JmocPH2JoaIixsTFGRkbo6elhaGiIp6cn0dHRnD59WivR7MwQGRmZ4qTAh5kDb9680UzYJfGhyGDSRMDr169Zt24dtWrVYsWKFTg7O2tNZFCtVmNra0tcXBydO3emZMmSPHjwgIMHDxIYGMj8+fMZOnRolk1qx8fH4+TkROfOnZk/f34WHIGOzLBq1SoGDx5M1apVadu2LSNHjgTg8OHDNG7cONXtrj2IYe7mUN4GKpHL+GzNLpkscZKgSmlDRnS1xsFWF9v9L6P79XMx5YoZ8F1nK+ZvCdWqHTIZuDnp812n1NNeb/vG5QlHX5Jgx8kIYv2P06VLl49eINRqNfPnz+err77KknTCvMimTZuYMGEC8fHx1KhRA4VCwbVr14DEF6zY2FjKlCnD9OnTqVOnDoULF+bx48eMHTuW8+fPs3v3bqZOncqaNWv47rvv2LBhA23atGHSpEmafZw+fRqAQoUKERoayvXr1/Hz8wMSJxOuXr1K4cKFP3oRatKkCefOnftk9FxfX/8jJzsprbVMmTJpOur/dtZNTEyyZaJnx44dPH36lL///vujZRYWFtSpU4c9e/Ykc/ZLWTil6ei/O+xN6NVnwP9b61knnsO2NUtgd/kJgace8mzFaSw9nEgIjSbWL3nXjKTofULkP9dF2O2XRD0JAMAxA1H9D23WNknXua+vL/PmzcvRfbu6unLhwgWGDBlCz549uXTpErNnz05TGyQ9HDx4kIkTJ/L+feJvOGnSJGrUqMG0adNo3749u3btypSzf/XqVbp3786bN29YtmwZ/fv3zzVR9Nq1a1O8eHFWrFjxkbOfW2ndujV16tRBqVQihNBMmvTp04ebN2/i6OjI119/TZ06dZDL5ely/kqVKpXi5xYWFly/fh0fHx9sbW2zXKAxOzA1NcXNzQ03N7dU1xFC8P79+1QnAx48eMCuXbsIDU18Vzp9+jRubm4akcG0tASyS2RQJpMxatQopk6dyurVq5Mtq1Chgqa2O6uurV27dhEQEKAT5tMyX331FSVLlqRFixacPXsWSCyxmTFjRorOflSMmiU7Qtl/PkpTnZcV4txJ2QA3H8Xy1UQ/hrSzpGUtU2SfKAHUkT/ROfu5nDZ1zIiKUbNyj3Za2clkUKSgHtO/LYCRYeoPwwt3YrJkNjK7EQJ8XyUwbtssjQMgl8uTRXajo6P/s44+JAoLRUREUL16dVauXEmJEiX4448/+Omnn1AqlQQGBlK/fn3Cw8M5fvw4L1684OnTpzx+/BiAJ0+eEBsbq4k6AcnqN1+/fq1J3b948SIXL17ULDM1NcXIyChZav+HdO/enebNm3/SWU8pNdLDw4OaNWtqBPG0iRCC6dOn06BBg1Trq1u1asXo0aOJiIjQpKK6mjkgl2SoUknjt2/ijn0T9xSXlRzVjJKjmmn+X2JEE0qM+LRavKVHEWruHfHJ9VJCLslwNdO+mFrStV6kSJFsUcj/FEZGRqxatYrq1avz3Xffcf36dbZu3fpZomGBgYG8f/+eSpUq0axZMyZPnszKlStZuXIlMpmM/fv3M3ny5HQ7MSqVimnTpvHbb79RsWJF9u/fn6YDpg0kSaJfv378/vvvLFiwIJkOQm6r2f+Qf+s17N27lw0bNmBgYMCAAQNo2rQpFhYWhIeHp6uF14ULFzhx4gRBQUE8f/5co6ofFRWFQqHQaFTkxu8iM0iShKWlJZaWlhpNgiSEEEyYMIFLly4xYsQIxowZk2r5wPXr19m7d2+KIoMODg6fLB+wtLTM0Hc6dOhQXFxc+PPPP7l58ybVq1enWbNmfPfdd6mWIWSWJUuWUKtWLcqWLZul4+rIOIULF052fqlUKo4dO8bdu3cpV66c5vNbPrFMXhVMaHji+2d2lOyq1KBSC+ZtCeXk9WjG9rGhgLXO9fuvofvF8wDdm1qgryexeHsYOdnRTiYlRvSnf1sAs1Tq9JN4+DwuWx390DcXubUnUc29WvdzGJn/Ey18eWsZwS+OEx32hITY9+gb22FVqBounsMxMi+S4niL/zqAkdqXmzdvcv36dS5fvoy3tzfx8fGcPn2aMWPGZN/BZBNCCGJiYtKd2j59+vSPUkbj4uI0NYbOzs4asbxy5cphYmKiWX7y5Em6detGYGAgkPiylORgR0ZGEhcXh7GxMSYmiWJwHzrv1tbWGtXqcuXK8e2331KuXDkMDQ1JSEjg9evXuLsnOqz/frH6UDwxo7i4uPD8+fNMb5+VnDp1iuvXr3P48OFU12nZsiXDhg3jyJEjmjpcfbkCZ9OCPI3wyylTPwtn0wLoy7X/mElSQO/Ro4fWIp2SJDFo0CAqVqxI+/btqVy5Mps3b06xjVp6qFq1KpB4PU2cOJFNmzaxe/duZs2ahbW1NU+fPiUqKkpzDabFs2fP6NmzJxcvXuSnn35i/PjxubbHeu/evfnll1/YuHFjsqyXvIShoSEGBgbY2dnRsmVLzaTPnDlzGD9+/Ce337x5M3/++WeyzxQKBQqFgm7dumkcivzi7KeGWq1mxIgRzJ8/nylTpvDjjz8iSRIFCxakQoUKqW6nVCrx9/dPVU/gzJkzvH37luDg4GTbfSgyuHjxYkqXLp1m2YWFhQXdu3fXKPF/6OCfO3eOBQsW4OXlxahRoz7re3j48CEnT55kw4YNnzWOjqyhTZs2moyrJGQyGbNmzWLVqlUAnLwWxeRViedXTuly3Xsax9fT3zF7eEGK2OfO+7uO7EH7b2E60kXHBuYUtFYwc30w0XHik4Idn4NMSrz5NPvChK/bW6UZ0QdQqwW+r7XXbu/N3TXERrzB2NIVmdyQ2IhXvPPZTsjrM1TtehKFfnKBHpkMnrxR0bN5RSpWrEjfvn0JDQ1l3LhxLFq0iAcPHuSY7UqlMt3K7elZJ63ac0mSktWeT5gw4SNHQCaTaT4LCQkhJiYGIyMjZDIZUVFRmJub8/TpU7y9vQkMDKR27dqsW7eOoKAgJkyYwO7du4mJiUGpVKKnp6fpI+zv78+LFy/Q19fHwcGBunXrsmTJEt68ecObN28oUKAAAQEBnDlzhoSEhFTTVD8HZ2dnTpw4keXjZobp06fj4eGh6QGdEkWLFsXd3Z09e/YkE92q5+DB84h3qHNs2i9zyJCo65Cz7dlSI0kToVOnTlq2BLy8vLhx4wZdunShYcOGTJs2je+//z7DjlnJkiUZPnw4mzZtYufOnbi6uvL06VMGDx5MREQEzs7O+Pn5Ubx48VTHEEKwfv16vvnmG2xsbDh9+jQ1a9b83EPMVhwcHPjyyy9ZuXJlMmc/N0f2/425uTlyuZyXL19y/PhxnJycmDRpEqtXr06Xs1+lShVMTU0pVaoUxsbGWFhYYG9vT40aNWjbtq3WROlykoSEBPr27cuGDRtYvHgxgwcPTve2CoUCR0fHTwrtxsbG8u7duxT1BA4dOpSuKLpardaIGV6/fp0NGzawadMm/P0T9ZjOnz//2c7+smXLsLW1zXZxRh2fRghBhQoVeP78uaasJEkLas2aNYwfPx4ffzumrQn+xEhZj0oNYZFqhs54x/zv7XFx0Dn8/xV0zn4eonZFY8oXN2Du5hDO3IzJlii/TAIrcxljetlQpXT62iu9DlQSF5+yJRfX1yA24jVFKgxGpYzG33cPkiSnoFsrin3xCzKZArUqjhfXF+L/eDexEW9Q6Jtj41KfYtXGom9kzbOrc3h+ba5mzEsbEl9G7Ut2oHT9WTiU7oJ9iXYYmiU+uH3PT+D1nZXERwcS+vo8dq7JFaSFgEcv44HEF4YlS5bw66+/EhkZiVqt/mhGNvm2qUfPP+WIp7Q8Kd0yNZJqz/8t+GZlZZVMpT09gnHGxsafjGrq6elpoure3t5s3ryZZs2asX37ds064eHhmghFYGAgq1evxtfXV5OOHxMTQ1xcHPBPbenJkycpWrQoFStWZMmSJbRs2ZKff/6ZpUuXJmtLBIkttrKyTVkSSZH9rFT5zwx37tzh0KFDrF+//pN2jBw5ErVanczmFkWqscon9YyA3ETLItW1bQLR0dHs3bsXABublAVGcxo7OzsOHz7Mr7/+yg8//MClS5dYtWpVulK4P6RTp07s27ePkSNHEhERgSRJmmPt2LEjxYsXRwihOX8+PN/CwsIYPHgwW7ZsoWfPnixYsAALi/S1VNQ2/fr1o3Xr1ty8eZOKFSt+eoNcRtWqVdm+fTuDBw9myZIlTJo0ifDwcORyebpS+Zs0acLmzZtxcnLCysoKS0vLZKVn2r7HZTcxMTF07tyZgwcPsmnTpmxTnzc0NMTFxQUXF5dMjyGTyYiMjOTrr7/WKPEDFChQAE9PT8qXL090dHSK7XuFEKhUqjTbKMbExLB69Wr69++fpcr+OjKHJEn89ddfrFy5kidPnnD+/HkuXLjA/v37efPmDcs3XePSay+t2adWQ3ScYORcfxaOttcJ9/1H0P3KeQxLMzm/DbDj1I1oFm8PJTBUpVHd/BwkKbFXZ/MapgxobYmJUfpTXV/6fTqq/+rOSuR6JsgVhsRFveO19ypMrEtSqExXvA8NIuTlSSRJjrF1CWIjXvPu4VbC/W9RpcM+DEzsMbYqTnRoYk24qW0ZZDIDTYq+S+Vvk+3L0sGT13dWAiBLoe2XEPD0TTzLly/nl19+ISAgINny9+/f065duxSd9cjIyAxFzz90tp2dnTOs3v65Il6ZoX79+lSvXp2LFy8ydOhQTeTIxsaG0NBQzMzM6NixI1u3buXBgweMHz+ehg0b8uWXX7Jq1Sr8/PyIj0+cTGnYsCHjxo1jw4YNxMXFYWVlhVqtxsjIiIkTJ1K7dm28vb1Rq9XY2dnh6upKiRIlKFiwYJYfl7OzM1FRUYSEhGjV6Zs5cyZFihRJV5S5T58+JCQkJHtxtzU0p7ZDec6+8061dl/byCUZtezdsTXMmPOaHaxfv15TRpLVdbKfg0KhYOrUqVStWpXevXvj5eXFjh07PqpJTov79+9rtDKScHV1pX379ppuGf928pMYPXo0hw8fZvPmzXmuVVfz5s1xcHBg5cqVmnT2vBTZB2jUqJGmhnzgwIEAGkHFT1GwYEGaN2+e6vK88h1khvfv39OqVSuuXr3K3r17tdoOMr0cOnSIffv2YWBgQI0aNahZsyaVKlWiRIkSODg4YGxsnOoEzYABAzh06FCqWgLXr18nNDSU/v37a+HIdKSGJEkUL16c4sWL07t3bwBe+kUzcFow2m6CplZDeJSa35YHsugHe+Ty/Hu/0JGIztnPo9StZEztCkZcfRDLrlMRXL4XiyQlOu3pdfyTBPUKWMlpW9eMptVNsDDNeF/m2FSi+h9iYGKPZ8cDSHJ9Lm2sTXyUP6FvzmNkWZSQlycBqNBqE5aFqhIX5c+ljbWJDvXF33cXhcp0xcjCRVOzX67JsmQ1+x8i1Cre3t8EgKF5EawKp9yCKTZeMGLEiBSF4NRqNVFRUZroeUbarKUnep7bKVasGOvWrePXX3/l4cOH1K9fn3r16tG7d2/09fUxMjKiUqVKbNmyhSdPnmBtbU3ZsmWxtLRk+PDh2NnZaZx1KysrfvvtN3777bcU99WoUaM0U9mzEmdnZwCeP3+uNWf/5cuXbNq0iZkzZ6a7Jjql9dq51OCU3+2sNi/LUAk17Vy03/5MCMH8+fOpXLky165dy1XOfhJt2rTh6tWrtGvXDi8vL/766690lxvUrVsXCwsLmjRpQp06dfjiiy9wd3f/6B707NkzDh48SLt27bC3tyc+Pp7mzZszbtw4jS5HXkKhUNC7d28WL17MjBkzNEKgeQ1LS0u6du3K9u3bOXbsGL1798bS0jJdkfn8Hr1PiYCAAJo2bcqzZ884evRormqxmBb37t0jLCyMRo0aMWvWLBwcHJI9g1LrmiCEYOLEiRQtWlRTQnDt2jXevn2Lv79/MqexbNmyGpHBtLoPZFRkUEfWoFYLZm+KQKXKHeV3anWiWPWWY+F0a5I3Mrp0ZB6ds5+HkckkqpY1ompZI/yClJy7HY3Py3juP4vHLyj1NngmhhIlnfUp6WxAhRIGVC5l+FntOBKUn7552bo0QmGQGOUzMnMiPsqf+OhAIvxvada5ufvjF9xw/5sUKt0lXXaoEqK5d/RbQl6dRt/YjvLNViKTp5zWplQKnj17xsqVK1mwYAFv377V1FVBYvu5pHrz/xpKpRK1Ws3ChQuxtLQkKiqKlStXEhwcjKWlpaZlULVq1ahWrVqybZNKAP5NUiqxECKZoJEQIlkkS5KkbJssSUrFfPHiRaoK+NnN3LlzMTMzo1+/fp81TgXrYnjaluBG8ONcF92XSzIq2hSngnUxbZvC8ePHuXfvHmPGjMm1zj5AiRIluHz5MgMGDKBz585cvnyZGTNmfPJacHV1xc/PL9lxRURE8OjRIx48eMCZM2cYOnQor1+/ZujQocTGxjJy5Ej09fVp06ZNnn7p79u3L9OmTWPHjh107949z0X2k1AoFOzatYtjx45pxBrTcwx57Tg/l5cvX9KoUSPev3/P6dOnKV++vLZNSjdNmjTh999/x8HBIZka+9WrVzl+/Dg7d+5k9erVlC5dOtl2MpmMwoULM27cuI/GVCqVnDx5ksaNGzNmzBicnZ2TtSQ8ffp0iiKDRkZGabYhTJosSI+wp470s/dcJHcex2nbjI9Ytfc91d2NKFoo57NIdeQcOmc/n+Bgq6Bjg39SZqNi1Dz3SyAmTk18gkAhl9DXk7C3UVDQWp6lLwqKdKQAJTn6AJIs5dPOvMDHtZf6xnbpsiEuOgDvA32JCPTGyMIVjxZrUlXiB5DLJezs7Pjxxx/5/vvv2bVrF7NmzeLSpUtAonr8f9XZV6vVrFy5kj/++INSpUoRGBhIcHAwDg4OdO/eXRNNSXLUk9KEJUlKNdqUWiqxJElpqhlnJTY2NhgbG2uU2XOa0NBQli1bxvDhwz+7taMkSYzx6EyPU3+gUsVnkYVZg55MwU8eXXKFMzJv3jzKly+Ps7Mzcrk8zdpXbWNiYsKGDRuoVq0akyZNYtCgQZQoUeKT28nlcm7duoWPjw+3b9/m/v37PH36lKCgIM1EwA8//ICxsTF37tzRbJcbfp/Pwc3NjTp16rBixQq6d++ubXM+m4YNGwKJ52yLFi0oUqRImtk/SVoeMpksz/+Wn+Lhw4c0atQIPT09zp8/T7Fi2p9IzAjVqlVj4sSJzJw5kx9++EFzzXp7exMcHExcXBzr1q1jypQp6R5ToVCwc+dOHBwcmDhxYqrnyr9FBpMmA5L+bt++zdu3bwkPD0+2nbm5+SdbETo4OOh0AtJBYKiSxdvDtG1GqkxbE8ySH+3z/X3kv0zuffPR8VmYGMko65ozN2HvcF8gc46xWYF/1LqLVPoau6KNAVCrlYS+PoexZeJDXa74J01TrUwuahcV4sOdA18RG/EaCwcv3JsuR8/QMs39Guj9c1NTKBR06NCBDh06cO3aNS5evPhZ/a/zOvr6+jRo0ABvb2/evHmDq6srLVq0oGHDhsleqlNy1HPzw0KSJK2231uyZAlKpZJvv/320yung4JGVgwr24Y/7vydJeNlFcPLtqWAkaW2zeDx48fs37+fFStWJBOVzM1IksR3333H4MGD053hcunSJbp164YkSQQEBGj0MszNzSlcuDDR0dE4OTlx6NAh3NzcstP8HKd///707NmTx48f59nI/r/x8vKiTp06nDp1KsVOCtHR0bx48YLHjx/z4sULnj9/Ts2aNWnTpk3OG5sDXLt2jWbNmlGwYEGOHDmiUbbPa3h6eqJQKJg5c6bmM0NDQ5ycnHBxcdG0o00vERERrFu3jhEjRqQ5KZRekcHIyEj8/Pw+mgx4+/YtL1684OLFi7x584bY2Nhk29nY2KQ6GZD0V7BgwVw90Zrd7DkTiTIdGbDaQPX/dP47vnF4lMj9z0gdmeO/e/XpyBKuB/myM/AAevTI1PZWjtWxdqpDyKvT3D00ING5l2TERbxBpYymQqvNGJk7YWThjCTTQ6gTuLW3G4amhXGqMIACxb7E+9AgYiNeA6BKiOTO/j6a8R1Kd6ZQma7J9imEGmtT5Qf/F3h7e3P8+HGOHj2KXC7PMocsr9KwYUNNpCk/4ezsrJXIfmxsLPPmzaNPnz6fJT6oUqmIi4vDwMCA+Ph4vnSqykm/21wL9NF6Kz4ZElXsStLcSXtKwx+yYMECbGxs6NatG3Pnzs0Tzn4SGRHmLFasGG/evMHExARHR0fc3NyoUKECnp6eVKpUiaJFiwLk+pZ6maF9+/YMHTqUv/76iy5d0lfuldupXr06d+/e/SjS6u/vz5AhQ9i/fz8JCQk0aNAAZ2dnduzYwezZs/n111/5/ffftWR19nDy5ElatWpFuXLl2L9/f57OtitYsCDBwcGYmZlhb2+Pq6srnp6e1KhRg8qVK2Nra5uh8TZt2kR0dHSWCfOZmpri5uaW5oSgEIKwsLCPJgOS/u7fv8+xY8fw8/NDqfznHUuSJAoWLPhJPQFbW9s8r3n0b+ITBHvORqLOnb4+kKjftet0hM7Zz8fonH0dmSZaGcvkWxuRmUYgJBWSyFw6drmmy3h5YxH+j/cQE/4SuZ4JxlbFsS5SBxPrkgDoGVrhVvM3XtxYSFykH/HRgcRHBwIg1P+kMUcG3U82tnWROh/vUKg5fXg1/R6/ISQkhDNnzhASEqKp2U8SctOR/3BxceHChQs5vt9169YREBDwWf2UX7x4wYYNG7hy5Qq3b9/G2dmZESNG8Eujroy6tpwnEX6otVS/L5dkFDNzYGLlXrkishoeHs6qVav47rvvMDQ0JDY2Ns+KuH2KQoUKMX78eIoWLUrVqlUpWbLkR+sEBQVha2uLUqnMVxE2IyMjunfvzurVqzU9xnPD+fe5WFpaatqPJpVGPX36lOvXr5OQkED37t1Zu3YtkiTxzTffUK9ePXbt2sWYMWNSbOGWF9m9ezedO3emdu3a7Nix47NLn7SNh4cHnTt3xtHRkbp16+Lp6Zls4vfatWsEBwfTpEmTT44lhGDJkiV8+eWXFCmSerliViNJElZWVlhZWVG2bNlU11Or1QQFBX00GZCUNXD16tUURQb19PQ0IoNplRBYWFjkmev87K1oIqJzl67Ov1Gp4eytGILfq7CxyJmySh05S/556uvIcRbd30twbDhqmUAyC0IK/zhiWb3H+Y8+q9h6S7L/yxWGFPUaSVGvkWnuz7FsDxzLfpxBkNI+0kKSKVBFPuavvzYl+zxJEdfLK3dEJvMjSW0Lc6pO/984OzuzadOmT6+YhajVambOnEnbtm0znUa9adMmhg0bRlBQkOazFy9ecO7cObZs2cLsloP47sIiXkQF5LjDL5NkOJsWYHa1wRgrckdkYNWqVcTExPD1118DiZkVeSmyn1HGjx+f7P+3bt3i0KFDHDlyhFOnTlGnTh1OnjypJeuyl/79+7No0SLOn8/YcyCvkOTU+Pr68urVK0xNTfn111+RJIn4+HgqVqzIsmXLKFy4cL5x9NesWUO/fv1o27Yt69evzzd14UuXLsXc/B/9ogcPHrB//3527tzJxYsXAdLVevHq1avcvHmTSZMmZZutn4NMJqNAgQIUKFCAChUqpLqeUqnE398/VT2BjIgMppQxkBMig0nCw6llJOw6HYFMIldH9pM4eCGSHs10yvz5EZ2zryNTXA/yZffLi5r/C8t3iAjbTEf3c5o9WxdQr2big+RD1Go127Ztw8PDAy8vL7y8vPD09KRcuXL5KiKmLU6dOsWZM2e0lm7q7OxMWFgY79+/x8IiZx5qe/bswcfHh7Vr16Z7m+joaC5duoSxsTElSpRg+fLlBAUFYW9vT9OmTXFxceHixYscPnyYNWvW0L59e/6s/g0/XFvB/dAXOZbQLwGlLZ2Y4TUQM73cETlXqVQsWLCAjh07aup787uzHxkZyYIFC7h48SKnTp0iMjIy2fLQ0FCAfHkPq1ixIhUrVmTnzp1A/ojsp0T16tVxcnIiJiZGo8uQNGma1Krx6dOnHDx4EBsbG4oUKcIXX3yhNXszy5w5cxg5ciT9+/dnyZIlWpsYzg7Mzc159OgRx44dY8eOHckm4BQKBXZ2drx58wZHR8c0x1myZAnOzs7pygLIzSgUChwdHT95vEkigynpCaRXZDC18oHPFRlcs2YNQ4cOZerUqXz99dfJztf4BMGD5/F5wtFXC7jxKFbn7OdT8t+TX0eOsPjBPmRImjphYfcC6aXHJ7bSPhKJnQvcXKx58OABNWrU4O7du8jlck3UefTo0YSEhHDlyhX++usv1Go1RkZGVKxYMdkEQLFixfLti2V2sW3bNi5duqQ1Z//D9ns50bpJCMEff/xB7dq1qVq1arq3e/ToEYMHD6ZTp0706NGDU6dOYW1tzdy5c2nRogWGhoaEh4fj7u5OqVKlADA3MGFB9W9Y63uMtb5HQZKyLcovk2QgBL3dGtHTrSF6qXTY0AYHDhzgyZMnbNiwQfNZXnb209NPPTY2lp9//lnzfzs7O4oWLYqfnx+vX7+mRYsWxMTE5NtShv79++d7nZUCBQpQuXJldu3axfDhw/nzzz813RrCwsISM3xmz8bX1xdInAj44YcfmDx5sjbNTjdCCH799VcmT57MmDFjmDp1ar58vrZq1UrzGwGUL18eU1NTrl+/jouLC48fP07T+Q0NDWXz5s388ssv+WoiJC3SKzIYERGBn59fihMCz5494/z587x9+zZFkcG0tAQcHR0pUKBAipOlt2/fJjo6mu+++47Vq1ezatUqzbvF0zfxpCNRI12EvrnIrT2JuiTVup/DyNxJsyzs7WVe3FxERMAdEmJDAChRe/JHmbAPTn7Pe7+rxEcFIBDoG9th41yfolVGoGdoic/L+HQ9b3TkPXLPG5qOPMOjsFc8ev8q2WeiwDOEQSTEmSCRu28U7eqZIUkS5ubmXLp0icaNG2tS6GQyGePHj9ekQ0ZFRXHz5k2uXr3KlStX2LNnD3PnzgXAysoKT0/PZBMA9vb22jqsPEFS7bC2SNJjyCln//z581y6dIm9e/dmaDsLCwseP37Mq1evNG2mLC0t6dixo+ZBnJSi6Ovry4MHDyhdujRyZPQr2ZRa9uWYeHMDLyL9szzKLwHOJgX4tWJ33CzSjshog3nz5lG1atVkkyt51dlP74uXra0tHTp0wMDAgEqVKuHm5oaDgwMmJiZMnDiR5cuXU716db788ktUKlW+cxK6devGiBEjiI+Pz7cvqhYWFqxfv54OHTpw6NAhypQpw19//UWfPn04dOgQc+fOxdfXF0dHRwYPHsyyZcuYOnUqYWFhLFiwIFcLn6nVaoYOHcrixYv5448/+OGHH7RtUrbRrl07Vq5cSY8ePahduzbu7u4YGhry/Plz6tatS+/evdPsGLNu3ToSEhLo27dvzhmdRzAzM8PMzCzNlqWpiQwmZQ3cu3ePo0ePfiQyKJPJNCKDH/6dPXtWs87t27epVKkSo0ePZty4cfi8VCJBtmfaRQTeJfT1OQzNimic/ZQIenYUhb4ZxlbFiI8JITb8JW+8VxMT9gyPFmuJjhX4BasoZKtzDfMbkvhQHUOHjnQw7fZmDr2+hupfUUPZY09kPtWRyL0vFXoK2D6tMKbG/9gYExND69atOX78ODVr1uT06dNpjhEUFMS1a9e4cuWKZhIgICAAACcnp2QTAJUrV05Wo/dfp27duhQqVIiNGzdqZf9qtRpjY2NmzJiRI5HAVq1a8eTJE7y9vTP8sl2kSBHMzMy4fv06a9asYezYsXz//ffUrFmTK1eusHr1au7duwfAgAEDWLp0aTIBtgS1ku3Pz7H16RkCYsOQSbJMR/rlkgyVUFPA0JKOrrVp71IzV0Xzk7h79y7u7u5s3LiRrl3/6cLRpUsXgoODOXr0qBatSx9JNaBAhs6ZV68SJ2Dt7OySTWzs2bOHNm3a0Lp1a3bu3JkvnX2AL7/8kgMHDnD16lWqVKmibXOylenTp3P9+nVWrVqFsbExPXr0YOPGjUiShEwmY//+/dSoUYPSpUsjhOD06dO4urpq2+wUiY+Pp3fv3vz9998sXbo0y9TlcyuRkZG8efOGwoULf1RT3r17d44dO8bRo0dTnYxu3rw5pqam/P137mq5mt/4t8hgaiUE7969S3F7Y2Njxs73ZdKIqsRGvKZIhcGolNH4++5BkuQUdGtFsS9+QSZToFbF8eL6Qvwf7yY24g0KfXNsXOpTrNpY9I2seXZ1Ds+vzf1oH/YlO1C6/iwSYkORKYyIjw7k0obErispRfZVyljkH+jq3NjZgffvriLXM6F2/0Rx63H9bKhbOfu1DnTkLLnvbU1HriYiPpojb2585OgDqJ3uIfOtnv3TmJlELoPGVU2SOfqQKPayd+9eOnXqxMGDB9m9ezetW7dOdRxbW1uaNm1K06ZNgcSX81evXnHlyhXNBMCkSZOIjIxEkiRKlSqVbAKgfPny+UZwKKMEBQXlSEQ9NWQyGUWKFMmR9nsPHjxg7969rFq1KlNRtU6dOjF79my+//57qlatSpkyZTSp2kllJ/r6+sTHx2s6DHyYZqgnU9DFtS6ditbmSuAjtj87x6XAB4nbSzLUQiBSuVglJGSSpLnOPW1L0r5oTbzsSiam8OdS5s+fT6FChejQoUOyz2NiYnJ9ZP/mzZtUrFgRSZI00el79+7x/Plzvvzyy09u7+T0T1pnTEwMV69e5cSJE5qJtffv3wPaE8fMblq3bs2BAwe4detWvnf2f/jhB+Lj49HX1+fJkyeazKHOnTtz8OBBmjZtyowZM3B0dOTy5ctcv349Vzr70dHRdOjQgWPHjrFly5aPrtv8iKmpaYodMwCGDRtGv379UlXYF0JQpUoV6tatm40W6oD0iwwWLlyYN2/eAIl6IUlifa6urgSE/ZNl9OrOSuR6JsgVhsRFveO19ypMrEtSqExXvA8NIuTlSSRJjrF1CWIjXvPu4VbC/W9RpcM+DEzsMbYqTnToYwBMbcsgkxlgZJ54nugZWqXrmOQKQ55emUnIq7MkxARpWlZb2Ff5/zHDuxBVhr8rHbkfnbOvI0NcCXpEglqZ8kKDaNRO3sheuufK6L4kQceGKUfZDQwM2LZtG927d6dDhw5s2LBBI3r06XElihQpQpEiRTQvKyqVikePHiWbANi0aRMJCQno6+trBACTJgFKliyZq9Mss4rAwEDs7Oy0aoOzs3OaaZJZxcyZMylUqBDdunXL1Pa9evXiwIEDLFq0iEWLFml6r5uammrEnDw8PGjVqhXVqlVLdRyZJKNagdJUK1Ca0LgIHvy/DOdhWOJfREI0CSLxAa8nyTHTM6aUpROlLJ0oaeFEaUsnrAzMMnUMOUlQUBDr1q3jl19+QU9PL9my2NjYXJtho1Qq6devH+vXr2fbtm20bdsWgEmTJjFu3Djs7Oy4cOGCppwjNYQQTJ8+nfPnz3Pjxo2PxEc7dOig6TiSH6lcuTIAO3fuzPfRYUBzPyhWrBienp5cuHCBESNG8M0339CrVy9Gjx4NJE5Oly5dWpumpkhYWBgtWrTg1q1b7N+/n0aNGmnbpBwl6VpUKpVcunSJCxcuoKenR+XKlTVtF1Oib9++uvbAuQQhhCarE6BChQoMGDCALl26YGVlxTfT/4n6G5jY49nxAJJcn0sbaxMf5U/om/MYWRYl5GWiUGOFVpuwLFSVuCh/Lm2sTXSoL/6+uyhUpitGFi6amv1yTZYlq9nPCDHvnxMRcEvzf6vCNSnbeBGQWKIXn5BLo3U6Pguds68jQzwMe6VJ6U0JdalzyPxdEXEmSMgIfXOBW3u6AQLXqmNwrpTYCkuoVdzY2Z7wgJsYmDri1fkwCTEhPLs6m7C3l4mPCUahb4KxVQmcPPpjV7TxZ9vet6UlRQrqpbpcT0+PjRs30qdPH7p27Up8fDw9enzc6i89yOVyypQpQ5kyZejTpw+Q6HDcuXNHMwFw/PhxFi5cCCTWmlWpUiVZBkDhwoXzVf2pWq0mODhY686+i4sLt27dytZ9vH37lnXr1jF58mTNS3lGKV++POvWraNXr17ExsYSGxuLg4MDbm5ueHl50bZtW1xcXHj58iU7d+6kevXqeHl5pZmmbWVgxhcFy/BFwTLJPk9KG8/L59vy5csRQjBw4MCPlsXGxlKgQAEtWPVprly5wtmzZ6latSoVK1bUOAFJ18n79++5ePEirq6uaf4+kiSxfPlynj59ilwux9zcHBsbG0qWLEmHDh3o06dPvnX0P+T48eOEhYWl6TDlF4QQqNVqqlevzokTJ/j666/ZsWMHZ8+epUuXLty4cYPq1atjZpa7JuvevXtH06ZNefnyJceOHUtzsjK/knQtTp06lbVr1/Lu3TtiY2NRqVQMGjSIUaNGUbx48WTbSJL0SZE6HTlLhw4dKFSoEH369KFcuXLJlilV/zjOti6NUBgkTjgbmTkRH+VPfHQgEf63NOvc3P1xgCnc/yaFSnfJMnvLNvqT0vXnEBXqw4PjIwh9fQ6fs79SpsEcJCm5zTryDzpnX0eGeBj2MlVHHwBFAiqPIyiutAfAyvELCpfvy+s7K3l2dQ42zvUwtSnNi5uLCA+4CUiUrj8LuZ4pV/9uRmzEK2RyA0ys3YgNf8V7v8u897uCZ8cDmNqWSX2/aSCXQbHC+nRs+OkXHoVCwZo1azAwMKBXr17ExcXRr1+/TO333xgaGmoc+STev3/P9evXNRMAGzduZPr06QAULFgwmfifp6cn1tbWWWKLNggLC0OlUmlVoA8SI/u7du3K1n3MmzcPIyOjFB3P9CKEoHLlyty8eZP79++TkJCAnZ0du3bt4tatW/j4+NC/f3+ePn3KiBEj6NSpE5s3b86UQ5eXnXyAhIQEFi5cSPfu3VOcTMrNAn1ffPEFmzZtwtPTk7179zJx4kRWrlzJoEGDOHfuHBs2bOD06dPpmnjs27cva9asoXr16pQqVYry5ctTtmxZTSTwv6C0nJCQwKZNmxgyZIi2Tcl2JElCLpczYcIEnj17xsaNG6lSpQrTpk1j/Pjx7N+/n9q1a+eqSPCzZ89o1KgR0dHRnDlz5iMH6b/EwoUL+f3331Gr1UiShKGhIZIksXTpUoyMjJg9e/ZH2/wXruG8giRJaeoP6ev98zslOfoAUip6N+YFKn48hnHWB0dkcj3MbMtSqHRXfM//hr/PDlwqf4uZtSv6Ct25lR/ROfs60o0QgkfvX396PdtXqJzuIHtVDgkZrlV/IOTVaaJDH3P/+AhK1ZnG82vzAChcvi9WjtWJjfQjNiJRYMrFcwTOFYf8PyugKyCIjfTLpLOf+GD8qbcNcln6bmJyuZzly5djYGBA//79iYuL4+uvv87Evj+NhYUF9evXp379+prP/Pz8NMJ/V65cYdasWYSFhQGJKZsfTgBUrFhR0zkgtxMYGAiQKyL7QUFBREVFfSSQlBWEh4ezZMkSBg8ejIVF5nvWJr3Q6evra2oGk2r4k/D29ubcuXNMmjSJ7du34+fnh4ODw3/uhXDHjh28efOGYcOGpbg8NjY2V7adS/qdqlatyrp16+jduzcymYyKFSsydOhQli9fzunTp9m+fTvLli375G86cOBA2rZti5ubW4ptovLzOZGUnVKzZk1Wrlz5n3D2k5AkifXr11OxYkVmzZpFv379+OOPP/j555+xsbHRtnka7t27R+PGjTEyMuL8+fMULVpU2yZphaSMjIsXL6JWq6lQoQJjx46lWrVqXL9+nW7durF8+XKmT5/+0XWcn6/h/Iap0acn3s0K/NOyukilrzVZrGq1ktDX5zC2TCzfkiv+eX6plTEZtiU84DaqhGisHKsnjqGKJ+T1Oc1yVUI0agHGhvk/++u/iM7Z15FugmLfE6OKT9e66jKnkSKtIbQQcoUhZRrM5fqONkQFP+Dm7k4IdQLGVm64Vk1ssWNgXAAjCxdi3j/n+dU5BDzeS2z4KySZAvsS7bApUjfD9iaJj/3QxwJnh9TT91NCJpOxcOFCDAwM+Oabb4iLi2PEiBEZtiEzODg40KpVK1q1agUkvhg8fvw42QTAzp07iY2NRS6XU65cuWT1/2XLlk3xRV/b5BZnPynK9fLly2ypZV22bBkxMTGpOp6fw86dO4FERea3b99y4cIF7t+/z8CBA/n222/Zs2cPgwYNQq1W51shtpSYN28e9erVS1X8MbdF9pNKLT58cS9RogT169fnzJkzLFy4kAoVKlCzZk3WrFlDgwYNuH37Nh4eHmm+7Nva2moyZ/JDaUZmaNu2LSNGjODWrVtpCmvlR0aNGkXjxo15+PAhlSpVStHR19ZE4OXLl2nevDmFCxfm8OHD/+k2tZIkadr6AsydO5fatWsDiYJvPXr0YPny5Rw/fpwmTZpo01Qdn0FRx0+X8Fk5VsfaqQ4hr05z99CAROdekhEX8QaVMpoKrTZjZO6EkYUzkkwPoU7g1t5uGJoWxqnCAAoU+5LApwd5cnEqQvwjrvfsymxe3VqGecEKlGk4n6gQHx6e/B6FgQWGpo7ERr5FGRcGJAr+mdqWQQhwKZSxd2UdeQPdFI6OdJNeRx8AuQqV526ERQACNWZ27jhXSmx1plbFIUlyyjSYo2kDIsnkVGi1GTM7d9SqOCKD7qGMD0ehb4GpXTkkWcYclyRHX1X+KJXLZe40lySJ2bNn89NPPzFy5EimTp2aqXE+F0mScHNzo1u3bsydO5cLFy4QHh7OjRs3WLRoEVWqVOHSpUsMHjyYChUqYG5uTs2aNRk5ciSbN2/myZMn5IYOm0FBQQBaT+NPqnnMDpG++Ph45syZQ48ePShUqFCWjatSJT7E3dzcABgxYgTz588HYMWKFZrPz5w5A/y3HLz79+9z8eLFNCdXcouznxTRS5qI8fHxITw8HICqVavSu3dvnJ2defToEdOnT+f9+/fUq1ePsWPHcuTIkWR9nz/Fh6r+/wWS7nG1atXC3t6elStXatki7eDu7k7Hjh1TFHRMSEggICBA05khpzh27BgNGjSgdOnSnD59+j/t6Cdhbm6ueUYk3Q+ioqIANBkPSSrvOvImJYqkT6+nXNNluFQehpFFUWLCXxIfHYixVXGcK3+LiXVi5wY9Qyvcav6GgWkh4qODCA+4SXx0YgBFGR9JTPgLjbo+QEJsMDHhL4iL8gfAxLok1k51kMkNiAr1Ra2MwdiqOE4eA6nQajPS/7vslHDKnMaQjtxN7gv/6ci1xKemwp8aigRUVbcjv9YKQgoT8/6ZZpEQKmIjXmNm5/7//6vxOTOWiEBvCrv3xbXqaIJfnuTeka/xPTsOAxN77Iqmb4ZbkKgpoKpwCFHIJ+N2f4AkSUyePBlDQ0PGjh1LbGwsv/32m9ZfovX09KhYsSIVK1bU1IVHRUVx48YNTQbArl27mDNnDgDW1tbJxP88PT0pWLBgjtocGBiIJEla1x0oVKgQCoUiW9rvbdy4kbdv3yZLtc9KBgwYwNmzZ1m8eDEjR47E3t6eVatWaXqsKxSKfK24nhJlypThzp07lC1bNtV1coOz/2E0//79+4wePZqHDx9iZGREq1atmDJlCt26deP+/fssXryYo0ePMnPmTCZOnMikSZPo0qXLR10G0kNSJPfFixfExsam2vYrv6BQKOjTpw9Llixh+vTpubJ8Q1vIZDLatGlDSEgIe/bsyZFzYfv27XTr1o0GDRqwbdu2PFN2lhN06tSJ48ePs3r1amrUqKH5bpo1a0b58uVp3ry5li3U8TmULKJP9R7nP/q8Yustyf4vVxhS1GskRb1GpjmeY9keOJb9WLvFoVRHHEp1THNb8wLl8WixNs11CljJP2pNrSN/oPtVdaQbhZSJtGBFAirPXfhH/om/7y4ADM0KA/Do9FjNzGTo6/MEvzgBgH3J9sj1jClQ7Evk+mb/X37u47FTQKAGowhU1bYhCvlk3u4PkCSJcePGMW3aNCZMmMBPP/2UKyLl/8bExIRatWppIvpPnz4lMDCQAwcOMGzYMBQKBUuWLKFly5bY29vj7OxMhw4dmD59OidPntREGLOLoKAgrKystF5iIJfLKVy4cJZH9tVqNTNnzqRly5aUKZM5McnUSIr8VK9enenTp3P8+HFGjRpFZGQk79+/Z/v27UDiy6NMJkOtTkNEMx9StmzZNCc4coOzn/QbLl26lPLly3Pw4EGCg4O5f/8+06ZNY9GiRcjlcgYMGEC9evVQq9WsW7eOLVsSXwwXL16cof0JIbhw4QJqtZrY2FgmTpxIqVKlGDJkCHFxcVl+fNrmw7KFvn37EhYWpil70ZGIXC5n7dq1yOVyqlatyuHDh7N1fytXrqRTp060a9eOXbt26Rz9f9G5c2fKlSvHjh07uHfvniaIUKZMGZ2jnw+wt5FjYpg3sqtkEpQpqovq51d0zr6OdGMgz1wtT3x4OL67E1vMWRetScW2O9AztCIhNoSHp34EQBn/j6MZEegNQHTYU1TxkQDIFWm/JAjUCARql1soa69DWP/TY1o/k3b/mzFjxjB37lz++OMPhg8fnisd/n9ja2tLs2bNGDduHPv27cPf35/nz5/z999/07lzZ4KCgpgwYQL169fH0tKSsmXL0qdPHxYtWsS1a9eIj89A6cYnCAwM1Hq9fhIuLi5ZHtk/ePAg9+7d44cffsjScZNIOt82btzI+/fvuXz5MpGRkRgaGlKzZk3WrVvHl19+SURExH8qsg988nhjYmK04ux/OOmiUqkYN24cQ4YMwdLSko0bN7JlyxZNyu5PP/3E9evXcXV1ZeDAgZQqVYqXL1+yb98+EhISMiz2eOPGDWrUqMGNGzcwNDRkxYoVLF++nFWrVlG7dm1NNkh+xM3NjTp16rBixQptm5LrcHNz4+LFi9SoUYPmzZsze/bsbHmWzZgxg/79+zNo0CDWr1+f6Rak+Rlzc3N27tzJmzdvKFu2LPfv32fevHmMHTuWQYMGsXTp0jzxnqEjZSRJom5lY+R54HGsFlCnUtYLFuvIHejS+HWkG1tDc+SSLO3Weyngu+AoyvAYFGaGFP+1HHqhz3EL+J37h74j+MUx3j7YjF3RJigMLFDGvefRmbG89l5FbPgrQCDJ9Cjg1irFsYWkQhJyhEUA6tJnkjn5AMYKA0wVWfeSP2zYMAwMDDTRsUWLFuUpx0qSJJydnXF2dqZjx8S0L5VKxcOHD7ly5YqmBGDDhg0olUqNEvyHJQAlSpTI1DHnJmc/qS46K5k+fTrVqlWjRo0aWTpuEiqVCoVCQZ06ddi+fTutW7emRo0aVK1albJly2Jtbc2mTZu4cOECM2fO5N27dzg5OeWp8zM7EEJgaGiY486+EELz3Xt7e+Pu7s7169cxMjLi0qVLGBsb06xZM549e4aZmRkRERF8//33HDhwgGbNmnHt2jWaN2+eaa2Q8uXLY2JiwokTJ/D09ASgf//+VKhQgfbt21OpUiU2b95MgwYNsuyYtcm/BQn79etHr169ePLkSYr16/9lLCws2LNnD2PHjmXUqFF4e3uzZMkSDAwMPntsIQRjx45l2rRp/PLLL0yYMEHrZW+5maRz89q1a4wbN47z588TEREBJHZiuXnzJnPnztV6ZpKOzNG6thn7z0dp24xPYmEqo4aHruQpvyIJ3bShjgzw1ZmZPA5/++kV/8+7w948/vMYACV/aI5drf/XCKoUPJp8hsCrl5HrmVKl00HUqlheXl9ImN9VEmKCUBiYY2pbDpfK32JhXxn4v/CepE508GVKRKEHqJzvgEVgivuvbOPG3OpZ34Jp1apV9OvXj969e7NixYp8p3weGxvL7du3k00AJDnH5ubmVKlSJdkEgKOj4ydf6Jo1a4ahoWGuSK397bffWLZsGW/fpv9cTovLly9TrVo1duzYQdu2bbNkzNSIjY3l3r17FClSBGtra+RyOUIIlEol3bp1Y/v27XTq1ImrV68yc+bMbLcntyOEwNvbm0ePHmkmuLKT+Ph49PT0NNfDyJEjWbVqFStWrKBmzZo8efKE6OhomjdvjlKpZMCAAURFRbFjxw5iY2MZOnQo8+fPJyEhIVM1+h/SvHlzVCrVR+naQUFBdOvWjePHjzN58mTGjBmT5x2ypGvwzp07uLu7Ex0dTaFChfjmm2+YPHmyts3Ltaxfv57+/ftTqVIlduzY8VnieSqViq+//pply5Yxe/bsHOtgk9cRQlC9enWuXLkCJE5YtWzZklevXnHz5k02bNhA165dtWyljszy9R/v8HkZjzqXelsyCXo0M6dPC0ttm6Ijm9BF9nVkiLKWzjyLeJfu6L59E3fsm7h/vECupOS4LygpvoDwAsiCnyGFF6R0oQlIMSmnqwpZQqK6v4V/4l+B56CXeu2pXJJRytIpXXZmlK+++goDAwN69epFXFwca9eu1XotelZiaGhI1apVqVq1quazsLAwrl+/rpkAWL9+PX/88QcA9vb2ydr/ValS5SMhvsDAQCpVqpSjx5Eazs7O+Pn5ERcXlyXRrBkzZlCiRAlNu8TsxNDQkMqVEye/VCoVN27c4PLly9y8eZNTp04hl8v5+++/AdiwYUO+c/Yz2jpMkiTKlSuXremwW7du5c6dO0ycOFGTrvzs2TOuXLnCwoULcXNzw9jYmIIFC6JQKGjXrh1KpZLp06fz/fff06VLF4yNjYmNjeX58+eaLI7PpX79+owbN474+PhkadS2trYcPHiQ8ePH89NPP3H58mVWr16d4VKB3MS/I/vGxsZ069aN1atX8/vvv+er+3NW0qNHD0qUKEGbNm3w9PRk9+7dmbpPx8fH06NHD7Zv386qVavo06dP1hubT7l06RIvXrygdOnSNGzYkAULFlC8eHEmT56Mu7s7K1as0Dn7eZi2dc2YuiZY22akigC+rGmqbTN0ZCO6p5+ODFHCojCqlxezbkAJsAhAbRHwz2cJ+hBrCmq5JoKPIh6MwhPXTycqoaakRfY4+wDdunVDX1+frl27Eh8fz8aNG/N1XaKlpSUNGjRIlvb79u1bTeT/6tWrzJo1i7CwMACKFy+ebAIgICAg16TxJ7Xfe/nypaZtXWbx9fVlx44dLF26NEczPG7dusVvv/3GpUuXCAj45/qRJAkTExNmzJiRbSUF2kSSJIKCgjLcwtHR0TFb7Pn999/5/fffMTc3x8PDgw4dOvD9998ze/ZsXF1dsbe358iRI5o2WzExMbx+ndgi6cyZMxw7dozLly8za9YsHB0ds7Svdv369Rk9ejSXL1+mVq1ayZbJ5XImTZpE1apV6dmzJ56enuzYsYNy5cpl2f61Tf/+/Vm8eDGHDh2iRYsW2jYnW0lISEChUGQqQ8PLy4urV6/Spk0batasyapVq+jcuXO6t4+KiqJdu3acOnWK7du306ZNmwzb8F8mPj4ef39/vLy8GD9+PJs3b2bjxo3MnDkTS0tLfHx8iIiIwMzMTNum6sgE9aoYs+VYOM/9Esht2rmSBB3qm2FnqXMH8zP/7WJOHRmmim2J7N+JXjyYhYBFIMLyHZgHgXHGHH0AGRIeNq7ZY+P/6dChAzt27GDv3r20b9+e2NjYbN1fbqNQoUK0bt2ayZMnc+TIEYKDg3n06BHr16+nefPmPHv2jB9//JEaNWrw6tUr1qxZw6BBg1ixYgV37tzJUN/wrMTZ2RkgS0T6hBB07tyZnj17fvZY6SUmJobp06ezZ88eAgICsLe3p2fPnmzZsoW6desSFRVF06ZNcXd3zzcCT48ePWLgwIE0adKEIUOGMH78eJ4+fZqubZP622cHLi4uODg4EBMTw8yZMwkLC9MIW7569QpbW1sKFCigWd/AwICaNWsCsG/fPo4cOULTpk3p0KFDljr6AB4eHlhZWXHixIlU12nZsiXXrl3TZPNs2rQpS23IKf4d2QeoVKkSFSpUYOXKldoyK8fYunUrAwYMICEhIVPbOzo6cubMGdq2bUuXLl345Zdf0nXNhISE0KhRIy5cuMDBgwd1jn4mqFatGvr6+ty7dw8rKytatGjBu3fvaN26NeHh4VSsWDHPl9n8l1HIJcb2scnoK2y2I5PAwUZB35Z5N6NLR/rQOfs6MkQhExuq2JZAlssfPHJJRh0HD6wNsn8mvGXLluzZs4djx47RunVroqOjs32fuRWZTEaJEiXo3r078+bN48KFC0RERHDuXGLrxGLFinHx4kUGDRqEh4cHFhYW1KpVi1GjRmnaBeaEc1q4cGEkScqS9nuurq5s2rQpRwWUjIyMuH37NgCLFi3C19eXv/76i44dO2paNh05cgQgXzj7Dx8+pFWrVqxYsYKjR4+yfft2du7cyfPnz7l79+4nW8kJIbK0swT8o7Tfu3dvevTogYGBAVeuXOHXX39l/vz5VKxYUeN4XbhwQbOdnZ0dw4YNY9KkSbRs2ZIpU6awadMmzM3Ns9Q+SIze161bN01nHxKzcC5dukS7du3o1q0bw4cPz7TTmNvo378/e/fu5d27d9o2JVtxdHRk5cqVPHnyJNNjGBkZsX79eqZNm8aUKVNo166dRiwuJfz8/KhTpw4+Pj6cOHGC+vXrZ3rf/2UMDAzo2LEjT58+5ejRo3Tu3Bl9fX327t2LWq2mWrVqmJrq0qzzMq6O+vT60iJXOfwC+KmPDQb6Olcwv6P7hXVkmPYuNVHncgdCJdS0c8m5FOYmTZpw4MABzp07R4sWLYiMjMyxfed29PT0cHJKLKf46aefuHPnDu/fv+f06dNMmDCBQoUKsXPnTrp27UqxYsWws7OjWbNmjB8/XtMuMKvR19fH0dExSyL7OV0LnJQNkZSWbWhoiImJiSby06ZNG6ZPn65Jx84PavxTp07F19eXX375hfbt2wNQvXp14uPjGTduHG/evElze4VCkaWTHv/WDWjbti3ly5dHJpOxfv16tm3bxrZt2wC4efMm27ZtS3auVapUibFjx7Jp0yZ+/PHHLLMrJerXr8/Fixc/OQlpbGzM2rVr+fPPP1m4cCH16tXDz88vW23LSlKK7ENiuZVCoWDt2rXaMCvHyKpsJUmSGDNmDHv27OHEiRN88cUXPHv27KP1njx5Qo0aNQgNDeXs2bOajg86MsegQYMwNjZm0KBBKBQKSpUqhZubG5MnT2bs2LHaNk9HFtC1sTnFnfRyTSu+zo3MKev6+ZpFOnI/OjV+HRlGJdR0ODaBoLhwbZuSIhLgZGLH+ro/5njq27lz52jevDnly5dn//79eVrwKiu5fv06VapU4dq1axpxuX8TGBjI1atXNRoAV65cISgoCEh8kU2q/ff09KRy5cqfXb9Ys2ZNihYtyrp16z5rnJxGpVIhl8s5ffo0ffv25ddff6VPnz5EREQQFhaGpaUl+vr6WSI8mBsICwvDyckJOzs7nj59So0aNbh48SKPHz/GxsYGCwsL1Gq1ViY1zpw5w1dffYVMJsPPz4/o6GgkScLNzY3jx49z+PBh+vfvj4WFBVOnTqVHjx6YmprmqL3379+nbNmyHDlyhEaNGqVrmwsXLtCxY0dUKhVXr17VTNblZi5cuECNGjW4d+8eZcqUSbasR48eXL16lYcPH+bbdOiEhAQMDQ1ZvHgxAwcOzJIx79+/T6tWrQgLC2Pbtm3UrVsXgDt37tCkSRPMzMw4evSoZqJBx+exePFiTp8+zbhx47h+/TrW1tbUqlULc3PzDAuT6sidhEaoGDrjHQEhKlRaqt+XJKhbyZifv7JBJtOdU/8Fcsn8ko68hFyS0dOtobbNSBUB9HZrrJUHY82aNTl27Bj37t2jUaNGhIaG5rgNuZHAwMTWiGkJ9NnZ2dG8eXPGjx/P/v37CQgI4NmzZ2zZsoWOHTsSEBDA77//Tr169bCwsKBcuXJ89dVXLF68mGvXrmU4TdvFxSXTUTBtzpEmiQDWqVOHzZs30717d4KCgliwYAH9+vWjRIkSVK5cmQ0bNmhScPPynO7du3dRq9WULFmS8+fPc/HiRVq3bo2rqysmJiaAdrIXfHx86Nq1K8+ePaN27dpcuXKFwYMHo1Ao8PHxYdiwYfTt25d27drx/v17/vjjDy5dupTj9pYuXZqCBQty/PjxdG/zxRdfcOPGDQYOHJgnHH1IPbIP0K9fP3x8fDTlRPkRPT29LMtWSqJMmTJcvnwZDw8PGjVqxJIlS7hw4QJ16tTB3t6ec+fO6Rz9LGTgwIGsXLmS0qVL07NnT7788ktNeY/O0c8fWJnJmTO8IHZWcq1E+CWgRnkjfuqjc/T/S+gi+zoyhVqo+ebCnzwIe5nuNnw5gVySUcW2BDO8Bmj14Xjjxg0aN26Mk5MTR48ezbByeH5j/fr19OzZk6ioKIyNjTM9jkql4sGDBxr1/ytXrmiE/vT19alYsaImA8DLyws3N7dUHauff/6Z9evXf9bLcW6Itvj6+tKhQwe8vb2TfW5oaMjvv//O6NGjNdkAeZHIyEi8vLx4+PAhTk5OvHr1in379mm0CbRFUhaPqakpO3bsoFq1asTHx9OlSxd27dqFqakpU6ZMoXfv3prJqTNnzmBpaZnjtnbr1o3Hjx9r+ninFyEEQog0JydywzUAcP78eWrWrMn9+/cpXbp0smVqtZoSJUpQo0YN1qxZoyULs59atWrh7OzM+vXrs3TchIQERo0axYIFC1AoFFSrVo19+/bpMtd06MgkIeEqRs8P4LlfAjnphTWpZsL33a2Ry7V/z9aRc+gi+zoyhUyS8XOFrsik3HMKSYCBTI8fPTpr/eWzUqVKnDx5krdv31K3bt1sqTvPSwQGBmJsbPxZjj4kRrXLlStH3759Wbx4MdevXyc8PJyLFy8yY8YM3NzcOHLkCL169aJUqVJYWVnRsGFDfvrpJ3bu3JmsttvZ2ZnXr1+nKUT2oRq1t7c3mzZtYvbs2Rw6dAjQbrQlaZ721atXGBgYULhwYczNzbG1tWXt2rUolUpmzpwJkGcdfUjUV2jYMDGT6NWrVwA8ePAAlUqlTbOIiYkhMjKS4OBg3rx5Q1xcHPr6+nz33XcAxMbG8v333/P48WOePXvGnTt3tOLoQ2Ld/vXr1zVtMdOLJElpOvrLli3jl19+YdGiRZ9p4eeTVmRfJpPRt29ftm7dyvv373PatBzD2dk5SyP7Sejp6VGjRg3kcjkqlQpJkvKNgKMOHdrA2lzOoh8K0rGBGZKUqIyfXchkYGwo8VNvG37oqXP0/4vkHk9NR56jsIkdQ0rlnt7FAhjh3g5bw9wRbXB3d+f06dOEhIRQp06dT4qI5WeCgoLSTOH/HIyMjKhWrRrfffcd69at49GjR4SGhnL06FHGjBmDmZkZa9eupV27dhQuXJhChQrRpk0bLly4gFqtxtfXN9WxkxydX3/9lebNm9O9e3d+/fVXBg4cyMKFCwkJCcm2lm6fQpIkhBDUrVuXK1eu8Pz5c65du8b48eNp06YNv/zyC0FBQZw5cwZAa3Z+Dmq1Gn19febPn8+kSZOoUKECcrmchIQErTv7NWvWpFatWiQkJDBt2jRNd4SbN29iaGiIUqmkSJEimJiYaD3VuUGDBqjVas25kBWsWLGCwYMHM3XqVIYOHUqzZs0ICQnJsvGzmj59+hAXF5dnWwumB2dn5yzpMPJvli5dSteuXenSpQvHjh3jwYMHeHl5cffu3Szfl45/0E2o5G8M9GUMbmfF/FEFsbdRkNWxg6QJBK8yhqwZX4hGVU20HgjToR10afw6Pgu1UDP19mYOv76Gtk+kDi61+K5sm1x3M3v8+DH169dHT0+PEydOaP3FXxsMHDiQGzducO3aNa3Z8ObNG03q/9WrV7l8+TIRERHMnTuXb7755iNV/aTU93PnzlG7dm0KFChAwYIF8fb2xsXFhUWLFnH27Fnq1auniTznBuLj49HX1wcgKiqKsLAwHB0dc026dXp5+PAhQ4cOpWrVqvz+++9ER0dz48YNgoODKVGiBGXLltVqpwEhBBs3bmTYsGGEhIRQrlw5rK2tuXTpEoMHD6Z69ep07txZa/b9m6JFi9K6dWvmzp372WOp1Wo8PT25efMmY8aM4c6dOxw8eJBKlSqxbt26j9Loc4KzZ89Su3ZtHj58SMmSJVNcp2XLlrx7946rV6/msHU5w/Llyxk8eDCxsbHo6el99nhCCKZNm8bYsWP59ttvmTt3LjKZjOfPn9O6dWuePn3Khg0baNWqVRZYrwPQiHeqVCo2b95MxYoVPxKc1JH/iItXs/N0JDtPRRAYqkImg8zOz8tloFJDWVd9OjYwp1YFozz17NeR9egi+zo+C5kkY0z5ztSyd9dq/9BmhT35tmzrXHlDK168OGfOnEEIQe3atT+rD3JeJTAwMNsi++nF0dGRNm3aMGXKFI4ePYqfnx/W1tZ8/fXXKbbPS3Ikk1Lhd+7cyZgxYwDo1KkTpUuXZurUqRw/flzrUeYPSXL0AUxMTChUqBCQ9wSeJk+ezIkTJ3j//j0qlQpzc3Pq1q1L+/btcXd314qj/+HcuCRJdOjQgYkTJwKJQoJnzpzB1NSUPn365CpHHxJT+U+cOPHZ48TExCCTyejfvz96enoUKlSI/fv3891333Hjxg2WLl2aq66HD+nfvz/Xrl3TZGHkN5ydnVGr1bx+/fqzxxJCMHr0aMaOHcv48eOZN2+e5ppzcXHh/PnzNGrUSHNP1cWNPp8PRWYlSeKHH35g8eLFWrRIR05hoC+jSyNzNk0sxNRv7PAsbahZJvtEmr9chub920BP4ssapqz42Z4F39tTu6Jxnnv268h6crZBtI58iUIm5/dKvZh6ezNH3lzP8f23c67BsHJtc5V+wL9xcXHhzJkzNGjQgDp16nD8+PFUo0/5kaCgIFxcXLRtRjJMTEwYPXp0qvXskiQRGBjI3bt3sba2pmTJkvTp0we5XM6QIUM4evQokNhFQC6X59rIeW606VP4+fmxYcMGSpQowbx585DL5SiVSlQqFT/++CNDhw6lWLFinxwnMjJSk6GhUCiQy+XI5fJMTRRcvnwZNzc3LCwsNOeMgYEBQ4YMwc3NjefPn/PmzRuGDx+eK4XL6tevz19//UVAQAAFChTI1BgqlYrRo0fTpEkTevbsydGjRxk2bBjx8fFMmjSJ9+/f06VLF61cD2nV7CfRvHlzChYsyMqVK5k/f35OmZZjJGWNvXjxgqJFi2Z6HKVSyaBBg/jrr7+YN2+eRofiQ0xNTdm2bRu///47P//8M97e3qxcufKzdVn+iyiVSgYPHoyrqytjx44FEiebO3fuzMaNG5k7d26e1l3RkX5kMomqZY2oWtaI8CgVvq8S8HkZz6MXcTx6EU9UrJqEBJBkoKeQsDGXU6aoPm5F9ClRRJ9ijvro6+W9Z76O7EXn7OvIEhQyOT9X6IqrmT3LHx0EyFaVfrkkQy7J+KZMK9o618gTDk3hwoU5ffp0Moe/bNmy2jYrRwgMDMTT01PbZnzEkCFDUnX8hBDo6enh5OREQEAAo0ePxtfXl969e1OkSBEWLlwIQJs2bTTr54XzMC+wb98+AMqWLYtcLicuLg4DAwPkcjnr1q2jfv36uLq6pvp9x8TEsGvXLk6ePImfnx+SJKGnp4eBgQGRkZEsXrwYR0fHdNmSkJDAhAkTmDJlCiNGjNBkenxIbirjSI169eoBcOrUKTp16pSpMby9vVm6dCnbt2/n8OHD/P3339SoUYMZM2bg4eHBqlWr2L9/PyNGjCAoKIgCBQowdOjQz3I8sxI9PT369OnDsmXLmD59OoaGhp/eKA9RpEgRgM8S6YuNjaVbt27s2bOHdevW0aNHj1TXlclk/P7775QrV47evXvj6+vLrl27KFy4cKb3/1/kr7/+YtWqVR/pLXTp0oU5c+Zw+vRp6tevrx3jdGgNcxM5lUvJqVwqf92ndOQ8uTcUqiPPIZNkdC/egFW1v6eYeaFs3VdZS2fW1RlDO5eaecrBsre359SpU9jb21O3bl1u3bqlbZNyhNyQxp8SST2MU0KSJCwtLXF3dycyMpJVq1ahr69PQkICX331Fbdv36Zt27a4urpq6iz/jVqtRqlUZpv9arVa0x4tP2Fubo6hoSH37t3j8uXLGBgYALBlyxZCQkKws7NL8bpP+h5mzpxJ9+7dWbFiBfv372ffvn3s3LmTLVu2sG/fPqKjo9Nlh6+vLzVr1mTq1Kn8/vvvTJs2LesOMocpVKgQpUqV+qxUfg8PD3755Rf8/f1p0qQJGzZsoHDhwgQEBODj48Pu3btp2bIl8+bNY8OGDcyZMwcPDw92796dhUeSMumJ7AP07duX0NBQdu7cme025TRGRkYUKFAg085+REQEX375JQcPHmTnzp1pOvof0rFjR86fP09AQACenp5cunQpU/v/LyKEYMmSJbRo0QInJ6dkyzw9PSlatCibN2/WknU6dOjID+gE+nRkC0q1ir+fnWad7zEilbHIkFB/hoRf0vYW+ib0LdGENs5f5Oq0/U8REhJCkyZNePz4MUeOHMmVUe+sQqlUoq+vz9KlSxkwYIC2zUlGStF4pVKJQqHg1KlTFClSBEtLS4YOHcquXbuIjY3VrFe+fHnWr19PuXLl0uxjX79+fU1mg5eXF56enri7uyerrc+IrUmK59bW1qmuq1arkSQpT02EfYiPjw+lSpUCEo+zcePGODs7s2rVKgICAggICMDW1vaj7ZImXcqUKcPDhw9xc3PD1tYWIQTx8fGoVCr8/Py4efMmDg4Oqe5fCMHKlSsZPnw4Dg4ObNiwAS8vr2w73pzim2++4ejRo/j4+HzWOHPnzmXkyJGa/xcrVow+ffowc+ZM3r9/j7u7O7Vq1cLQ0JDZs2ejp6fH9u3badEi+7q3nD59mrp16+Lj44Obm1ua69apUweFQsHx48ezzR5t4eXlhbu7OytXrszQdsHBwTRr1oxHjx6xd+9eateuneF9+/v7065dO65du8by5cvp1atXhsf4r3HlyhWqVq3KgQMHaNas2UfLf/rpJ5YtW4afn1+Gnxk6dOjQAbo0fh3ZhEImp1ux+rR3qcVJv9vseH6OB2Evkf1fRiQ9jv+H65azLkp7l5rUsi+Hnizvn7bW1tYcO3aMZs2a0aBBAw4ePEiNGjW0bVa2EBISghAiV0b2/+0MJyQkoKenR3R0NN27d6d27dqsWrWKOXPm0KBBAy5evIi3tzf16tWjR48elCtXDki5j70QgpiYGLp3767pArBu3TqUSiUGBgZUrFgx2QSAm5tbmrXkkiRx/vx5Zs+ezd69e7G3t2fx4sVYWFggSRIVKlTAxMQEINk4SdH/vFLzeebMGSpUqMD8+fP5448/ePfunSayZWRkRIcOHVJ09OGf39PIyAg9PT1u3Lih+U7SixCCdu3asWvXLvr378+cOXMwNTX9vIPKJdSvX59Fixbx6tWrj6KIGWH48OF4enoyb948YmNjqVmzJleuXOH9+/cUL16csWPHagQK4+Pj+fPPPzl8+HC2OvvpjewD9OvXj969e/P06VNcXV2zzSZt4OLikuH2e69fv6Zx48YEBQVx8uRJKlWqlKl9FyxYkBMnTvD111/Tu3dvvL29mTZtWp6592iDJUuW4OLiQuPGjVNc3qVLF6ZNm8axY8do3rx5DlunQ4eO/EDe95p05GoM5Ho0LVyFpoWr4PP+NVcCH/Ew7BX3w14QGPs+1e0KGllR1tKZkpaFqV6gDEXN7HPQ6pzBwsKCw4cP07JlS5o0acK+ffuoW7euts3KcoKCggBSddByE8OHD8fd3Z3nz5/j5+eHi4sLhoaGGBoa0qdPH/r165fusSRJwtjYmH79+mm2i4mJ4datW5r2f4cOHWLBggVA4vlQtWpV9u/fn2J3gKCgILp3787Lly81ExIDBw5ET0+Ply9f4uzszO3bt3nw4AEBAQEULVqUUqVKJRvrw+yADRs2IJPJ6NKlCzY2Np/5zWUNJ0+epGPHjgwdOpRhw4Yhl8vZtWsXERERBAUFMXjw4DTrzZMcvXbt2vH8+XN8fX0pWbIkMplMI8z3qYyHuLg4zp49y44dO2jbtm2WH6M2Sbq/nDx58rOjrjVq1KBKlSoa8cMRI0YAidokSRoGERERml7h9+7dIyQkJM2MlJyiQ4cOfPvtt/z1119MmjRJ2+ZkKc7Ozty4cSPd6/v6+tKoUSOEEJw7d44SJUp81v4NDAxYsWIF5cuXZ+TIkdy9e5fNmzfnStFKbRMaGsrmzZv59ddfU50QKV++PKVKlWLLli06Z1+HDh2ZQufs68gxSlgUpoTFP8I97+OjeB0VSJwqgQS1Ej2ZAgO5PkVMC2CmZ6RFS3MOMzMzDhw4QJs2bWjWrBm7d+9OdYY/rxIYGAiQKyP7H/L8+XNNmyOFQoGpqSl16tQB/knt9/Hx4cqVK3h5eWXqpdjIyIjq1atTvXp1zWehoaFcu3aNK1euEBAQkKKjL4Rg+/btvHz5EltbW3777Te6d+/OjBkzmDJlCvr6+pQuXRpzc3MGDhyIt7c3kJhxUKtWLXr16kWfPn00Tq4QgsmTJxMQEICDgwPt2rVLsxQhpzh48CAhISGULFkSKysrhgwZQu/evfHz80uX+n4ScXFxREdH06ZNGzp16oS9vT16enro6elp2sallkWhVCq5c+eOpmVhfsLGxoYKFSpw4sSJLEmxTtJSADSp88bGxprJo5s3b3Lx4kXN50mOfqdOnfDw8ODnn3/+bBuSyEhk39jYmG7durF69Wp+++23FK+5vIqzszOvXr1KVUfkQ27dukWTJk2wtrbmyJEjn5Xt8SGSJDFs2DBKly5N586dqVq1Knv27PnsiYT8xq5du0hISKBv376priNJEl26dGHWrFksXbo034lK6tChIwcQOnTo0DoxMTGiefPmQl9fX+zdu1fb5mQpW7duFYAIDg7Wtilp8vDhQ/HDDz+IggULCgMDAyFJkjAzMxNDhw4VN27cEEII0bNnTyFJkjh8+HC22aFWqz/6LCYmRvTv319IkiRatGghwsLChBBCnD9/XkiSJAwNDcXIkSOFEELMnDlTTJo0SfTt21e4uroKSZJE0aJFxYEDB4RarRbjx48XpUqVEgYGBkKhUIjTp0+nun+lUimUSmWKNmU1UVFRYvbs2cLS0lJzriiVykyNJUlSmn8qlSrVbXPiWLXJyJEjhZOTU5Yfp7e3t3BxcRGSJInOnTuLb7/9VlStWlVIkiRsbGzEmTNnhBCJ52fS77Bv374s2/+JEycEIJ48eZKu9a9duyaALLUhN7Bnzx4BiDdv3qS53pkzZ4S5ubmoUqWKCAwMzDZ7Hj16JEqWLCksLS2z9b6Z11Cr1UKlUmmeLWnx4MEDAYgdO3bkgGU6dOjIb+icfR06cglxcXGibdu2Qk9PT2zfvl3b5mQZixcvFnK5PE0HK7egVCpFsWLFhCRJGkc56a9JkyZCkiRhYWGR43apVCrRuHFjIUmS+O6770RsbKwQQoh169YJIyMjYWRkJNatWyeEEOLo0aPi+vXrIiIiQgQHB4sePXoISZJE27ZthRBCjBo1SkiSJPT09DTHVqBAAbFo0SLN/hISEnL8GHv37q2ZZBk9erTw9/fP0PYfOq/VqlUTHh4eolSpUsLV1VU4OjoKW1tbYWZmJgwNDbPa9DzFvn37BCB8fX2zfOx79+6JUqVKfTS58ueffwohEh3ypM+GDBki7t69m2X7Pn78eIacfbVaLTw8PDTXRX7h9u3bAhAXLlxIdZ19+/YJQ0NDUa9ePREeHp7tNoWFhYmmTZsKmUwm5s6dm+8n1DJCep+LHh4eolOnTtlsjQ4dOvIj+Sd3TYeOPI6+vj5btmyhV69edOrUifXr19OlSxdtm/XZBAYGYmNj88mU0tzA+/fvad++PXp6evTt25eDBw+yadMmLly4wJEjRwAYN24c8E9qf07w4Xf34MEDIiMjMTAwYOfOncTGxuLk5ISNjQ3ffvstq1evJioqCkhMV04Sl0uqmf3555/x8/Nj06ZNlCpViqJFi/Lu3TuMjBJLZ06fPs3GjRu5c+cOhQsXpkmTJjRv3jxb09oTEhLYvn078fHxQGLf6aioKFq3bk3FihWxtrb+ZInBh+nbSanjOj6mVq1ayOVyjh8/TvHixbN07DJlynDr1i1mzZrF69evMTAwoGbNmrRv356AgAA6dOgAQPPmzenZsydly5YFElsllilTJktqktPbgUKSJPr378+IESPw9/enYMGCn73v3ICzszMAL168SFYulMTGjRvp3bs3X375JZs3b86RtHALCwv27dvHjz/+yPDhw7lz5w6LFi1KVgbyXyW9z8UuXbowceJEoqKiMiw6qkOHjv842p5t0KFDR3KUSqXo3bu3kMlkYvXq1do257P59ttvRdmyZbVtxidJKdoUHx8vXr58KXbt2iWGDBkili9fLuLj41NdPzvZt2+fsLCwEJIkifLly4ty5coJhUIhJEkSnp6eYt68ecLOzk5IkiQ6duwo2rdvL0qUKKGJlk+cOFGoVCoREhIimjZtKiRJEnPnzhVCCBEaGirUarX466+/NOt/+Ne3b18RFRWVrcd39+5d8csvvwgnJyfNfg0MDET79u3FihUrNNkMKaFSqcTFixfF06dPNWM9efJEvHz5Urx7904EBweL8PBwERMTk+nSgPxEtWrVcjxK2KZNG825u2vXLs11tHPnTmFpaSkkSRJr167N9PjHjh0TgOYcSA8hISHCwMBATJ8+PdP7zY1YWlqKqVOnfvT5n3/+KSRJEn369NFK9o4QQqxevVro6+uLGjVqiHfv3mnFhrzI06dPBSA2bdqkbVN06NCRx9A5+zp05EJUKpUYMGCAAMTSpUu1bc5n0bVrV1GnTh1tm5EqSWmUwcHBYseOHaJNmzZiypQp4uLFi+L9+/dati4RtVotYmNjxaJFi0SZMmVEqVKlRP/+/YWrq6uQyWSidevWYvfu3RoH+fz580KpVIp58+ZpnPekes979+6JwoULf1Qz/fz5c+Hu7q5JsX79+rV49eqVqF27tpAkScyZM0djS1bz6tUrzb9DQkLE8uXLRfXq1TVOv7Ozc5rbBwcHC319fdGvXz8RExMjLCwsRLFixYSbm5soXbq0cHd3F5UqVRKVKlUSzZs3z3L78xpjx44VdnZ22Vpak3SeqNVqcffuXeHo6CgMDAzE1KlTNZoMN2/eFJUrVxYKhUK4u7uLv//+O9P7S3L2nz17lqHtunXrJkqUKJGvUss9PDzE4MGDNf9Xq9ViwoQJAhAjRozQeknVxYsXhb29vXByckpXzbqORLy8vETr1q21bYYOHTryGDpnX4eOXIparRbffvutAMS8efO0bU6madiwoejQoYO2zUiVpBffESNGCDMzM42DaWFhIXr37i0OHDgg3r17p7VImBBCPH78WMydO1fcunVL89nff/8tZDKZMDY2Fn/88YeIiooSXl5eyRxkGxsbIUmSKFiwoLh586YQIrG2Oalm/+3bt5rxduzYockckCRJVKhQQfz444+iUqVKQpIk0a1bt2yZ/Dh06JCoWLGimDp1qrh27Zrmc7VaLQ4fPiwaNmwoVqxYkeYYb9++FZIkiYEDB4rw8HCNuKKhoaHQ19cXenp6Go2CwoULZ/kx5DWS6tvv3LmTI/t79+6dRgMjafIyJCREtGjRQkiSJJycnMSCBQuEEIlilL179xbnzp3L0D5evXol9PX1M+zsJ30XZ8+ezdB2uZlWrVqJZs2aCSES72/Dhg0TgJg0aVKumdR49eqVqFy5sjA2Nv6sSZ7/ErNnzxb6+voiNDRU26bo0KEjD6Gr2dehI5ciSRLz5s3DwMCAYcOGERcXx+jRo7VtVoYJCgrK8trgrCKpPZWPjw9z585FT0+P3r178/fffxMeHs7atWvZtm0bXl5eTJ06lapVq2rFzpiYGBYvXsyIESOoUaMGQgiePn2KEIKaNWvSsGFDjI2NWbp0KTt27MDHx4caNWpw584dVq5cibm5uaYdWnh4OACOjo68efMGBwcHILF2NDw8HENDQ0qXLs2jR4+4ffu2Zpmfn5+mrj8rmTFjBrdu3eLFixds27aNWrVq0aRJE2rVqkXjxo3T1YrS3NycRYsWUbZsWfT19ZkwYQJ6enrExsaSkJBAfHw8SqWSyMhIbG1ts/wY8hrVq1fHwMCAEydO4O7unu37K1iwIF27dmXKlCnMmjWLc+fOadpYWlhY0KlTJ/r16wckamKsXbuWDRs28PjxY00N+qdwdHTkwoULGdbRqFu3Lq6urqxYsYKaNWtm+NhyI87Ozhw/fpyEhAT69+/PunXrWLRoEUOGDNG2aRoKFy7M2bNn6du3L506dWLcuHGMHz8+T2i7ZAZ/f39iYmLw8/OjZMmSmjaUGaFTp06MGjWK3bt307t372ywUocOHfkSbc826NChI23UarX45ZdfBCAmTJigbXMyjKOjo/j111+1bUaKJEX1Bw0aJCRJEuvWrRM7d+4UkiQJDw8PUbRoUU2k29vbW2t2RkdHix07doi2bdsKOzs7IZfLhYuLi+jWrVuaabDBwcFi+fLlYuPGjZqa+ytXriQ7rp49ewp/f39x+vRpTZT12LFjIjY2Vly+fFnMmTNHtGvXTvz4449CiI/T+K9evfrJNl+poVQqxZw5c0Tjxo2FlZWVpo1gmTJlRO/evcWSJUtyTSlFfqNevXqiVatWObrPjRs3ip9++kkULFhQSJIkTExMRKdOnTR19qtXrxaSJAm5XC5sbGzEkCFDxJQpU9I9fnx8fKY0GSZNmiSMjY01LS3zOjNnzhQmJiaiRYsWQqFQiI0bN2rbpFRRq9ViypQpQpIk0a5dOxEREaFtk7IUpVIpVq9eLZydnYWdnZ0oU6aM6N69u7h3716mztXatWuLpk2bZoOlOnToyK/onH0dOvIIEydOFID4+eefc00q5qdQq9VCX19fzJ8/X9umpEpoaKhwdHQUDg4OyVrcHTp0SPTt21e4u7uL8ePHCyHS3yYpuwkMDBT37t376HOVSiUSEhLStDMhIUEcPXpU9OvXTxQqVEi0aNFCPH36VERFRYmePXtqUt1Hjhwp1q1bJ7Zv3y4OHjyYrK7+Q1xdXQUgHB0dRdu2bcWUKVPEsWPHNAJs6SEuLk7s2rVLdOvWTRgaGgpJkoRMJhOWlpYiJCQkXWOoVCrNdZGQkCAeP34srl27Js6cOSMuX74sbt26Jby9vVM9jv8aEydOFObm5jlenhIcHKy5xurWrSvOnDkjhBDi0qVLGqE+FxcXUa1aNU0ZyrBhw0R0dHS6xs/MvfH169fC0tJSnD59OsPb5kbWrFkjAGFoaCj279+vbXPSxe7du4WpqakoX758hksxcjMbN24UkiQJY2NjzQRrvXr1xLFjx8Ts2bNFUFBQhsZbtGiRkMvlIjAwMJss1qFDR35D5+zr0JGHmDFjhgDEqFGj8oTDHx4eLoBcHVk6d+6cMDAwEP369RPv3r0TkiSJ0qVLCyESoyjdu3fXRMVzi7OfXtRq9SejR0qlUrOOr6+vphPEh2r8nTt3TlE5W61Wi1evXont27eLMWPGiPr16wszMzPh6ur6ye8qPj5eXL9+/aNo6v79+4WVlZXQ09MTvXr1yuARJ7J3715RoECBj7oKSJIkqlWrlqkx8xvnz58XgLhy5UqO7zsyMlL0799fLFu2TAghhL+/v/D09NT8PocPHxZCJIpGDhgwQPz111/ZblNcXFyeuKd+ioCAAFGyZEkBfFLrIrfh7e0tihYtKmxtbTWTQHkdDw8PIUmSuHLliujUqZOQJEls3LhRrFixQkiSJPbs2ZOh8fz9/YVMJhNLlizJJot16NCR39A5+zp05DEWLFggAPHNN9/keufzyZMnAhBHjx7VtinJ+PdL/b59+8TRo0fFnj17hL6+vrCxsREDBw4UkiSJFi1aaMnK7EOpVH6UAfDhdxIWFiZOnTolli1bJlasWCHu37+fbkdIpVKJ4ODgT56bU6ZMEeXKlRNTp04VJ0+eTCYW6ObmJr755ptkn32KJPsePHggSpUqJSRJEjY2NkKhUAhDQ0NNZK1JkybpHjM/Ex8fL0xMTMS0adO0bYro2LGjkCRJ2Nvbi/3794v4+HjN+RMVFSUePXokFi9eLFatWpVh5+i/xIsXL0TJkiWFnZ2dAMT27du1bVKGCQoKEnXr1hUKhUIzGZRXefDggZAkSdSuXVuo1WphYmIiihQpImJiYsSAAQOEJEnixIkTGR63UaNGom7dutlgsQ4dOvIjOmdfh448yLJly4QkSaJ///652uG/fPmyAJKpyOcGklKXFy1aJFq3bi0uXrwohEh0cosXL54sErxz504hhPhP9GdXq9U5Ft1MagkoSZJwd3cXw4cPF5s2bRLz5s0TVlZW4ptvvsnQeEnXwbFjx4QkSaJRo0Zi7Nixmlrgbt26iTJlyogLFy5kx+HkSZo1ayYaN26sVRt8fX0158HixYs/StefNWuWqFKlipAkSejr6wtJkkT37t1FXFyclizOnTx48EAULlxYuLi4CB8fH2FkZCRmz56tbbMyRXx8vPj6668FIIYOHZqhkqDcxKlTp4SlpaVo1qyZmDNnjpAkSfzyyy8iJiZGFCpUSNjb22eqjGblypVCkqQMTYbq0KHjv4vO2dehI4+yZs0aIZPJRM+ePbXaFi4t9u3bJwDx+vVrbZuSIo6Ojpoa9ZYtW4pNmzaJzZs3i2HDhokvv/xSzJw5U9smag2VSiWUSmW2Of93794VgwcPFnK5XOPs2djYaP6/efPmDNsrhBDbt28XkiSJBQsWiIsXLwpJksSKFSvErVu3hJmZmVi9enV2HE6eZMaMGcLIyEjrjrOvr6+YOXOm8Pf3T/b51q1bhbOzs+b8aNq0qShSpIiQJEnUqFEj195Xcppr164JW1tbUaZMGc13UqpUKTFs2DDtGvaZLF68WCgUClG/fn0RHBysbXMyTFxcnChdurSQJEkYGRkJExMTsWDBAjFixAghSVKGJzSTCAkJEXp6enm6Ja8OHTpyjvzZ40SHjv8AvXr1YuPGjWzcuJHu3buTkJCgbZM+IjAwECBXtTsTQgDw+PFjzMzMkMvlvHnzhv379/Ptt9+ydOlSrK2tWbZsGaNGjUq2zX8JmUyGXC5HkqRsGb9s2bIsXryYsLAwZs2ahYuLCyEhIRQpUoROnTrRuXPnTI2rVCoB0NfXJyYmBoCnT5/y7t07IiMjuXLlSpYdQ16nfv36xMTEcPnyZa3aUbx4cUaNGkWBAgUAUKlUJCQkcOzYMd6+fYuhoSErVqzg4MGD3Lx5k86dO3PhwgUuXLiQYzbm1nvAqVOnqFevHq6urpw5cwZHR0cgsf3eixcvtGzd5zF48GCOHj3K7du38fLy4v79+9o2KUPo6+szbNgwbG1tiY2NJTo6mu+++465c+dStGhRRowYkalxraysaNKkCZs3b85ii3Xo0JEf0Tn7OnTkYTp37szWrVvZuXMnHTt2JC4uTtsmJSMoKAgzMzMMDAy0bYqGJOf14MGDBAcH07BhQ2rVqoWDgwPBwcGcO3eO2bNn07VrV3bv3p1sm7yIEAKVSqVtM5IRERHB7t27OXPmDLGxsYwYMYKnT59y6tQpdu3axdq1a1PdNsmZT42kc+3p06eYmJigUCiYOnUqX375JQDm5uZZdyB5HA8PD6ysrDhx4oS2TUmGXC5HT0+Py5cvo1QqadWqFX379gXA2tqa2bNnM27cODp27Jgt+3/y5AmbN29m3Lhx/Pjjj9y/fx+1Wg3kLqd/z549NG3aFC8vL44fP46NjY1mWX5w9gHq1q3L1atXMTIyolq1auzbt0/bJqWLpInuQYMGsWjRIjp16kTZsmUxMDCgdevWrFixgmLFimV6/C5dunDx4sV88Rvr0KEjm9FqXoEOHTqyhH379gkDAwPRrFmzdLeoygl++OEH4erqqm0zNCTV3R86dEhIkiQaNGigWXbu3DlRs2ZNTf9vhUIh6tSpI/z8/LRlbpbh7e0tQkNDtW2GEEKIXbt2ibp162pSs0uXLi0mTZqU7u0/pVHx8OFD0bFjR/Hbb7+Jp0+fim7dumla+Xl4eIiTJ09+5hHkL9q2bStq166tbTNSJKkV5Jo1a4QQmWurl1HWrFkjvLy8kul2FCxYUFP+kVtU+9esWSPkcrlo3769iI2N/Wj55MmThbW1tRYsyx7Cw8NF69athSRJYtq0abniN0iNW7duiWLFiokmTZpouo28evVK+Pr6ijdv3mTJvTg8PFwYGhqK6dOnf/ZYOnToyN/onH0dOvIJR44cEUZGRqJhw4YiMjJS2+YIIYT46quvRNWqVbVtxkckKSF36NBBxMTEaGqWz58/L0xMTETv3r01L/pbt27VsrWfz4EDBwQgfHx8tGpHQECAsLe3F5IkCWtra2FiYqL5nrt06SLev3+f5vbx8fHiyZMnaa4THR2d7Pz39/cXCxYsEJMnTxYPHjzIkuPITyxYsEDo6enlmnvGhyxbtkwMHDhQCJEzjv6qVauSOfleXl6ifPnyQpIk4ebmlu37Ty9z584VgOjXr1+qwqEbNmwQgAgPD89h67IPlUolfv75ZwGI7t2756qJ7Q/p3r27kCRJjB8/Ptnnn7q/ZZQOHTqISpUqZemYOnToyH/o0vh16MgnNGrUiIMHD3Lx4kWaN29ORESEtk0iKCgoV9XrJ1GtWjVkMhnnz59n4cKF+Pv7ExgYyJEjR5DL5fz8889MnDgRgHv37mnZ2s+nXr16mJiYsH37dq3akfRd9+vXj/Xr17Np0yZ69eqFoaEh+/fv5+XLl2lur6enR9GiRVNclpRmvXr1akqXLq05Vjs7O4YOHcrYsWMpVapU1h5QPqB+/fokJCRw/vx5bZvyEQMGDODPP/8Esr+UJjw8nK1btwKJ38mxY8fYs2cPe/bsoU6dOhgbG6NUKlGr1ezcuZNjx45lqz0pIYRg3LhxDB8+nB9++IHly5cjl8tTXNfZ2RkgX6V5y2QyJk2axObNm9mxYwd16tThzZs32jYrGWFhYfz9998UKVKEn3/+GUCjp9OjRw9atGjBu3fvsmRfXbp04caNG/j4+GTJeDp06Mif6Jx9HTryEXXq1OHIkSPcunWLxo0bExYWplV7AgMDsbOz06oNKVGjRg1cXV159+4do0ePpl69erRp04YJEyYQERGBnZ0dkZGRAJQuXVrL1n4+hoaGNG7cmD179mjVjiRnatKkSTRr1oyGDRvy008/4e7uTmRkJLdu3Up1W/H/WunUnL7/sXffYU1ebwPHv0nYS4agoAz33oJKFTXuhXvUveqsHVq1v7aOVjvUVsWJe1vcVVQcFcGJ4t57T0BlyCZ53j94SUtdjIQEPJ/r6lUlz3POjZL43GfcJ+P158+f8+jRI03yn127d+/m5MmTBlf/QlcqVKhAkSJFDG7ffgZjY+M86cfGxoZr164BMGDAAJRKJUWKFMHd3Z0KFSogl8uZPn06zZo1o1evXnz++ed5ElcGtVrNqFGjmDJlCr/99hvTpk177wBIQUz2M3Tv3p3Dhw/z9OlTPD09DaroZkhICGlpaRQtWlTzs5vx/9u3b2t1UK1169ZYWVmxYcMGrbUpCELBI5J9QShgvL29OXDgANevX6dp06a8fPlSb7FERUUZZLJfrlw59uzZQ//+/SlcuDB37tzh+PHjGBsbM2HCBIyMjNi7dy+2trY6KwKW13x9fQkLCyMiIkIv/T9//hxra2uMjIwICAjg1atXmJubU65cOezs7ABwcXF55/0fmtmVy9P/OfP29sbBwYFTp06RkpJCSkqKZkZWykJxNX9/f+rUqYO1tTWenp6MGDGClStXcuXKFYMrdKgNMpkMpVJpsMl+XurQoQOQXtwRICYmhhUrVrBlyxZu3brF9OnTOXjwIGq1mtu3b2sGB3QtNTWVPn36sGDBAhYvXsz48eM/eI+zszNGRkYFMtkHqFWrFuHh4bi7u+Pj48PatWv1HRIAbm5u2NnZce7cOWbMmKEpKLpixQquXr1K7dq1KVq0qFb6Mjc3p3379iLZFwThvYz0HYAgCNpXu3ZtDh48SNOmTWncuDEHDhzQy3L6yMhIg1zGD1CyZElmzZpF3759OXv2LA8ePKBz587UqFGDL7/8knPnzvHzzz/n60r8/5ZRjX7Xrl0MGDAgz/t3cnKiVKlSnDx5En9/f2JjY3FxcSE6Opp9+/ZRokQJlEpljtuXJAmZTEZSUhL29vbMmDGDa9euUa9ePUxNTTE1NSUpKQlfX19Kly79znY2b97M+fPnOXnyJOHh4YSEhODv748kSVhZWVG7dm08PT3x8vLCy8sLV1fXfP8zolQq2bBhA9HR0dja2uo7HL354YcfkMvlTJs2jb///puIiAgePnxIQkICMpkMhUJBxYoVadKkCS1atKBs2bI6jykhIYFu3bqxb98+NmzYkOXBR4VCgaura4FN9gGKFi1KSEgIQ4cOpU+fPly8eJFffvnlnVsb8kKVKlUoVqwYly5dYvz48fj7++Pq6sqFCxcA+OKLL7TaX48ePVi3bh2XLl2icuXKWm1bEIQCQp8FAwRB0K3Lly9LNWrUkB4/fpzn1YuTk5MlQFq+fHme9ptbt27dksaOHSt9+eWXUnx8vL7D0apPPvlE6tChQ573m1FELCQkRLKwsNAUQLOxsZFkMplkamoqLV68OFd9JCYmSpIkSQ0bNsxUZO2//23cuDHbbcfExEjBwcHSb7/9JnXq1ElydXWVAAmQnJycpLZt20o//vijFBQUJEVFReXq+9CHO3fuSIC0fft2fYeid+PHj5eMjIw0Py9yuVxydnaWOnbsKG3fvj1PPxNevXol1a9fX7KwsJD27t2b7fsbNWokde/eXQeRGRa1Wi398ccfklwul9q0aaP1QnhZFRQUJF26dEkKDQ2V6tat+8Zn3eDBg7XeZ3JysmRrayt9//33Wm9bEISCQczsC0IBVrFiRcLCwpDL5e/d65zx2r9/nVsvXrwAMNiZ/XcpVaoUkyZNQqVSYWFhoe9wtKpdu3b89NNPJCYmYm5unmf9Llu2jGPHjjF58mQOHTrEjBkz2LhxI8bGxpQpU4axY8fSv3//XPVhZmYGpBeqjI2NxdTUlISEBJKSkkhMTESlUvH06VMsLS2z3baNjQ2NGzemcePGmq89e/aM8PBwTp48ycmTJ5k9ezavXr0C0leNeHl5aVYA1KxZ06B/lkqUKIGHhwfBwcH4+vrqOxy9qlChAiqVCjs7O0qUKEGXLl3o2bMnbm5uHDhwgFatWjFnzhyqVatGWloaRka6eYx6/vw5LVu25P79+/z999/Uq1cv2214eHhw9epVHURnWGQyGaNHj6ZixYr06NGDunXrsmPHjveu4NG2Z8+e0a1bN5o3b87atWuZP38+mzZt4v79+1haWtKgQQM+/fRTrfdrYmJCp06dCAgIYMqUKfl+lZEgCNonk6QsbGIUBKHA+m+Cr1KptLIM8sKFC1SrVo3jx49Tt27dXLcn5N7Vq1epWLEiO3fu1Czr17WnT59Sq1Ytnj17xv79+6levToHDx7k9OnTODg40Lt371zvYb18+TLx8fGYmJhQrFgxrKyskMvlGBkZ5dmSXkmSuH37tmYAIDw8nNOnT5OUlIRCoaBSpUqZBgAqVaqUZ8XnsmLQoEGEh4drlhvnF2lpaWzcuJHQ0FAKFSrE0KFDefLkCWXLlqVIkSLZbi81NZWhQ4fSq1cvlEolT58+ZdGiRfj5+REbGwukL8WePXu2VgdH/+3evXs0a9aM+Ph49u3bl+Pl2ZMnT2bRokU8ffpUyxEaruvXr+Pr60tkZCSbNm2iSZMmedLvtm3b6Ny5M2PHjmXatGmar8fHx+dogDE79u/fT/PmzTl16hS1atXSaV+CIOQ/YmZfED5SycnJbN68mW3btiGXy6lXrx5ff/01CoVCKw+xkZGRAAZZoO9jVb58eUqXLs2OHTvyLNmfNWsWz549Y8aMGdSpU4fevXuzY8cObG1tadmyJaNGjcp1H+PGjSM0NBR7e3tSU1NRKBSYmpqiUChQKBSYmJhgZmbGixcv+Ouvv3Syt1Umk1G6dGlKly6tmcFLTU3l8uXLmVYALF++HLVajbm5OTVq1Mg0AFCqVCm9zcwplUqWL19OREQETk5OeokhuxITE2nSpAlhYWEAVK5cmebNm9OhQwf69+/PrFmzsj2gYmxszLJlywgICKBRo0YcPnxY85pCocDCwoJSpUoBujkO8MqVKzRv3hxTU1OOHDlCyZIlc9yWu7s7z549IykpSbPypaArV64cYWFhfPrpp7Ro0YJZs2bx+eef58n7ysHBQfPZkjFobmlpqbUB9Hdp3Lgxjo6OBAQEiGRfEIQ3iJl9QfgIPX/+nN9//50//vgj09cnT57MxIkTgfSjnjIqnOfEhg0b6NGjB9HR0RQqVChX8eqaJEmkpaW9MzHQ1QyePowZM4aAgAAePnyYq7/frEhLS8PDw4PY2FhiYmKYOHEi06ZNw9vbm/Pnz5OcnMyOHTto2rRprvqpU6cO4eHhGBsbI5PJUKlUb1TONzIyIi0tjdOnT1OjRo1c9Zcb8fHxnD17NtMAQEb1dzs7O03in/F/bVXu/pAnT55QrFgxNmzYQLdu3fKkz9z6+uuvmTdvHqampiQmJlKuXDkuXbpEyZIlMTY25vz58znaPhEeHk6dOnUwcy6EfUVXSn1SFcsSjiSRSnxKIgqZAvdirpR2dKWMTTEq2rlTtlAxbExyN4N78uRJWrVqRbFixdi7dy/Ozs65ai84OJgmTZpw48YNypQpk6u28pu0tDTGjx/PzJkzGTx4MPPnz8fExEQnfa1fv57evXujUCioXbs2fn5+VK1aNU8HWEaOHElgYCD37t3T+ee6IAj5i5jZF4SP0LJlyzSJftOmTSlRogT79+/n2LFjnDlzhpo1ayKXy3M1IxEZGYmxsTE2NjbaDF0nfvrpJ5ydnRk8eDAymSxTYp9xZJs+Kzxrk6+vLzNnzuTMmTPUrl1bp31duHCBpKQk3N3d2bdvH7/99hstW7YkMDAQb29vwsLCNMfu5cbQoUNp0aIFkH5cWkY9gOrVq2Nqasrp06d5/PgxlStX1vtKE0tLS+rXr0/9+vU1X3vx4gXh4eGaAYDFixczdepUAFxdXTNV/69Vq5ZO3lMuLi6UL1+e4ODgfJPs79mzB5VKxa1bt6hSpQppaWnI5XJKlCjBsWPHNMeeZcft2CccMrvPJ5tHgUn6e16GjDgkwAQT0hPGR6pXPHkWzaFnF1GTPmfiaulIR/dPaOnqibVx9mpiHDhwgPbt21O1alV27dqllfeFu7s7APfv3//okn0jIyP++OMPKleuzLBhw7h27RpbtmzRyaqVAwcOAOmz+SdOnGDo0KF06NCB5s2ba44W1fVgcY8ePViwYAHHjx/nk08+0WlfgiDkL2JmXxA+MufOncPT0xOVSkW/fv2YOnUqxYoVIzg4mHbt2uHg4EDr1q3x9/fPVT+TJ09m8eLFPHnyREuR68748eOZMWMGJ0+exMnJCVNTU81+3ytXrnDx4kW6d++u5yi1Iy0tDScnJz7//HN++uknnfYVGRmJt7c3t2/fBtKLn61YsQIrKyuqVKlCpUqVtL5HfO3atYwcOZKjR49mWq5funRpWrVqxYwZMwx+SbMkSTx8+FCz9//kyZOcOnWK169fI5PJKF++fKYBgKpVq2JqaprrfkeOHMn+/fu5ceOGFr4L3StSpAimpqY8ePAAR0dH7OzsuHHjBj4+Phw5coTo6OgsDYyoJDUHn5xny73DXHp1D4VMjkpSZzuejHTOWG5E82K16FKiAaVsXD5439atW/n0009p3LgxW7Zs0doe75SUFMzMzFiyZAmDBg3SSpv50bFjx+jUqROmpqbs2LGDatWqabX95ORk9uzZw5o1a9ixY4dmkMnJyYlatWoxY8YMKlasqNU+/0utVuPm5kbHjh2ZO3euTvsSBCF/EWt9BOEj8+zZMyC9UvNnn32WaaYzMTGRx48fs3jxYlasWKH5ulqd/QffyMhIvc+iZlVG1eYNGzawYsUK3NzcCAoK4tixY1SuXJkrV67oOULtMTIyonXr1uzYsUPnfTk6OrJhwwb69etHlSpVWLp0KV5eXvz4449IksRXX32llX7UajUpKSlA+iCTTCbTJL8ZD94eHh4sXLiQmJgYrfSpSzKZDDc3N7p06cK0adM4ePAg0dHRXL58meXLl9O4cWOuXLnC119/jZeXF9bW1nh5eTFy5EhWrVrFlStXcvSeVSqV3Lx5k4cPH+rgu9K+EiVK8OjRI0JCQkhNTcXY2JidO3dy4cIFnJycsrQa5+HrSEYcncuPZ9dw5VX6mfQ5SfTh/89iBFLUaQQ9CmfAoT9YdG0XKap3rzBYvnw5Xbt2pWPHjuzYsUOrxdxMTExwdnbm3r17WmszP/L29iY8PJzChQvj7e3Nli1btNb23bt3AWjfvj2bN2/mwoULTJ48mbJlyxIREUFQUBAODg5a6+9d5HI53bp1Y9OmTW9sYRIE4eMmlvELwkciJiaG169fY2JigkqlIiYmBhsbG0xMTLh06RLfffcdkH7MWOfOnenZsyf379/H3d09R0v681OyX716dQoVKqTZ2mBubo6trS3nzp0DyDcFy7LK19eXdevWaf5+dalmzZqZBo5Wr17Npk2baNSoEf369dNKH3K5XFNvwdjYmNjYWMaOHcunn35KoUKFCA4O5ujRo6jVap3t29U1hUJBxYoVqVixouaYwuTkZM6fP69ZARAcHMyCBQsAsLa2pnbt2plWABQvXvy9y4kbNWoEwMGDB+nbt6+uv6Vc6969O+fOnUOpVCKTybh69Srt27dHkiQGDRr03tUOKknN5ruH8b+6E+n/l+FnLMfXhowBg3W3ggl9eoEJNXpRwdYt0zW///47Y8eOZejQocyfP18nW4U8PDy4f/++1tvNb1xdXTl8+DADBgygS5cuTJ48mQkTJuR6f3vPnj0pVaoUrVq1wsfHh/LlyzNx4kTGjBnDX3/9xb1793J0KkRO9OjRg1mzZhEaGopSqcyTPgVBMHxiGb8gfARSU1NZvXo1x44dY8mSJQwYMIA1a9ZQrlw5OnXqxJo1a3j06BEmJiZ07twZf39/Nm3axIQJE+jVqxfTp08HyNa50kqlEicnJwICAnT5rWlFYmIiixYtYunSpdjb29OtWzc+//xzkpKSePr0Ka6urjo7T1sfYmJicHR0ZNasWYwcOVLr7b+roKEkScTFxXHgwAHc3Nx0Ujn6jz/+YMqUKZpj0v6tQ4cOBAQE5NuEPytiYmI4ffp0pi0Ajx49AtKXvf+7+J+npyf29vaZ7q9RowbVqlVj5cqVeog++3r37s2GDRtQqVTI5XLUajX169fXnPjwNvGpSfzv1DLOvridJzHKkSEBoyq2p2tJHyRJ4vvvv+fXX3/lu+++Y+rUqTrb092zZ08eP35MaGioTtrPbyRJ4pdffuGHH36gS5curFy5MserKbZv307Hjh0xNTXFzs6OypUr4+PjQ5MmTfDy8srzOi+SJFGqVCmaNm3K4sWL87RvQRAMl0j2BeEjkJqayg8//MCMGTOYNWsWX375Jbt27WLZsmXs3buXxMREbG1tadKkCQsXLqRw4cIEBgbyxRdfcP/+fTp06MDWrVsBsjzDX6VKFRo1apSv9g/u3r2bVatWkZKSQlRUFDKZjFGjRtG5c+cCV+G4efPmyGQy9u7dq9V2nz9/zvPnz6latarOj5x6l6lTp7Ju3TpiY2NJS0tDpVLRvHlzFixY8M4EsCB7+vSpJvHP+H90dDQApUqVyjQAsGHDBrZt28aDBw/yzQkUJ0+e5NixY6SmplKzZk3NTP/bxKTE81XYQu7EPtXqTH5W9SvdjPDZ21m8aBG///47Y8aM0Wl///vf//jzzz8/+qX8//XXX3/Ru3dvypQpw/bt23Fzc/vwTf9x5swZFixYQHh4ONevXyclJYVChQpRpkwZypcvT9euXWnXrp0Oon+3//3vfyxevJhnz55l+9hJQRAKJpHsC8JH4unTpyiVSm7cuMGQIUNo3rw506dP5/z588hkMho3bkznzp25fv06ERER9OjRA29vbz799FN27dpFt27dsjVL7+zszPDhwzVH+Rm6pKQkfvjhBxYsWEBSUlKm1+bMmcOwYcMK1Oz+3LlzGTNmDFFRUVqp7i5JkqY4noODA1u3bqVq1aqo1WoUCkWeD5akpKRw8+ZNUlNTcXNze2MG+2MmSRK3bt3KNABw5swZkpKSNLPj3bp1o2nTpnh5eVGpUiWD/dnPzrGY8alJfH58HnfinqHO4b58bbi/5hiTWwxh4MCBOu/L399fs0rJUP8O9eXixYv4+voSHx/P1q1bM52QkR33798nMDCQjRs3cuTIEc3X582bx4gRI7QVbpacP3+e6tWrs3v3blq1apWnfQuCYJhEsi8IH5EnT57QqlUrLl68qPmatbU1TZo0YejQoSxatIi//vpL89rChQvp06cPlSpV4v79+2zcuJEuXbqgVqvfm7xJksTAgQPx9PTM84ednAoMDKR9+/ZA+haEsmXLcubMGU6fPo29vT2HDh2iXLlyeo5Se+7du0eJEiXYuHEjXbt2zVVbr169YtiwYWzcuJE+ffowd+5cChUqxOrVqxk7diyXLl3KN/UbPlapqalcunSJQ4cO8fXXX+Pi4sLTp09Rq9WYm5tTs2bNTCsASpYsqfeZ/6FDh7J27Vr27t2rSdRu3bqFj48PtWrVYsuWLZotGypJzVfHF3Lh1R3UBvDY8221HrRx9dJ5P0FBQbRu3Zr79+/naPa6oIuMjKRLly4cP36chQsXZvnUgqtXr2JiYoK7u7tmEEWtVvPVV1+xaNEiypQpw7Fjx/L86FlJkqhYsSJeXl6sWrUqT/sWBMEwFax1qYIgvJeLiwuhoaGMHz+eDh060LhxYyZMmMDixYuxtLTUJPrjxo3D1taW4cOH89VXX1GqVCkgfYk2oEn031e1e9myZXh56f5h9kMiIyOzdF1QUBAAI0aMYMGCBUyePJkjR47Qv39/IiMjuXbtmi7DzHMeHh5UrVo111X5Dx48SNWqVdm3bx8BAQGsXr2aQoUKIUkSfn5+1KhRQyT6+YCxsTE1atTgyy+/pE6dOnzyySfExsZy6NAhpk6dSvHixfnrr7/o2bMnpUuXpnDhwrRs2ZKJEycSGBio+WzISwcPHsTc3FxT+0GSJEqXLk2RIkUICQnRnMQAsOnuIc69vG0QiT7ArItbeJrwUuf9ZBTgFMv4387R0ZH9+/czcOBABg8ezFdfffXBkyzUajWdO3dm0qRJrF27lnPnzvHixQvkcjnVqlXTnPyR14k+pJ/k0aNHD7Zt2/bGCjVBED5OYk2XIHxkbG1t+eWXX96YlYuPj8fIyAgjIyOGDRvG4MGDad++PUuXLtVcU6FCBZ4/f8769etp0qQJU6ZM4fHjxxw7dixTWxlt165dW/ff0AfMmzePiRMnfnDveEbl7g4dOlC2bFnN1zPOZM44K74g8fX1ZcGCBdkqvJghOTmZCRMm8Pvvv9OwYUNWr16Nq6ur5vWjR49y5swZdu/ere2wBR1TKpUsWbIEc3NzGjRoQIMGDTSvRUVFER4ertkC4O/vz5QpUwBwc3PLVPyvVq1aOk14Xr58+dZiiyYmJsTHx5OxcPHB6wgWXd2lszhyIk1S8ev5APzqDtfpComMZF9U5H83ExMT/P39qVq1Kr///juzZs167/UBAQFcu3aNa9eusXXrVurWrYuPjw/Fixfnzz//5O7du3o9waV79+5MnjyZoKAgOnbsqLc4BEEwDGJmXxA+Qv9+uMyYxWjRogVfffUVSUlJKJVK1q5dm2lG9rvvvkOpVBIaGsq4ceOoV68eW7ZsISwsLNPS/7f1oS+vX79m7ty5vH79+oPXZiT4K1euJCwsjFu3brFp0yaWLVsGUCCLHbVr146XL1++MVjzIVevXqVu3brMnj2badOmceDAgUyJPoCfnx9ly5alRYsW2gw5Wxo3bswPP/ygt/7zqyZNmhAZGcnly5ffeK1w4cK0atWKiRMnsnPnTp4/f869e/fYuHEj3bt3JyoqiilTpqBUKrG1taVSpUr0799fU8gsOTlZa3E6Ozvz7NkzNmzYgFqtRiaTsW/fPi5dukShQoXSjwyV1Px8br3meD1DoZLUnH1xix0Pjuu0H0tLSwoXLiyS/SwYMWIEwcHBHzynvmfPnqxYsQJvb2+SkpIICQnhp59+4uuvv+bgwYNUq1ZNr1u+ypcvT7Vq1diwYYPeYhAEwXCImX1B+MhlFOSSy+VMnz6dOnXqcPHiRWbOnKlJkr/44gtGjRoFpFfZd3Nz4+HDh8hkMqZMmUKHDh1yNDusa8uXLyc2Nva9521nqFOnDu7u7qxfv56zZ89ibm7OkydPePbsGeXKlaNp06Z5EHHeql27NkWLFmXHjh34+Ph88HpJkliwYAHffPMNJUqU4MSJE9SoUeON6x48eMC2bduYM2eOXk8xePr0qVjKmgP16tXD1NSU4OBgqlSp8t5rZTIZ7u7uuLu7a2o/qFQqrl27lqn6/7p160hLS8PExITq1atrVgB4eXlRtmzZHP2ctGjRguvXrzNw4ECmTp2KkZERt27dQq1W06lTJ4yNjQl+cpYr0Q9y9OeQF+ZfCaR5sVqYG334Myqn3N3dRbKfRR4eHlm6rl+/fvTr149r166xYMECNm7cSFpaGg0aNODzzz/XbZBZ0KNHD6ZMmUJ8fHyOjxYUBKFgEAX6BEEAMh+pd/ToUc3S3VGjRvHtt9/i7OzMgwcPmD17NrNnz9bcV7x4cY4dO0bx4sX1EfY7paamUrp0aXx8fFizZk2Wrt+8eTOjR4/OtP/YysqKhQsX0qtXL12GqzdDhgwhJCSEGzduvPe6Z8+eMXDgQIKCghg5ciTTp0/HwsLirdeOHz+eRYsW8ejRI6ysrHQRdpZ4eHjQu3dvpk6dqrcY8iulUom1tTXbt2/XSntJSUmcP38+0wDA9evXAbCxsaF27dqZtgAUL178g6uD4uLi+OSTT7h06VKma52cnDh+/DgeHh4MPeLHtegHejlmL6vGVe1GO7e6Omu/c+fOxMXFsW/fPp318TG5ceMGFy5coHz58pQqVQpzc3PS0tI4c+YMNWrUMIhVYHfv3qVkyZL8+eef9OjRQ9/hCIKgRyLZFwThrX744Qfu37/P1KlTcXd3JzIykp9//pk5c+YA8OOPPxIREcH8+fPx9fVl/fr170z+9GH9+vX06tWLc+fOafbdZ0VwcDDh4eFIkoSrqyvNmjXT6/5LXdu5cyft2rXj2rVr71x6GhgYyKBBg5DJZKxYsYLWrVu/s734+HhcXV0ZOHAgv//+u67CzpKiRYvy+eefi6X8OTB16lRmzJjBixcvdLZiJzo6mtOnT2caAHj8+DGQ/nc3c+ZMunXr9t56G3Fxcfj7+3PkyBFUKhU1a9bk888/x8nJiVuxjxlw6A+dxK4tMmR4WBdhlc9YnW19Gj16NLt27dIMrgg5o1KpmDt3LnPmzNEUPGzYsCHDhg2je/fu+g3uLerWrUvRokXfus1OEISPh2GtuRUEQe8yZvinTp1KbGyspsDWvHnzNIn+999/z4QJE1Cr1ZQsWZISJUpkSvSzc/a1LkiSxIwZM2jRokW2En1JklAqlSiVykxfT01N5cmTJxQvXvyDhf7ymyZNmmBubs6OHTsYO3Zsptfi4+MZM2YMixYtol27dixduvSDAx9r164lJibGIJayJiUlYWZmpu8w8iWlUsmECRM4e/Ysnp6eOunD1taWJk2a0KRJE83Xnjx5okn809LSMq04+q9ffvmFxMREJkyY8MbPLsC2e0dRyNL37RsqCYm7cc+4HH2fynYeOunD3d2dBw8e6P1zOb/7888/+eabb1Cr1bi4uPDkyRNCQ0MJDQ3lxYsXBnfMbPfu3fn222+Jjo7G1tZW3+EIgqAnYmZfEIQ3/Peh8ObNm1SvXl3zYD158mRSU1M1lbBjYmK4cuUK1tbWuLi4YG9vr6kDoA/79++nefPmHDhw4I3E/UPOnj1LUFAQ586d4/bt29y/f5+XL9OPyDpx4oTOEh99at++PS9fvuTw4cOar50+fZqePXvy8OFDZs2axZAhQz6YKEiSROXKlSlXrhxbt27VddgfZGZmxu+//24QAw/5TWpqKnZ2dkyYMIHx48frLY73JagODg7Y2Nhw/fr1N6ryqyU1LfZ8R5IqJS/CzBWFTE57d2++rtxJJ+1v376dDh068PTpU4oWLaqTPj4GNWrU4Pz588ycOZOyZcvy6tUrli5dSmhoKI0bN2bnzp2Ym5vrO0yNx48f4+rqyooVK+jXr5++wxEEQU/EzL4gCG/478O1sbExRYoU4d69e9jZ2SGTyTAxMeH58+cEBwczYcIE7ty5g729PRUrVmT+/PlUqVJFbwn/9OnTqVWrFo0bN87WfXfv3uWHH34gKCgo09fNzc1JTEwkJiZGm2EaDF9fX4YMGUJkZCT29vZMnz6diRMnUq1aNc6ePZvlytJ///03V65cYcGCBTqO+MMkSSI5OdmgHr7zE2NjY3x8fAgODtZrsv++ASYfHx8OHDhAfHz8G8n+o/io9yb60RcecumHzSCBe99PcO3qBYCkUnNh/Abirj/D1NGaGvP6EBl6nciDV3l9JwJ1choANRf0w8LVPlObR9q9/cg2125euPf55J2xqCQ1V17proDev4/fE8l+zly6dInz589TrVo1vvrqKwASExOxtbXlwoULmoHh8uXL6zfQfylWrBgNGjQgICBAJPuC8BETyb4gCB/k4eHB1KlT6d27NxMmTKBWrVo0aNCA/fv387///Y/Hjx9TokQJnJ2dOXLkCD4+Phw8eJDq1avneaxnzpzh77//JiAgINtLVgMCAggKCqJo0aI0bdoUd3d3HBwccHJywtTUlAoVKugoav1q27YtkiSxevVqtm/fzpEjR/j222+ZPHnyW88xfxc/Pz+qVauWpcr+upZxxJtYxp9zSqWSiRMnkpKSkq2fg7zStWtX9u/fT5s2bRgxYoSmqJ9MJuNs8vsr8NtWdcWlXQ2e7DjLg/Vh2NcugWUJRx5tDifu+jOQQZmvW2BkYcqr0/d4fScC40IWJEfEfjAuy5KOyI3/2XpgUtj6g/fcin1CmlqFkVz724T+nezXqVNH6+1/DCIjI7G2tiY2NpbDhw9Ts2ZNLC0tad68OSkpKSQnJ1OmTBl9h/mGHj16MGrUKKKioihcuLC+wxEEQQ9Esi8IwntlLKPt2bMnkiSxadMmbGxsiI6OZsqUKTx+/Bi5XI6xsTGbN29mx44dDBs2jHHjxrF161YsLS3zdJ/o77//TokSJejcuXO27804om/AgAGMHz8elUqFlZVVpurKBXHfa5EiRShVqhTffvstLi4uhISEZDthv3nzJrt27WL58uUG8eeTceSeSPZzTqlUMnbsWE6cOKE5ncOQfPbZZyQmJnLixAnCwsI0X5fL5bj1r49bx9rv3a/v0a8+r87eJ/HhS67P3EOZUc14EJDejotvTWyruAJQargSE1sLIg5e5abfhyvaV/iuHWZFCmXre0mTVNx7/ZzSNi7Zui8rbG1tsba2Fsfv5UK5cuWwtrbm7t27/Pjjj/j6+mJpacnx48eJj4+nf//+BlnPpXPnznz++eds2bKFoUOH6jscQRD0QH8HIAuCkC/IZDIySnv06tWLpUuXUq1aNU6ePMnNmzdxdnamcePG3Lhxg+7du9OuXTtKlCihOe86LxO/u3fvsnHjRsaMGZOjCuJ16tShdOnSJCYmYmNjg52dnSbRj46O5smTJwaRyGpTdHQ0PXv25NatW0B6XYKczMzPnTsXR0dHPv30U22HmCMi2c+9atWqYWdnx4EDB/QdyltlbBGSyWTI5XLNrD6AVSnHDxbmk5sYUW50S2QKOQn3orj4v41IaWosXO3x6PvPsntTBytkiqw/Lp37ej3HOs/lzIhVPNx0EnVqWpbuuxX7OMt9ZIdMJsPd3V0k+7ng4uLCqFGjgPQTW8aOHcvw4cNZvnw5zs7OmtcMjZOTE02aNGHDhg36DkUQBD0Ryb4gCB/07wQ3YylgkSJFKFSoEK6urixfvpzhw4dz+PBhKleuzN27d0lJSSGv63/OmjULW1tbBgwYkKP7q1SpgpeXF8uWLaNv376MGDGCnj170rRpU+rWrVvgzisODQ2lWrVq7N69m2nTppGWlsa5c+ey3U5MTAwrVqxg6NChBpNci2Q/9xQKBY0aNSI4OFjfobzVtWvXuH//Pnfv3s303507d6jsWSNLbViVLoJr9/T9+uoUFchllB3dErlJzhY+GlmZYlrYGpmxgoSHL7m/+ig3Zu794H0yZLxOTcpRn1khkv2cmzdvHjNmzGDo0KGsX7+eunXrkpqaiqOjI40aNWLVqlWULVtW32G+U48ePQgJCeHp06f6DkUQBD0Qy/gFQcgRR0dHypcvz4kTJ9i9ezfz58/HyMiIRYsWoVAoaN68Oebm5nm27P3FixcsW7aMsWPHZjoGMDskSWLHjh28fv2atWvXar6eEX9kZKRWYtW3lJQUJk2axLRp02jQoAGrV6/Gzc0Nf39/duzYQcuWLbPV3ooVK0hKSmL48OE6ijj7EhMTAZHs55ZSqWT06NHEx8djaWmp73AyKVas2Dtfk25lvZ3EJ9H//EYtkRQRi1XpItmOp9rvPbAqWxSZTIYqKZUrU7YTc+EhUUdukDzQB1PHd+/dl8lkpKhTs91nVrm7u3Po0CGdtV9QnTlzhtGjR5OWlkbbtm1RKpVIkoSnpye1atWiU6dOWFlZ6TvM9+rYsSPDhg1j06ZNfPHFF/oORxCEPCaSfUEQcsTFxYWZM2fSrFkzhg8fTkREBN999x3x8fFcuHCB3r1752lRrwULFiBJEiNHjsxxG4UKFcLU1BQ7Ozvs7e2xsLDA1tYWBwcHHB0dsbW1JS0tLUdbBAzFtWvX6NWrFxcuXOCXX35h7Nixmr2mvr6+bNmyhfnz52d5gEalUjF37ly6deuGi4v29xvnlJjZ1w6lUklqaipHjx6lefPm+g4nk88++4zk5ORMy/kz/v+sqRXYfPh9GnX0JpEh1wAwdbIhOSKWW/MPYFPBBRO77A1uWJdz1vxaYWaMQ73SxFx4CEByVNx7k30kCblMd4stPTw8WLNmTYGsOaJLM2bMIC0tjYCAAMzNzenatSuHDx+mSJEiGBkZ0bdvX32H+EF2dna0bNmSgIAAkewLwkco/z6xCoKgV2q1mnr16nHw4EH69+/PpEmTOHbsGD/99BPGxsZ5Wok/MTGROXPmMHDgQBwdHXPVlr+/P2ZmZhQpUoTChQtjZ2eHjY1Nvn9AliQJf39/xowZg5ubG2FhYdSqVSvTNb6+vvj5+XHu3Dlq1MjaMuhdu3Zx584d/vzzT12EnWMi2deOChUqUKRIEYKDgw0u2V+3bh1JSUmZ6opA+l7+KtV6YGXj9N77U17Fc2tBej0Cu9olKDOqKWc+X0NabCK35v1NxQntsxxLzKVHpMYk4FC3NDKFHHVKGi9P3Na8bupk8977JSRM5cbvvSY33N3diYuLIzo6Gjs7O531U5C8evWK7du3U7JkSbp168aQIUMICwujfv36HD16lI0bN9KvXz+qVq361vsNaWCle/fu9O7dm/v372tOZxAE4eMgkn1BEHJELpejVqvx9PRk165dbNq0CWNjY9zc3ChSJPtLYHNj5cqVvHz5ktGjR+e6rf9W8U9JSeH58+dERERw+/Ztateujaura677yUsREREMGjSInTt3Mnz4cH7//fe3bnVo0KABhQoVYseOHVlO9v38/Khbty5eXl7aDjtXRLKvHTKZDKVSaZD79hs2bEhycrImoYqNjeXixYukpaVhmWaEDBkS764bcnPuftJiEzGyNqPMqKaY2FtRekQTrk3bxcuTd3i27xJFm1fm7srDvDh2E1XiP8vsL0/aisxIjkvbGrj41iDpWQw3/fYhNzPGrGghUqLiSHudfvyjU9NKmDq8f6m3BDiYvX9AIDf+ffyeSPaz5vjx46SmplK2bFmOHz/O0qVL6dOnD8uXL6d06dK8fPnyg8fZPXr0iOLFi+dRxO/m6+uLmZkZGzduZOzYsfoORxCEPCSSfUEQckwulyNJEh4eHppE+23HD+lyhkOlUvHHH3/QpUsXSpYsmev2Dhw4wLZt24iOjubevXs8evSI58+fa85tnzRpEpMmTcp1P3ll165dDBw4EEmSCAwMpG3btu+81tjYmFatWrFjx44sfY8XL14kODjY4Gb1QST72qRUKtmwYQPR0dHY2trqOxyNoKCgN7527949PD09KWNTjLuyZFTvKBL6bO9FXoXfBf7/aD379GS8cP2yOJ64TWTINe4uDcW2miuprxJIehqT6f7kyDgAUl+n/5zZVCxG0VZVibn0iOTnMSCXY1XaiSLNq1C0eeUsfT/lCukuKfx3sp+Xq67ys1KlSmFqasqePXvYs2cPlSpVYty4cZw8eZL79+/TrFmz925dSk5Opnbt2vj7+9OhQ4e8C/wtrK2tadu2LQEBASLZF4SPjEj2BUHIlYwk/l1nDKelpfH8+XNMTExyvcT+bbZt28bt27cJCAjQSntBQUEsWLDgja+bmJiQkpJiUMnO+yQkJDB27FgWLFhA69atWb58eZZWXPj6+tKzZ88szUjNmTOHYsWKvbEawhBkJPvm5uZ6jiT/a9KkCWq1mkOHDuHr66vvcN7Lw8OD2rVrc3jTHpy/aPjO64q2qELRFlXe+lq5Ma0oN6aV5vdlv25B2a9bvLdfcxdbSo9okrOgAWtjC5zMbHN8/4c4OTlhamoqKvJnQ7ly5fD392fJkiXcu3ePBQsWUKlSJc2A6YfqwygUCho0aEDHjh2ZMmUK33//vV6X9ffo0YMuXbpw48YNgz49QBAE7RLJviAIOiVJEh06dCAuLo4DBw68t4J2TtqePn06SqWS2rVra6XN1q1bc+7cOapVq4aTkxNFixbl4cOHrFq1CoVCQZ06dbTSjy6dOXOGXr16ce/ePebPn8/w4cOz/JDZsmVLjIyMCAwMfG91/aioKNauXcuECRMwNtbdXuOcEjP72lOiRAk8PDwIDg42qGR/9erVqFQqzc+2Wq3m9u3bhISEYGRjjjPvTvYNiQyoYOuq00RQLpfj5ubGvXv3dNZHQdS7d2969OhBamoq5ubmLFy4kN27d9OyZcsPvheMjY3ZsGEDU6dOZcKECVy8eJEVK1bk+LSY3GrdujVWVlZs2LCBCRMm6CUGQRDynkj2BUHQKWNjY/7880+USiUNGzYkODgYNzc3rbQdGhpKeHg4e/bs0Up7AD4+PtSsWRMzMzOMjIyQyWQoFAq6dOlCxYoV+emnn9i9e7fW+tMmlUrF77//zoQJE6hcuTJnzpyhQoUK2WrDzs4OHx+fDyb7ixcvBmDIkCG5illXMpJ9U1NTPUdSMBjivv3PPvuM1NS3H1fXsEZDbMzteZr4Mo+jyj4ZMqrZ534L0od4eHiImf0cMDIywsjICEmS6Ny5M4UKFcry56pcLmfixIlUqlSJvn37Ur9+fbZv366Xui/m5ua0b99eJPuC8JHR3TkvgiB8tFQqVabfly5dmkOHDqFWq/Hx8eH27dvvuDN7pk+fTtWqVbVaJdzIyAhbW1tNsp9xrJe7uztly5bVWuza9uDBA5o0acL//vc/Ro8eTVhYWLYT/Qzt2rXjwIEDvH79+q2vp6amsmDBAnr16vXBAlX6kpSUhLGx8Tu3lwjZo1QquXjxIhEREfoORUOhUCCTyZDL5cjlcmQyGU5OTnTr1o3ly5fTwcMbGYZRDf19JKC1q+4LXLq7u4tkPxcyfr569uyZ5QKmGTp37syxY8d48eIFnp6eHDt2TEdRvl+PHj24fPkyly5d0kv/giDkPZHsC4KgVWlpaZpidv/m4eHBoUOHMDExoWHDhly/fj1X/Vy8eJGgoCDGjh2rk+WvarUa+KcmgZmZGd999x0///wzKSkpWu8vN/7880+qVq3KnTt3CA4O5rfffsPExCTH7bVr146UlBT27dv31te3bNnC48eP+fLLL3Pch64lJSWJJfxa1LhxYwBCQkL0G8i/JCQkoFKpSEtLIy0tDZVKxbNnzwgICMDFxYXWrl4odHh2vTZIKjXyWzHI4tN03pdI9rPvvwPXuVGtWjXCw8MpW7YsjRs3ZuXKlVprO6uaN2+Ora2t1mrcCIJg+Az7X0FBEPKdhIQE1q1b99bXihcvTmhoKIUKFaJhw4Zcvnw5x/38/vvvuLq60r179xy38T5yuZzDhw8zfvx4Pv30U77++msqVqxIly5dcpVIa1NMTAy9e/emZ8+etGrVivPnz9OoUaNct1uqVCkqVarEjh073vq6n58fjRs3pkqVtxc4MwSJiYki2dciFxcXypcvb3BL+SH97/rUqVOEh4eTkJCg+bqtiRVNXKobdMIvU8i5s/k4tWrV4vTp0zrty93dnaioKOLj43XaT0ERHx/PkiVLtDq46+TkxN9//03fvn0ZMGAAo0ePJi1N9wM9GUxMTOjcuTMBAQFI7zipQhCEgsVw/wUUBCHfkSQJHx+f9z5EODs7ExISQtGiRWnUqBHnzp3Ldj8PHz5k/fr1jB49WmfF4dasWcPIkSOZP38+mzdvZs6cOXh5eTF79myDmNk/fPgw1apVIzAwkLVr17J+/Xqtnp/t6+vLrl273pjZOnnyJGFhYXz11Vda60sXxMy+9hnivv1p06bh6OiIl5cXderUwcHBgZ9++knzeteSDVFJaj1G+G5ymZwS1kU5tHYXjo6OfPLJJyxfvlxn/WUcv/fgwQOd9VGQrF27lpEjR2p964qJiQmLFy9mzpw5zJkzh7Zt2xIdHa3VPt6ne/fu3L59mzNnzuRZn4Ig6I9I9gVB0JoXL15w/vz5D+7jdnR0JDg4GHd3d5RKJeHh4dnqZ/bs2VhZWTF48ODchPtOT548Yd68eVy6dImEhAScnZ1xcHAA4LffftNrwpOamsr3339Po0aNcHV15fz58/Tq1UvrWxl8fX2JiooiLCws09f9/PwoWbIkbdq00Wp/2iaSfe1TKpXcvHmThw8f6jsUAFatWsX3339PQkKCZs9+SkoKkydPZsmSJUD62fXdSjQ0yL37kiTxfbVP8fDw4PDhw/Tr149BgwYxZMgQTYFJbcpI9sVS/g+TJImFCxfStm3bDx5BmhMymYxRo0axZ88eTp48SZ06dXK9tS2rGjdujKOjo1jKLwgfCZHsC4KgNZGRkUB6Mv8h9vb2HDhwgPLly9O0adMsFyyKjo5m8eLFjBgxAisrq1zF+y4ZVf4rV67M3r17uX37NleuXGHw4MFERERw/PhxnfT7IdevX8fb25vp06czZcoUQkJC8PDw0ElfXl5eODk5ZVrK/+TJEzZu3MioUaMMvvCdSPa1L2OLiKHM7s+fPx+1Wk2HDh34888/2bhxI126dEEmkzFv3jzNCqPPyreiqLkdcgNK+CVJwuU+lLAoAqTXBFm0aBHLli1j9erV1K9fX+tJebFixVAoFOL4vSw4efIk58+fZ9iwYTrtp2nTppw8eVJzrOvevXt12h+kF6Ht2rUrGzZs0NSmEQSh4BLJviAIWhMVFQVkLdkHKFSoEHv37qV69eo0b96c0NDQD97j7+9Pamoqo0aNylWs75OxNcDHx4dmzZphbGyMo6MjAwcOBODKlSs66/ttJEli0aJF1KxZk9jYWI4fP853332n04RbLpfTtm3bTMn+woULMTMzY8CAATrrV1tEsq99Dg4OVK9e3WCS/atXr1K8eHG2bNlC165d6dy5Mxs2bKBkyZJcvXpVk+ybKUz4oUYv1BjGHmW5TI5Nqgnbxs7H29ubmzdval4bOHCgpmp7rVq12L9/v9b6NTIyonjx4mJmPwv8/f3x8PDQ6kkv71K6dGmOHz9O/fr1ad26NTNnztT5fvoePXrw8OFDvQ1cC4KQd0SyLwiC1mTM7GfnODZra2uCgoKoV68erVq1eu/DbVJSEn5+fvTr14+iRYvmOt53yVi2mbE3P+N0AUtLS4B3nu2tC5GRkXTo0IFhw4bRu3dvzpw5Q+3atfOkb19fX65du8bNmzdJSkpi0aJFDBgwgEKFCuVJ/7mRlJSEubm5vsMocDL27RtCcS8jIyOSkpIyLXlXqVQkJSW9MRBW1b4Ew8rrf+uJHBlmCmPmN/uaY4ePEhsbS40aNVi5cqXmz7RmzZqcOnUKT09PWrRowS+//KK1GVhRkf/DXr16RUBAAEOGDMmzFUyFChVi+/btfPPNN4wZM4aBAwe+9VQbbfnkk08oVqwYGzZs0FkfgiAYBpHsC4KgNZGRkcjl8mwXirOwsCAwMJDGjRvTrl07du3a9dbr1q5dy/PnzxkzZow2wn2n0qVLY2dnx6ZNm3jy5AmmpqZA+haCunXr0qlTJ532nyEoKIgqVapw7Ngxtm/fzqJFizQDDnmhadOmmJmZERgYyJ9//klUVJROV1Rok5jZ1w2lUsmjR4+4deuWvkOhevXqREVF0ahRI6ZNm8bvv/9OgwYNePLkCTVr1kQuz/yI06t0E3qVUuop2vRE31huxMw6wyhhXZRatWpx5swZunXrxoABA+jZsycxMTFA+iqKnTt3MnHiRL7//ns6dOiglSJuItn/sNWrV5OWlqZZyZVXFAoF06ZNY82aNfz55580btyYZ8+e6aQvuVxOt27d2LhxI8nJyezbt4/Vq1frpC9BEPRLJhnC8LwgCAXCzz//zOzZszUz/NmVkpJCjx492LlzJxs2bKBjx46a19RqNRUrVqRixYps3bpVWyG/044dO3j9+jUdOnTAwsJC5/39W2JiIuPGjWPevHm0bNmSFStW6HQlw/u0a9eOuLg4oqOjKV68ODt37tRLHNnl6+uLTCZj+/bt+g6lQImNjcXe3p758+czdOhQvcYSFBSEr69vphMjZDIZkiSxbds22rdv/8Y9kiSx7MYeVt3U3vL4rJDL5JgpjJlZZxiV7NzfeD0gIIChQ4dib2/P+vXrqVevnua1Xbt20bt3bxwcHNi6dStVq1bNcRwTJkxgxYoVPHr0KMdtFGSSJFGxYkWqVq2q11nvkydP0qFDBxQKBdu3b6dmzZpabV+lUrFkyRKGDx+OlZUVr1+/RqFQkJKS8sYgmSAI+Zt4RwuCoDWRkZFZ3q//NiYmJmzYsIFOnTrRtWvXTNWCAwMDuX79OuPGjdNGqB/k6+tLz549SUlJISAggD/++IOAgACuXr2q06JG586do1atWixdupS5c+eye/duvSX6kJ7sHz58mPPnz/Pll1/qLY7sEjP7umFjY4Onp6dB7Ntv1aoVa9eupUSJEppq/K6urqxevfqtiT6kDwYMLteKMVW6YCw3QiHLg8cgCVwtC+P/yZdvTfQhfQ/1+fPncXZ2pkGDBkyZMkUziNGmTRtOnTqFlZUVdevWZe3atTkOxd3dnSdPnhjE8aGG6NChQ1y7dk3nhfk+xMvLi/DwcJydnalfv75WBx6CgoJwcXFh+PDhALx+/RpIPxZXJPqCUPCId7UgCFqT22Qf0ovjrVu3jl69etGrVy9WrVoFwPTp02nQoAF169bVRqhZsn37dtq0acPw4cP57rvv6NmzJ15eXmzbtk3rCb9arWbGjBl4eXlhYmLCqVOn+Pzzz7V+pF52tW3bFrVajYuLC02bNtVrLNkhkn3dUSqVHDx4UO+VvF+9ekWdOnW4dOkSz58/JyAggPbt25OYmPjBezu4e7O64Vgq2LrpLD45cpAgKvACC+uMooT1+wftPDw8OHToEN999x2TJ09GqVRqjjksVaoUx44do2vXrvTp04dRo0blKGF3d3dHkiSDOT7R0Pj7+1O2bFnNyRP6VKxYMUJDQ+nUqRM9evTghx9+0Mp7TqVSvXX1XenSpXPdtiAIhkck+4IgaE1UVFS2ivO9i0KhYMWKFQwcOJABAwYwbtw4jh07xtixY7UQZdZERUWxYMECjh8/TkxMDKmpqVhZWZGSksLo0aOzfFRgVjx8+JCmTZsyfvx4vvzyS06cOEGlSpW01n5uZCQURYsW1fvAQ3YkJiaKZF9HmjRpQmRkJJcvX9ZrHCNGjKBkyZJcunSJ48eP06NHD+bOncvQoUP59ddfP3h/cUtH5nt/zpeVOmAqN0YGWjmcL2O1gJuVI98V78C1JQfYs3N3lu41MjLip59+4uDBg9y9e5dq1appti1ZWFiwcuVKFi5cyKJFi2jUqBGPHz/OVmwZnyti3/6bIiIi2LJlC8OGDTOYzzpzc3PWrFnDtGnT+OWXX+jUqRNxcXG5arNt27asXr060/eoUCgoU6ZMbsMVBMEAiWRfEASt0cbMfga5XM6iRYsYOXIkM2bMoEiRIrRpk3fVtENDQ9m/fz9KpZLvvvsOgKFDhzJr1iwePnzIwYMHtdLPxo0bqVq1Kjdv3uTvv/9mxowZmoKAhmDevHmYmZlx8+bNfLX0V8zs6069evUwNTXV+1L+M2fOYGtri6enpyYhbtmyJTKZLMvFxuQyOV1K+LC92Y98VbkTxS3TP79ysrxfjgwZMrydKjKr7jBWNxxHqxo+eHt7s3Tp0my15ePjw/nz51EqlXTu3JkhQ4aQkJCATCZj2LBhHD58mIcPH1KzZk1CQkKy3K6LiwsBAQE8ffo0m99dwbdixQrkcjn9+vXTdyiZyGQyxo0bx44dOwgODsbb25u7d+/mqs3evXuzbt06zbJ9tVpNyZIltRGuIAgGRiT7giBoTVRUlNaSfUhP+EeMGAHA8+fPmTlzptba/pC0tDQAGjVqRM+ePQGIi4vD19cXgCtXruSq/djYWPr27Uv37t1p3rw5Fy5cQKnUX6Xwt3n9+jVLly6lR48exMXFERoaqu+Qskwk+7pjbm6Ot7e33pP9x48f4+aWvgz/woULVK9end27d1OuXLlsL1O3NDajk0d91jX6ljn1RtDWtQ6lrF0yJf1yZChkchSy9LRec6+RGbUKl2FA2RZsbjKBXzwHUrtwWc3M6eDBg9m/f3+2Z9MzTgRZvHgxa9eupVatWpw/fx6AOnXqcPr0aSpXrkzTpk35448/snwcYufOnWnXrl22Yino1Go1ixYtonv37tjb2+s7nLdq27YtYWFhJCYm4unpma1Bnrf59NNPCQgI0BS1dHV1zfS6JEmkpEq8TlATG68iKUWNWi1qegtCfmOk7wAEQSgYJEkiMjJSK8v4/+2PP/7AxcWFPn36MHbsWJKSkvjhhx+02sfbFCtWDICYmBicnZ0xNjbmwoULXLhwASBXhYyOHj1K7969efHiBatWraJPnz4Gs2z031avXs3r16+ZPHkywcHB7Nixg2bNmuk7rCwRyb5uKZVKZsyYQVpaGkZG+nmUMDEx4dWrVyQmJnLz5k3NQJyJiUmO358ymYwaDqWp4ZC+fzlFlcbduKfcjH1MfFoyyapUFDIZpgpjHEwLUd7WlaLmdu99/3bt2pUvvviCFStWMHny5GzH89lnn1G/fn0+/fRTvLy8mD59Ol988QVOTk7s3buXH374gW+++YawsDCWL1+OtbX1e9s0MjLK0yM884P9+/dz9+5d1q1bp+9Q3qtixYqcPHmSbt260axZM+bOnZurYoJdu3YlMjKSL774AkfnsoScSeDGgxSu30vm+oMUEpIyJ/cKOZRwMaaChyll3U0o725CyWLGBvnvlyAI6cTMviAIWhEfH09SUpJWZ/afPn3KmjVr+PLLL/ntt9+YMmUKEyZM4IcffsjyLFZOlSxZEgsLC8LCwrCzs8PV1ZWwsDDatm2LmZkZXbt2zXabqampTJgwAR8fH1xcXDh//jx9+/Y1yAcltVrNnDlz6NixI+7u7vj6+rJjxw6d/7lri0j2dUupVBIbG8vZs2f1FkPFihV5+PAhRYoUIS4uTlO889GjR2/MUuaUicKIcrautHWrS/eSDelbpim9SjehSwkfGrtUw9nC/oPvXysrKz799FNWrFiR6ZjA7KhQoQJhYWGMGDGCr776irZt2xIREYGRkRG//fYbW7ZsYe/evfzyyy9Zak+hUOQojoLK39+fqlWr5mkB2Jyyt7cnKCiI4cOHM3z4cEaOHElqaioAd+/eZcSIEcTGxmapLZVaomaDAYyZ/YTfNhfhp6VRbPo7lrM3kt9I9NOvh1uPUtl9/DV/rHvJZ788o9+PT/krNI74RP0W7BQE4e1Esi8IglZERUUBaHVmf86cOZiammrO8/7hhx+YMWMGP//8M+PGjdNp4lm0aFGaNm3K0aNHOXz4MA4ODsjlcgoXLkyPHj3o0KFDttq7efMm9evX59dff+XHH38kNDSUEiVK6CZ4Ldi3bx/Xr1/XHLfn6+vLgwcPNCsbDF1SUhLm5ub6DqPA8vT0xNLSUq9L+SdMmICZmRkJCQmULl2aPn36EBYWxqtXrwwuaRs0aBAPHjzg77//znEbZmZmzJo1i127dhEeHk7VqlXZt28fAJ06deLcuXNMmjRJ76ck5DePHj0iMDDQoArzfYixsTFz5sxh8eLFLFmyhBYtWnDv3j1atWrFwoULWbJkyXvvV6kkNgfH0vOHJ3y3MJLT15L+eS0LPz7/HrN6HJHGnA2v6PLtY2b/+ZJXcTkb0BIEQTdkUn6ZphEEwaCFh4fj5eXFmTNnqFGjRq7bi42Nxc3NjSFDhjB9+vRMr82bN49Ro0bx+eef4+fnp7OzgU+ePElQUBBdunRh06ZNREREoFQq6dKlS5bbkCSJZcuW8dVXX+Hs7My6devw8vLSSbza1LJlSyIjIzl16hQymYyUlBQKFy7MuHHj8mQbRW4ZGxvneomr8H6tW7dGpVKxd+9evcXw8uVLHjx4QKVKlTA2Nub169c8f/6cwoULU6hQIb3F9V+SJFG1alUqVKjAxo0bc93es2fP6NevH/v27WPMmDH88ssvmJiYIElSvklYDcWPP/7IjBkzePLkCTY2NvoOJ9sOHz5Mx44dSUhIIDk5GbVajbOzMw8ePHjrFpu7T1L4deULbj1K1XoscjmYm8oY09OeRrXEVhFBMARiz74gCFqRcW6vtpbxL1myhISEBM3M8r99/vnnmJiYMGzYMJKSkli0aJFOEn4vLy9q1qyJkZERZcuWxdjYOFv3R0VF8dlnn/HXX38xePBgZs2ahZWVldbj1LZr166xd+9eVq1apUkcTExMaNmyJTt27DD4ZD8tLY20tDSxjF/HlEolEydOJDk5WW8nSNjb22cqqGZlZWWQ7zGZTMagQYMYN26cVk4tKVq0KEFBQcyePZtvv/2WqlWrZqn2h1qt1tngaH6UlpbGkiVL6NWrV75M9AEaNGhA9+7dWbBggeZrT58+ZfPmzfTo0UPzNZVKYsP+WFbsjEFXs3xqNSQkSvy07AUHTyfw1af22FmLLSOCoE/iE18QBK3Q5jL+lJQUZs2aRa9evTSF8v5ryJAhrFixguXLl9O/f39N9Xxty5gZyW6iv3fvXqpUqcLhw4fZunUrS5YsMcgk5G3mzJlDkSJF6N69e6av+/r6Eh4ezpMnT/QUWdYkJycDiGRfx5RKJYmJiZw4cULfoeQLvXv3RiaTsXbtWq20J5fLGT16NJcvX85y7Q+5XK55fwiwa9cuHj9+nK9XAG3cuDFTog/pg0vTpk3TbHVLSlHz3YJIlu6IQaVOT8p1JWMg4eiFRD77+SkPnml/BYEgCFknkn1BELQiMjISKysrrSRYAQEBPH78mG+++ea91/Xr149169axfv16evfurSlSpE9qtZrx48fTsmVLqlatyoULF+jYsaO+w8qyV69esWrVKoYNG/bGbG3r1q1RKBTs3LlTT9FlTVJS+v5TkezrVrVq1bCzs9P7EXz5ReHChenQoQNLly7Var2RMmXKvLM9SZJYvHgxEydO5NtvvyU+Pl7zvv75559p06YNjx8/1los+Y2/vz9eXl5a2XqmL8eOHdP8OmNQWpIkzp07R3BwMIlJasbOici0Lz8vqNUQ/VrN5zOecftRSp72LQjCP0SyLwiCVkRFRWllCb8kSUyfPp22bdtSqVKlD17fo0cPNm3axNatW+nWrZteZ62SkpLo0qULfn5++Pn5ERQUhIuLi97iyYlly5aRmpr61pkue3t76tevz44dO/QQWdYlJiYCItnXNYVCQaNGjQwi2V+2bBm2trb6DuODBg8ezJUrV7S+GuJts/pPnz5l0KBBDBs2jKlTpzJ9+nSqVq1KbGwsx44dY+3atQQFBdG6dWvNyqyPyZ07d9i7d2++ntUHmD17Ng8fPmTDhg2MGDGC6tWra34exn/7A9/7R3L1bgpqPVToUqshIVlijF8EjyL0PxgvCB8jkewLgqAVkZGRWlnCHxQUxOXLlxk3blyW7+nYsSPbtm0jKCiITp06aWZ2tUWlUr23wrUkSWzbtg1bW1tu377NqVOn+OKLL/Ld3ti0tDTmzZtHjx49KFq06Fuv8fX15cCBA8THx+dxdFknZvbzjlKpJCwsTO8/D6mpqXqPISuaNGmCu7s7S5cu1Wk/ycnJzJs3j5UrVwLpf0+tW7fm+fPnzJ8/n19++YWbN2/i5ORE3759tXqKSn6xZMkSbGxs3tiulB8VL16cbt26MXv2bM6ePUtcXBwbNmygae9VnL+ZrJdEP4NaDfGJ6asLEpPESRGCkNfy15OoIAgGSxtFpwCmT59OnTp1qF+/frbua9OmDYGBgRw8eJB27dqRkJCQ61gyXL9+nREjRrw1mXj8+DHNmjWjU6dOjBw5khMnTlC5cmWt9Z2XduzYwf37999aFDFDu3btSEpKytURYromkv28o1QqSU1N5ejRo3qNI78cLCSXyxk4cCABAQHExcXprJ+bN28yf/58AIYPH86KFSvYuXMn/fv3Z8aMGRw5cgS1Wk3btm0ZM2YMwEe1lz8lJYVly5bRr18/LCws9B2O1llaWuJeqR0nr5thCG8NlRoiX6lYsj1a36EIwkdHJPuCIGhFVFRUrmeHTp48SWhoKOPGjcvR8VHNmjUjKCiI48eP06pVK609TEdHR7No0SLu3LmT6eubN2+mSpUqXL16lf379/PHH3/k6wTTz8+P+vXrU6tWrXdeU6ZMGcqXL2/QS/lFsp93KlSoQJEiRQxiKX9+OXKuf//+JCQkaOUIvnfZsmULsbGxlC1blpEjR2oGYh0dHYmOjiY2NhYvLy/8/Py4desWAKampvlm0CS3tm3bRmRkJEOHDtV3KDrxOkHN9NUvMKS3hFqCv0Jfc+5G3tYOEISPnUj2BUHQCm3M7M+YMYMyZcrQvn37HLfRsGFD9u3bx7lz52jRogUxMTG5ignA3d0dgPv37wMQFxfHgAED6Nq1K0qlkgsXLtC0adNc96NP586d49ChQ++d1c/g6+vLzp0737u1QZ9Esp93ZDIZSqVS78l+fkpS3dzcaNGiBcuWLdNZHxmnmFhYWFC0aFHMzMy4cOECAQEBALi4uODn50d4eDhly5alb9++QPrfpyRJ+erPMyf8/f3x8fGhYsWK+g5FJxZseUXMa7VBzOr/m1wGv656QWKyYf7bIQgFkUj2BUHQitwm+7du3WLLli188803KBS5O5fX29ubAwcOcO3aNZo0acLLly9z1Z6zszPGxsbcu3eP48ePU716dTZv3syKFSvYtGkTDg4OuWrfEPj5+eHm5kaHDh0+eK2vry8RERGcPHlS94HlQEayb25urudIPg5KpZLTp08THR2t1zjyy8w+wKBBgzh+/DhXrlzRSftubm7I5XLOnTvHxIkT+fvvvxkwYADXr1/HxMSEMWPGULlyZbp27QpAeHg4AQEB3L59G5lMlq/+LLPr2rVrhISE5PvCfO/yJCqNPcfj9bpP/13UUvpy/j3HDb++hiAUFCLZFwQh11JTU4mOjs7VMv4//vgDR0dHzQxTbtWuXZvg4GDu379P48aNiYyMzHFbcrkcV1dX1q9fT4MGDXBycuLcuXP079+/QDwUR0REsH79ekaOHImRkdEHr69bty6FCxc22KX8YmY/bzVpowLbwQAAau5JREFU0gS1Ws2hQ4f0FkN+m4n29fWlcOHCOpvdb968OYGBgVSuXJmDBw/i6+vL2bNnMTY2pl27dnz99df07duXFy9eIJfLuX37Nn369KFy5cr4+/tr2jHU1Tu5sWjRIgoXLkynTp30HYpOBB6Kw9Brw249GJfv3rOCkF8Z+MeBIAj5wYsXLwByPLMfERHBypUr+eKLL7SaoFWvXp2QkBCeP39Oo0aNePr0aY7auXXrFlFRUYSFhTFhwgQOHz5MqVKltBanvi1atAiFQsHgwYOzdL1CoaBNmzYi2RcAKFGiBB4eHnpfyp+fBt5MTEzo27cvq1evJiVFN2eQt2rVivDwcKZPn64ZxCtfvjx+fn4sW7aMbdu2YWVlRc+ePQkNDWXatGk4OTlx9epVIL2IXcaJIgUl6U9MTGTlypUMHDgQU1NTfYejdckpanYeeY2h/3U9jkzj/M2PpyCkIOiTSPYFQci1jDOaczqzP2/ePBQKBcOHD9dmWABUqlSJQ4cOERMTQ8OGDXn06FGW75UkieXLl1O9enUkSaJ8+fJMmjQpS7Pf+UVKSgoLFiygb9++2NvbZ/k+X19fLl++zO3bt3UYXc6IZD/v6Xvffn6cJRw0aBBRUVE6HTQzNTWlTZs2/PTTT5iYmDBp0iQSEhL47LPPAOjXrx+TJk2iXr16jB49msDAQGbMmMGsWbNo37695u9ULpeTlpamszjzysaNG4mOjmbIkCH6DkUnQs8kEJ9k+O8FhRy2hejuNApBEP4hkn1BEHItY4l8Tmb2X79+zbx58/jss8+ylWxmR9myZTl06BApKSn4+Phw7969D97z4sULunTpwqBBg+jevTtffPGFZlCjINm0aRPPnj3jiy++yNZ9zZs3x8TEhMDAQB1FlnMZyb6JiYmeI/l4KJVKLl68SEREhN5iyE8z+wAVK1akXr16LF26VOd9ffXVV9y+fZtOnTpRt25dAFq2bEmvXr0oVaoUkiSRlpZG1apViYuLY9u2bezdu5emTZsyevRoAIyMjDSDKvlxcAXSC/M1b968QK3M+rdjFxOR54O3gUoNJy4lojLEwgKCUMCIZF8QhFzLTbK/fPlyYmNj+eqrr7QcVWYlS5YkNDQUuVyOj4+P5ript9m/fz9Vq1YlJCSELVu2sGzZMsqWLUtkZCQJCQk6jTMvSZKEn58fzZo1y3ZVaisrK5o0aWKQyX5iYiJmZmb5LvnLzxo3bgxASEiIXvrPr8nn4MGD2bdvHw8ePNB5XxkV+r28vChUqBC9evWidu3aQPpASWpqKg8fPuTy5cvs2rWLkJAQypcvz+zZs2ndujXPnj3TVOvPeG9lnFCSH5w7d46wsLACW5gP4MrdFE1hvrPbu3NwoTvH134CwNXgMRxc6K75L8S/JEdW1OT8rv7ERV7K1E7GNVeDx7zRx93wWZrXDy2rjCo18Y1rEqLvcnn/KI6trkvIojIcWVGD8E1tuB76veaalDR48CxVi9+9IAhvI5J9QRByLSoqCiMjIwoVKpSt+9LS0pg5cyY9evTQHG+nS+7u7oSGhmJpaYmPjw/Xrl3L9HpSUhJff/01zZs3p2LFily4cEFTxCkjvrx4KM8rYWFhhIeHZ+m4vbfx9fUlNDSUV69eaTmy3ElKShJL+POYi4sL5cuX1+tS/vw4uNOtWzcsLS1ZsWJFnvW5e/dujh49SsuWLTVbktLS0pg7dy4NGzakXbt2eHl5YWRkxOnTp6lYsSJ79uxhz549wD9/zgEBAdSvX5+JEyfmWey5sWjRIlxcXGjbtq2+Q9GJmNcqoqJVWbrWxqkGlg7lSU1+xcsHBzm/sy+qtKQP3idJEs+ub9H8XpUSR+TdoEzXpKXEcS6wJxG3dpCa/ApL+9IojC2Jf3mN5ze2Zrr25gPd1KsQBOEfItkXBCHXIiMjKVy4cLYftjdt2sT9+/cZO3asjiJ7U7FixQgJCcHBwYGGDRty8eJFAC5evIiXlxcLFixg5syZ7N27VzMTBuDh4QGQpS0A+YWfnx9lypShVatWObq/bdu2qFQqTRJgKESyrx9KpZIDBw7ope/8OrNvZWVFjx49WL58OSpV1hI1bahYsWKmI0OvX7/Oxo0buXfvHjKZjOvXr1O/fn2GDRtGyZIlATh58iSpqf/MxJYvXx5TU1Nmz57NhQsX8iz2nIiLi2Pt2rUMHjwYY2NjfYejEzcfZj1xrtX5Lzy77qaE59cApCa9IOHVzQ/eF/0kjKS4hwBYO1YF4Nm1zZmuiXl2muTXTwDw6r4fz65B1Ot9hPoDzlFe+bvmOoUCbohkXxB0TiT7giDkWlRUVLaX8EuSxPTp02nRogXVqlXTUWRvV6RIEQ4ePEixYsVo1KgRY8aMwdPTE0mSCA8P5+uvv9ZUoc5QrFgxFApFvlq2+j6PHj1i8+bNjBo16o3vNauKFy9OzZo1Da4qv0j29UOpVHLr1i29rX7JjzP7kF6o78GDB3obKAGwtLTUfLYtXbqUW7duUatWLdasWcPevXuB9GKnxsbGvHz5kvHjxyOTyTh16hSbN2+matWqeos9K9avX09CQkKWTxzJjx48SyM7bwG1KoWk2PSCtTK5CaaWzh+859n19MTe2qkaHrXTV4S9enKcpP9P7gGQ/jkK4PGlNcQ8P4sqLQkjE2ucSrXRvKZSwb2nYhm/IOiaSPYFQci1jJn97Pj77785d+5cns7q/1vhwoVZu3atZitBhw4dCA8Pf+dDq5GREcWLFy8wM/sLFizA0tKS/v3756odX19fgoKCMs346ZtI9vWjUaNGABw8eDDP+86vM/sAderUoVKlSixbtkxvMVhZWVGrVi0AJk6cyP3792nVqhV2dnakpqZSv359Ro4cCcDq1auZO3cuNWrUICwsjObNmwPpWwEM8e9BkiQWLlxI27ZtcXV11Xc4OpOUrM5ycb6DC90JXVyGp9c2ADLK+UzFxOL9/4anpcYTeXs3AEXLdsTetSHGZvYgqTWDAAC2xbyxsE0vgPjw/GLObO3A4WVVOLvjU148CM3UZkI+ODlAEPI7kewLgpBrkZGR2Z7ZnzFjBjVr1kSpVOooqvfbunUrDRo0wNzcnEqVKrFr1y7Cw8Pfe4+7u3uBmNlPTExk8eLFDBw4EGtr61y15evrS0xMDIcPH9ZSdLmXlJSEubm5vsP46Dg4OFC9enW97dvPrzP7MpmMQYMGsW3bNr2d+FG4cGH++usvBg0ahEKhoF+/fixZsoRXr15hbW3NzJkzAQgKCmLNmjWkpqZSu3ZtihcvDkBCQgJGRkaaAn6G5OTJk5w/f75AF+YDSEmTsjyzb+NUA2vHqihMrAGJm8em8Drqynvviby9G1VaAjK5MU6lfZErjHEqnV7/4N/7+BVGZtTqvIMSnqOxKlwZmUyBpE4h+vExLuzqx6vHxzLFLAiCbolkXxCEXIuKisrWzP7Zs2fZv38/48aNy/MH9NevXzNo0CA6d+5Mw4YNuXTpEmFhYXh6etKyZcv3JioeHh4FYmZ/3bp1vHz5klGjRuW6rerVq1O8eHGDWsovZvb1R6lUEhwcnOcJn6ElmNnVp08fANauXau3GMzMzFiyZAmBgYH079+f58+fAzB9+nRq167NnTt3WLx4MRcuXMDJyYnx48dTuXJlbt++TZEiRfD39wfSBy/UavX7uspT/v7+eHh4aFYgFFTGRjKy+jao1fkvancJpG7PUORG5qhS4nhwbtF778mYvZckFSfWN+Lwsio8vbYRgMSYe0Q//Wew3MjECo/aX+LZdRf1B16ggnImyOSARNTd/ZliFgRBt0SyLwhCrmV3Zn/GjBmUKFGCzp076zCqN504cYLq1auzYcMGli5dypYtWyhcuDBWVlbs2rWLBg0a0KZNm3cWnCsIM/uSJDF79mzatWunKbyVGzKZjHbt2rFjxw6DSbhEsq8/SqWSR48evfdoS13JrzP7kD6z3qFDB5YuXar395GHhwcDBgygcOHCtGvXjqFDh5KamsqiRYs4ePAgRkZGDBgwQPP5PXDgQOLj4/ntt984ffo0kiQhl8tRq9V6/15evXpFQEAAQ4YMQaFQ6DUWXTMxznqy/w8ZkH6TWpX8zqsSYx8Q/eRE+m8kNWkpsaSlxKL+VwX/Z9c2ARAXeZFHF1eQkvgSSE/87d0aIZcb///v/1lNZmaSf9+zgpBfiGRfEIRckSQpWwX67t27x8aNGxk9erTm2CddS0tL46effuKTTz6hcOHCnDt3jkGDBmVKDszNzfnrr79o1qwZ7du3f+tMtYeHB0+fPiU5+d0PRYYuODiYy5cv5/i4vbfx9fXl7t27XL58WWtt5oZI9vWnQYMGKBSKPF/Kr++kUhsGDx7M5cuXOXnypL5DoUSJEkRERLBmzRoAVqxYwfbt24mNjaVFixaaWisTJkzg8OHDmJiY8PTpUwYPHkzr1q05efIkcrlc7wMwq1evJi0tjYEDB+o1jrxQ3MkYdRbfBqe3dODUFl9OrG+oSdgLl3j3yof0ZfoSMrkx9QdeoPHw+5r/ilcdBEDEnd2oUhNJSXzBzSOTObqyJmHrGxK+qTVha+ujViUjV5jiWLIlAAo5uBYpmCcjCIIhEcm+IAi5EhsbS2pqapaX8c+aNQtbW1sGDBig48jS3blzBx8fH3788Ue+//57Dh8+TOnSpd96rZmZGZs3b6Zdu3Z07tyZzZszHynk7u6OJEk8fPgwL0LXCT8/PypXrkzjxo211mbjxo2xsrIymKX8ItnXHxsbGzw9PfWyb1/fiWVuNW3aFDc3N5YuXarvUDSsra2JiYlh+/bt3Lhxg0qVKvHtt99SqFAhgoOD+fnnnwHw9PTkxx9/xMPDg71799K8eXOOHDmi19glScLf359OnTpRpEgRvcaSF8q6mWT52tiIs8RFnEetTsWqcCXKNphK0bKd3nqtJEmaPfm2xephbFoo0+uOJdKTd1VKHJF3g7ByqIBbjZHYFKmBKjWe+JfXQa7A1qUuVVotxapwxfTr1dmLWRCEnMmbaTVBEAqc1q1bc/bsWWxsbABYsmQJYWFheHl58emnn771nhcvXrB06VLGjh2LpaWlTuOTJIlVq1YxatQoHB0dOXz4MN7e3h+8z8TEhICAAPr160f37t1ZvXo1vXr1AtKTfYD79++/c8DAkN2+fZudO3eyePFirSZGpqamtGjRgsDAQL777juttZtTiYmJFCpU6MMXCjqhVCpZsmQJarU6x8c6ZldBmNmXy+UMHDiQ33//nVmzZmFlZaXvkJDJZBQqVIh169YxdOhQ6tSpQ926dUlISKBfv34AtGnThnHjxtGgQQMASpUqxd27dzl79iz169fXW+yHDh3i2rVrLFiwQG8x5CWHQgoKWcmJeZ1eL6FG+w2ZXq+g/IMKyj+y1Fbj4Zm3q9Xr/e6BG1sXrzeuL1V3XJb6Ecm+IOiemNkXBCFHZDIZz54948aNG0D6cVuzZ8/mxx9/zHTdnTt3NIWeFixYgCRJmiOcdOXly5d069ZNs6/03LlzWUr0MxgZGbF69Wr69etHnz59WL58OQCurq7IZLJ8W6Rv7ty52NvbawYvtKldu3acOHGCZ8+eab3t7BIz+/rVpEkTIiMj83xbR36f2QcYMGAA8fHxbNy4MU/6y2ohPVtbWzZs2MDo0aMB6Ny5M48fP6ZcuXL079+fOnXqADBz5kzu3r2LqakpRYsWBfQ3EOPv70/ZsmU1R0J+DMp7mGS5Ir++KeRQwkUs4xcEXRPJviAIOTJ8+PBMv894aPz1118zfb1ly5a4uroycOBAZs2axYABA7J9TF92HDhwgKpVq3LgwAE2btzIypUrNasPskOhULB06VKGDh3KoEGDWLhwIaampjg7O+fLIn2xsbEsX76cIUOG6ORYutatWyOTydi1a5fW284ukezrV7169TA1Nc3TpfwFYWYfwM3NjebNm7Ns2bI86S8uLi5blfPVajUvXrzg2LH049MGDBiAj48PJiYmnDhxQrOs39vbmzJlygD6GYSJiIhgy5YtDBs2rEAMAmWVZwXzjHp7Bk0ug6plTEU1fkHIAyLZFwQhR1q1aoWzs7Pm90ZGRjRv3pwOHTpkui4lJYXU1FRWrVrFq1evuHHjBmFhYVqPJzk5mW+++YamTZtSrlw5Lly4QNeuXXPVplwuZ8GCBXz55ZeMGDGCWbNm5dvj91auXElCQgIjRozQSfuOjo54e3sbxL59kezrl7m5Od7e3nm+b7+gJHWDBg3i2LFjXL16Ved9vXz5ksmTJ2d5sEQul+Pg4EBMTAwrV66kdevWODo6kpSUxOjRo3n16hUlSpSga9euVK9eXbfBv8eKFSuQy+WarQYfi+Z1LMmjure5opagY0PrD18oCEKuiWRfEIQcUSgUmWZNZDIZCxYseOOBO2MWOWP26ODBg9SrV49Vq1ZpLZbLly/j5eXF3Llz+f3339m/fz/FixfXStsymYxZs2Yxfvx4Ro8eTXx8fL6b2Ver1cydO5euXbtq7c/lbXx9fdm/fz+JiYk66yMrRLKvf0qlkpCQENLS0vKkv4Iysw/p76PChQvnyex+8eLF+fnnnwkMDMz2vX379qVy5cpA+kqv48ePY29vT9u2bTVJ9n//XvLi70mtVrNo0SK6d++Ovb29zvszJFYWcprXsURh4E/39jZy6lXR/gozQRDeZOAfB4IgGLJBgwZpfv3dd99RqlSpN65525LxMmXKaGUfpSRJzJkzh1q1apGWlsbJkycZM2aM1ouCyWQyfv31VyZNmsT58+c5f/58vkoudu/eza1bt7R63N7b+Pr6kpiYyIEDB3Taz4ckJSXpZKuCkHVKpZLY2FjOnj2bZ30WlJl9U1NT+vTpw6pVq0hJSdFpX8bGxri4uOT4uD9JkkhKStKsdvL09GT48OGYm5ujVqsz/Z2o1Wq2bNnC69evtRH6O+3fv5+7d+8ybNgwnfZjqNr7WKPK+s6MPCeTQYeG1igUBeP9KgiGTiT7giDkWLFixShTpgxmZmaMHz/+rddYWFhk+n2bNm04deqUprJ9Tj19+pRWrVrx5ZdfMmTIEE6dOkW1atVy1eb7yGQyJk+eTIcOHYiJieHbb7/NNwm/n58fXl5e1K1bV6f9lCtXjjJlyuh9Kb+Y2dc/T09PLC0t82zgJ7+8F7Nq0KBBREVF5WjGPbvc3d1zvFpJJpNhZmbGwYMHWbhwIYMHD6Z8+fIAmQZd09LSePLkCYMHD6ZOnTpcv35dK7G/jb+/P1WrVtX5552hKu1qgldFM4Oc3ZcBFmYy2tbX/0kTgvCxMMCPAkEQDI0kSTyOTOXgqXgWb3vFLyuimLQ4kgn+kXT/+iDfzbnOvpNpXL2XTEpq5ofu5ORkza9//PFHtm3blqOCef/2119/UaVKFc6fP09QUBBz5szJs5ncoUOHAjB9+nRGjx5t8EnG5cuX+fvvv3U+q5/B19eXwMDAbBX90jaR7OufsbExPj4+ebpvv6DM7ANUqlSJunXrsnTpUp33pa06JEOHDqVz585vfF2SJFJSUmjQoAE9e/ZEpVLh6enJtm3bct3nfz169IjAwMCPrjDff43pZY+JseF9/xLw9af22For9B2KIHw08kEZD0EQ9EGllgi7lMjOw6+5cCuZxOT0pFahAEmdXmAH0pfkyWUQcvYVEiCXg1sRY5rXsaSVtyWxsbHI5XK2bduGr69vrmKKj4/n66+/ZsmSJbRv354lS5botLL/23h4eADw9ddfM2vWLJKTk5k3b16enSeeXXPmzMHZ2ZkuXbrkSX++vr788ccfnDp1Ci8vrzzp898ylhWLZF//lEolEydOJDk5GVNTU532ZeiDbjkxePBgPvvsMx4+fIirq6vO+nF3d+fQoUM6az9j9n/gwIH8+OOP1K5dm5IlS9KpUyfGjx/P1KlTMdJSVblly5Zhbm5O7969tdJefuVoZ8Tn3eyYsealvkPRkMvBu4o5jWtZfPhiQRC0xjCfTgVB0JtXcSrW7Ymhx/dPmOAfRfjVJE2iD6BS/ZPoA0gSqNT/nPajVsO9p6ks2R5N1/89ptPne9ix71KuE/2TJ09So0YN1q1bx+LFi9m2bVueJ/qQfjQWQPXq1Vm2bBn+/v589tlnqFSqPI/lQ16+fMmaNWsYMWIEJiYmedKnt7c39vb2ebL8+G1SU1ORJEkk+wZAqVSSmJjIiRMn8qS/gjaT261bNywsLFixYoVO+3F3d+fx48ekpqbqrA+5XM6ECRM4dOgQz54949ixY/Tu3Zvff/+d5s2bExERkes+0tLSWLJkCb169cLaWlR6b1nXEs8KZhjCOLRcBhamMr761L7AvU8FwdAZwEeAIAiGQJIkdh55Tc8JT1geGMOLmPTkNaersSUJ0lRw6rqCP7ZYMnV5FDGvP5wQnzt3jn79+hEfHw+ASqVi6tSpeHt7Y2try9mzZ/nss8/09sBgYWGBk5MT9+7dY+DAgaxZs4aVK1fSr1+/PKs8nlVLlixBrVZrth7kBSMjI9q0aaO3fftJSUkAItk3ANWqVcPOzi5PlvIXxJl9a2trevTowfLly3W6Lcbd3R21Ws3jx4911kcGb29vzp07R6tWrVi7di3NmjXj4sWL1KxZM9dHsu7atYvHjx/n6eedIZPJZHw/0IFijkZ63b8vk6WvCPxlhBP2NmL5viDkNZHsC4LAsxdpfOMXwcz1L0lOkdDmc3NGVeCQ0wn0+/EpR84lvPNaSZIYMmQIq1evZvTo0dy9e5eGDRsyadIkvv32W44ePUrZsmW1F1wO/bugVa9evQgICGDDhg18+umnOq+enVVpaWnMnz+fnj175vkKiHbt2nHhwgWt7APOroxj/0Syr38KhYJGjRrl2b79gjhjOGjQIO7fv6/TQocZxVLz6khRW1tb1q9fz4oVKzh8+DDW1tbY29vj4+PDwoULczxw4+/vT506dahRo8Z7r0tIUnPjQQrnbyZx6moi528kce1eMnEJBlzCPodsLBXM/KoITnYKvST8Mhko5DB1mCOVS+l2K48gCG8n9uwLwkfu0NkEfl31grQ03c6MqSWIS1AzcXEULepaMqaXPUb/OXpnx44dhIeHA7B48WLWrFlDkSJFCA0NpX79+jqNLzs8PDwyPRh37doVU1NTunbtSpcuXdi0aZPO9yh/yLZt23j48GGeFeb7txYtWmBsbExgYCCjRo3K077FzL5hUSqVjB49mvj4eCwtLXXWT0Gc2QeoW7cuFStWZNmyZTRr1kwnfWRsTcqrZB/SB2b69++Pt7c3PXv25MKFC3h5eTFixAjCwsJYuHDhGye5vM+dO3fYu3cvy5cvf+O1h89TCbuUyM0HKVy+m8LTqHevwHK0VVCxhAll3U3xrGBGade82f6kSw6FFMwdW5Rv/CJ48Cw10zY8XVLIwUgh49eRjlQvKz6PBUFfxMy+IHzEgo6/5selUaSkSHlyLm/G8/i+E/H8sDCS5JR/Ok1LS2Ps2LGZCt2pVCr27dtnUIk+pM+E/XfW2tfXl+3bt7N//37at2+vmWHWFz8/Pxo2bKjT4wjfxcbGhsaNG+tlKb9I9g2LUqkkNTWVo0eP6ryvgjizL5PJGDRoENu2bePFixc66cPCwgJHR0e9rMQpW7Ysx44d46uvvuLo0aNUqVKFjRs34u3tze3btzXXJSQkcPjw4Xe2s3jxYgoVKkS3bt0AUKkkDp9LYPTs5/T78Sn+W6M5eDrhvYk+QGS0isPnElm2PZohvz5j+LRn7DsR/8YpM/mNvY2COd8UoVmd9AE3Xb9VZIC7szELxhcRib4g6JlI9gXhI7Uv7DUz1rxEkv4prpdXJAlOXU1i4qIoUv9/RcHq1au5efNmpr2pKpWKUaNGGdysnbu7Ow8ePHhjH23Lli3ZuXMnhw8fpk2bNpq6A3nt9OnTHD16VC+z+hl8fX0JDQ0lJiYmT/sVyb5hqVChAkWKFNH5Un5D+4zQpj59+iBJEmvXrtVZH/9drZSXTExMmD59Ovv27SMyMhJzc3OeP39O7dq12bVrFykpKdSpUwcfH5+37utPTk5m+fLl9OvXD3Nzc3YdfU337x8zaXEUF26mH/2aUUg2K9TSP0Vobz5I4bdVL+j87SP+3BeLSpV/f86szOWM7+vALyMcsbWSI9dBwq+Qp/83oF0h/L8tSgmX/L8yQhDyO5HsC8JHKOxSItP0fCSPWoJT15KYtvoFcXFxmZZ7KxQKFAoFKpWK/fv350nhqOzw8PAgNTWVp0+fvvFakyZN2LNnD+Hh4bRs2ZLY2Ng8j8/Pzw8PD49cn4CQG23btiU1NZW9e/fmab8Zyb65uXme9iu8nUwmQ6lU5sm+/YI4sw/g6OhI+/btWbp0qc4GNf5dh0RfmjVrxoULF/D29ubZs2fY2dnRtm1bypYty6VLlwD4+eef37hv27ZtREZG0rXnMMbOieCPdS95GZue2ed2yXrG/fGJEkv+imbE9Gfce6q7UwvyQt3K5qya5ELbBlYYG2lnlj9jQV6V0qYs+l9Rercq9MY2PUEQ9EMk+4LwkYl5reLXVbpZDppdkgTBpxJY9OcFEhISMDU1xdPTkz59+jB16lS2bt3KjRs3KF68uL5DzeRDBa0aNGjA/v37uXjxIs2aNePVq1d5FtuzZ88ICAjg888/R6HQX+Vjd3d3qlWrludL+cXMvuFRKpWcPn2a6OhonfVRkGf2AQYPHsylS5c0NU20zRCSfUgf2AgMDGTOnDk8efIEa2vrTHHt3LmTixcvZrrH39+fhu0nMHW9Jef/fyZfV24/TuWzn5+yfm8M6rza/K4DVhZyvuphz+bfijO8sy3OhdP/rZDLyfKMf0bBP3NTGR0bWbNykjMzvypCyWJiNl8QDIko0CcIHxm/gFfEJ6q1WnE/t0KuufH4+WtcnHRXwEubMpL9e/fu4e3t/dZr6tatS3BwMM2aNaNJkybs378fBwcHnce2cOFCTExMGDRokM77+hBfX1/mzp1LamoqxsbGedKnSPYNT5MmTVCr1Rw6dEinq00K6sw+QNOmTXF1dWXp0qV4eXlpvf1/b02S6/lgdplMxqhRo3B2dqZr165vvP7LL7/w559/AnDlylUeJXvj5jKY5BTd/6OWsXNr6fYY7j5JZXxfh3w9g21tIaeL0obOja25cCuZy7eTuf4ghSt3UzTH7/6XuamMcu4mlPcwpZybCXUqm2FmIuYOBcFQiWRfED4ih84mEHLm3Uff6UtyisS8zfH8PNwiXzyw29jYYGdn98GZsJo1axISEkKTJk1o3Lgx+/fvp0iRIjqLKzk5GX9/f/r164etra3O+skqX19fpkyZwtGjR2nUqFGe9CmSfcNTokQJPDw8CA4O1lmyX9Bn9hUKBQMHDuSPP/5g5syZWFlZabV9d3d3UlJSeP78Oc7OzlptOyckSeLrr79+62sBAQFMnTqVkiVLMnHBTdxqDMvj6NIFn0ogMVli8meF83XCD+kDLNXKmFGtzD+fmzGvVbyIUZGSKqGWwNRYhqW5nCL2inzx77QgCOnEUJwgfCRS0yRm//lS51V4c0KlhrBLSZy4lKTvULIsqwWtqlSpQmhoKFFRUTRq1Ein9QcCAgKIiIjgiy++0Fkf2VGzZk1cXFwIDAzMsz5Fsm+Y8mLffkFPQAYMGEB8fDybNm3Setsf2pqU18LDw3n06NE7/04HDBjAwi1RvFRXz9vA/kWS4PiFRKatfpGvl/S/SyErBSWLpc/gVyxhSqniJhR1MCrw7zNBKGhEsi8IH4nD5xKIfm1Yy/f/TS6HrSFx+g4jy952/N67VKhQgUOHDhEfH0/Dhg158OCB1uORJAk/Pz9atmxJuXLltN5+Tsjlctq2bcv27dvzbOZVJPuGSalUcvHiRSIiInTSfkGf2Yf0z5xmzZqxbNkynbQN6OX4vbepXbs2mzZt4vvvv6dTp06UKlUq0/aCcrV7szlYv8ebQvpJNgfCE9hyMP/82yUIwsdFJPuC8JHYFhKnk6N2tEWtTj+O73Fk/qh0nN2CVqVLl+bQoUOo1Wp8fHy4c+eOVuM5cuQIZ8+e1etxe2/j6+vL7du3uXbtWp70l5iYiEKhwMhI7FIzJI0bNwbg4MGDOuvjY5hxHDRoEEePHuXq1atabdfW1pZChQoZzMy+XC6nS5cuTJkyhS1btnDr1i2SkpK4ePEii5b9yXNZKyQpi2fp5YElf0Xz4Hn++LdLEISPi0j2BeEjcOdxCpfvpOT6GCJdk8th5+HX+g4jSzKW8WdnRtHDw4PQ0FBMTEzw8fHhxo0bWovHz8+PcuXK0bx5c621qQ1KpRILC4s8q8qflJQkZvUNkIuLC+XLl9fZUv6PYWYfoH379jg4OLB8+XKtt20oFfnfxdjYmMqVK/NE1YSEJDUymeE8wkoSTFv1ApWh/yMrCMJHx3A+KQVB0Jl9J+I1x+QYMrUadh+LzxcP7u7u7iQmJhIZGZmt+1xdXQkNDcXGxgYfHx8uX76c61ju37/Ptm3b+OKLL/ReSfu/zM3Nad68uUj2BZ3v2/8YZvZNTU3p06cPq1atIiUlRattG3qyD+lFZg+dTUQtGdbftUoNV++l8Fc+2oomCMLHwbCeCgVB0InLd5JR6WjF46vHxzm40J2DC91JjH2Y6bW01HjunpzJiT+VhC4uy9FVnlwP/Z7U5Jh3theXoObZi7cf+WNIPDw8gJztcXV2diYkJIQiRYrQqFEjzp8/n6tY5s+fj7W1NX379s1VO7ri6+vL8ePHsz0wkhMi2TdcSqWSW7du6axmxcdi0KBBREZGsnPnTq22a+jJviRJrN4dY5BFZjOs2xtLmurj+VkUBMHwiWRfEAo4tVri1kP97CW8uHsg9077kRhzD3PbkqhSE3hyZS3nA3ujVqe9874bD7Q7Y6ULua1e7eTkxMGDB3F3d6dx48acOnUqR+3Ex8ezZMkSBg8erPXjuLSlTZs2AOzatUvnfSUlJWFubq7zfoTsyzh+UVf79j+GmX2AypUrU6dOHZYuXarVdjOSfUMdOLl2P4U7j1MNtsgsQHScmmMX9F84UBAEIYNI9gWhgHsUkUZy6ptPR8fXfsLBhe7cPv4rNw5P4PDyahxZUZObRyZrEnG1Kpm7J2cStr4hIYtKc2RFTa4e/IaUxJcA3A2fxbkdPTRthq2rz8GF7lwNHkP8yxtEPwkDoHT9SXh120PtLukzUXGRF4i89fZZKYU8fyT7dnZ2WFtb52omzN7engMHDlC+fHmaNGnC8ePHs93GmjVriI2N5fPPP89xHLrm5ORE3bp182Qpv5jZN1wODg5Ur15dJ0v5DTVB1ZXBgwezd+9eHj58+OGLs8jDw4PXr1/z8uVLrbWpTdtD4wx+O5pcnl4MVxAEwVAY+MemIAi5dfPh+xPnhxeW8fzmDhRGZqQmveDRxRU8u5Z+jvPFPUO5d9qPpNiHWNiVRq1O4dm1TZzd3g1VWhKmlkWxsCutacuqcEVsnGpgbuOW6eFb9v8fNf8uqPTy8ZG3xqNSw/V8kOzLZLJsHb/3LoUKFWLv3r1Ur16dZs2aERoamuV7JUlizpw5dOjQQbOtwFD5+vqyd+9ezdF4uiKSfcOWsW9fF8n5xzKzD9C9e3fMzc1ZuXKl1trM7WolXYqNVxF8KkFn29G0Ra2G8zeTRWV+QRAMhkj2BaGAi41Xv3ePo6llUer1OkydnqGYWBYB4NXjo7x6EsbLB+nLbav7/olXtz3U6XEAuZEZCa9u8vzmX7hU/JSyDaZq2qrcYjG1Ov+FR+0vsbQrjaV9+nnvN49MInxjK8I3t9Fcmxz//J0xxcQZ/p590N4eV2tra4KCgqhXrx6tWrVi//79Wbpv//79XL161eCO23sbX19fEhISdHr0Gohk39AplUoePXrErVu3tNruxzazb21tTffu3Vm+fDlqtXYyYENO9i/dTiYtf/yzgAw4e023g5qCIAhZJZJ9QSjgklOl9yb7hT2aYWRqg8LIDHNrVwBSEiKJe35Oc83Z7d04uNCdY6u9UKelP8TEPj/73n5lcgVV26yiSJkOGJvZkxj7AFtnT8xt0h8o5fJ3n4P+tm0HhsjDwyPXM/sZLCwsCAwMpHHjxrRr1y5L+9v9/PyoXr06DRo00EoMulShQgVKlSql86X8Itk3bA0aNEChUOhkKf/HNLMP6YX67t27p7U/S0dHR8zNzQ0y2b/xIAVtHTTyvqKy0U9OcH5XP46sqKG55vHltW+0oValcjd8NsfX1idkUWmOra7DzaM/kZYajzyfbEUTBOHjIJJ9QSjgPvT4a2Rq88+170jAbZxqvPGfiYXjB/s2s3KmYlM/Pul/Cp/Bl6nUfCGpSa8AsLAtmeOYDYW2C1qZmZmxdetWWrVqRceOHdm2bds7r71x4wa7d+/myy+/zBdJjkwmo127duzYsUOns7Ai2TdsNjY2eHp6aj3Z/9hm9gHq1atHhQoVWLZsmVbak8lkuLm5GWSyf/1+Cuo8OMM+LvISrx4dwcjU9r3XXQsZy71Ts0h6/RhzGzdSEl/w6MIyLu4eSJpKzZW7yTqPVRAEISvePbUmCEKBYGIsy1H1Ymunappfu9UcgWOJ5gCo1Wm8enQEC9tSACiM/ql8rk7LXIU4LvIi5oVKYGRihaRWcfv4L6SlxALgVKrde2PODzw8PIiLi+PVq1fY29trpU1TU1M2btxI79696dq1K+vWraN79+5vXDd37lwcHR3p0aPHW1oxTL6+vsyePZszZ85Qq1YtnfSRmJiIjY3Nhy8U9EapVLJkyRLUajVybU3X8vHN7MtkMgYNGsR3333HixcvcHBwyHWbhnr83tV7KRxfW5+kuEe4VR+GKi2B5zd3IJMpKFLGl1LePyCXG6FWJXP/9Hye39pOUtxjjExscPBQUqrud5iY23M3fBb3Ts3WtBu2rj4ARct1oYLyD4qW64RLpV6kJERqXvuvuMiLPL+RPhBb5pNJFK/Sn6h7f3MxaBDRT8KIursXhbwVySlqTE3EnJogCPolPoUEoYCzs5bnKNm3K1YPe9eGAFza8xkn/lRyIqApR5ZV4cKufiTFPQLAvJA7MrkxAOcCe3J6SwcibqcvQX96bSNHV9bk5IbmHF1Vm8eXVgFQvOogbIpUf2u/Mhk4FFJkP2A90NUeV2NjY9atW0fPnj3p2bMnq1evzvR6TEwMK1euZNiwYflqFrt+/frY2trqdCm/mNk3fE2aNCEyMpLLly9rrc2PcWYfoE+fPkiSxLp167TSnjaKjmpbcoqa2Ph/6hLoqqgsgLGZHQqj939+vHgQovm1Y8lWADi4K5ErTP//9VDUEjx/lU+KDAiCUKCJZF8QCrgyriY5vrdyy8V41PoS80IlSIx9QEpCJBZ2pXGvNUpTfM/YzI4y9SdjauVCSkIUsRFnSUmIBMDGqTpmNm4kxj5AlZaAtWMVyjWaRplPJr6zT7kMyrrnPOa8lFEBXxczYUZGRqxcuZKBAwfSv39/lixZonlt+fLlJCcnM3z4cK33q0vGxsa0bt2awMBAnfUhkn3DV69ePUxNTbW+lP9jm9mH9GMtfX19Wbp0qVYGPDw8PAxuZv+/NVx0VVQ2y/G8fqr5tYl5YSD9pBljM/v/f/0JAKn5pPaMIAgFm1jGLwgFnIujEeamMhKTMz941Ot99I1ra7TfkOn3CiMzSniNpoTX6Pf2UaxSb4pV6v3G14uW60zRcp2zFa9KDWVzMUCRlzIKWulqJkwul7No0SLMzMwYMmSIJsGfO3cu3bp1w9nZWSf96lK7du1Yv349Dx8+xNXVVevti2Tf8Jmbm+Pt7U1wcLDWTpL4WGf2AQYPHkyrVq04deoUnp6euWrL3d2dly9f8vr1a6ysrLQUYe48fRaZ6fcZRWUBzK1dSYl//taisv8V+/wsLhV0ue0p889gatrH+zMpCILhEDP7glDAyWQyyrjlj+Q5Q9l8Em9eFLSSy+XMmTOHMWPGMGrUKAYPHszdu3fzxXF7b9OyZUuMjIx0NruflJSEubn5hy8U9EqpVBISEkJaWprW2vwYZ/YBmjVrhqurK0uXLs11W4Z4/N7GDZm3KOiyqGxWmFr9M8iakhgFgCSpNcVnTa1cgPxTe0YQhIJNJPuC8BGoUtJUa8cW6ZqdtRxHu/yxZx+0e/zeu8hkMmbMmMH333/PypUrcXV1zfUMnr7Y2trSsGFDne3bFzP7+YNSqSQ2NpYzZ85opb2PeWZfoVAwYMAA/vzzT+Lj43PVlqEl+2q1muVL/bN07X+Lytbq/Be1Ov9FjY6b8fD8Cufy6YVO31dUNisc3Bppfh15JwiAF/eDUauS///19Fo3Zqb55B9dQRAKNPFJJAgfgRb1LFGrP3ydvsll0La+Vb6aocur6tUymYxu3dKXpj58+JAJEybk2wTH19eXgwcPEhcXp/W2RbKfP3h6emJpaanVffv56XND2wYMGMDr16/ZtGlTrtpxcXHByMjIYJL9ffv2ce/uLWwtP7wCRBtFZSPvBBG2zodzO/5Z7n/35EzC1vlw5e8vALB2rIJTaV8Abh79kRN/Krm0dxgAhZy9KFyiBSZGUMQ+/wxaC4JQcIlkXxA+AsWdjKlZzhS5gT8LS6Qn+/lJXszsZ/Dz86NYsWL8+uuvTJ06lXHjxuXLhL9du3akpKSwb98+rbctkv38wdjYGB8fH60l+/nxfaBNHh4eNG3alGXLluWqHYVCQfHixQ0m2ff396datWpUL2edpetzW1Q2LeU1ibH3NQMDAKlJL0iMvU9y/HPN1yooZ+JR60vMrFxIjH2Asbk9xasMoGrrFchkckoWN0Fh6P/gCoLwURAF+gThI9GxkTVnrifrO4x3UsihbmVzHO3y18eSu7s7r169Ii4uDmvrrD2Q5kRkZCTr1q1j0qRJfPvtt1haWvLFF1+QlJSEn5+fVs8r17USJUpQuXJlduzYQefO2Svg+CEi2c8/lEolEydOJDk5GVNT01y39zHP7AMMGjSIHj16cO3aNcqXL5/jdvJyAPN9Hj16RGBgIPPnz8fO3ZRP+hxF/Z8xHW0XlXUu3xXn8l0/GJtcYfzOfhQKqOiRP+rOCIJQ8OWfp0NBEHIlPZFWGOzsvkoNnZW6S5Z1RZfH7/3b4sWLkclkDBkyBIBRo0axaNEi5s+fz7Bhw1Dnh30a/+Lr68uuXbu0WqBNrVaTkpIikv18QqlUkpiYyIkTJ3Ld1sc+sw/QoUMH7O3tWb58ea7ayautSR+ydOlSLCws6NWrF2XdTN5I9A2VSpV/iswKglDwiWRfED4SCoWMcX0cDPKBSS6Hpl4WVC+b/5K0jIJWupwJS01NZcGCBfTu3RsHBwfN14cMGcKKFStYtmwZAwYMQKVS6SwGbfP19eXFixccP35ca20mJSUBiGQ/n6hWrRp2dnZaW8r/sc/sm5qa0qdPH1atWkVqamqO2zGEZD8tLY0lS5bQq1cvrK2tqVTSFCvz/PH3q5CDZyVxIoggCIZBJPuC8BGpVd6MNp9YGtTsvkwG1hZyPu9qp+9QcsTZ2RljY2OdPhxv3ryZJ0+e8MUXX7zxWr9+/Vi3bh3r1q2jd+/euXrIz0uenp4UKVJEq1X5RbKfvygUCho1aqSVZF/M7KcbNGgQERER7Ny5M8dtuLu78/TpU5KT9bfta+fOnTx58oShQ4cC6cfYtWtgbfCnyijk0KiWBXbWojifIAiGwcA/NgVB0LZhneyws1FgKJNgkgRje9tjY5k/H47kcjlubm46ndn38/NDqVRSpUqVt77eo0cPNm3axJYtW+jevTspKSk6i0Vb5HI57dq1IzAwUGttimQ//1EqlYSFheX6yDgQM/sAVapUwcvLi6VLl+a4jYzVSg8fPtRWWNnm7+9PnTp1qFGjhuZr7RpYGfypMio1tPfJf9vRBEEouESyLwgfGUtzORMHOaCQgyE8GndoaIV3VQt9h5Erulz2euLECU6cOMGXX3753us6duzItm3b2L17N506ddIkvoasXbt2XL9+nevXr2ulPZHs5z9KpZLU1FSOHj2aq3bEzP4/Bg8ezJ49e3j06NGHL36LjGRfX0v579y5w969exk2bFimrxd1MKJOJTODnd2XycDD2ZhKJcV+fUEQDIeBfmQKgqBLVUqbMfmzwiDTX8IvAxrXssi3y/f/TZfVq/38/ChZsiRt2rT54LVt2rRhx44dBAcH4+vrS0JCgk5i0pamTZtiZmamtdn9jGTf3Fzsl80vKlSoQJEiRbSylF/M7Kfr3r07ZmZmrFy5Mkf3u7q6IpPJ9FaRf/Hixdja2tKtW7c3Xhvoa4uhjutIEgzpaCt+DgVBMCgi2ReEj5R3VQt+GlIYuRy9LOlv4mXBd/0dkBtSAYEc0tXM/uPHj9m0aROjRo1CocjaNofmzZuze/dujh07RuvWrYmLi9N6XNpiYWFBs2bNtLZvX8zs5z8ymQylUpnrZF/M7P/DxsaG7t27s3z58hyd0mFqaoqzs7NeZvaTk5NZvnw5/fr1w8LizRVfZVxN6N3SxiBWpf2bXAYt6lhQt7IYaBQEwbCIZF8QPmKfVLNg+ignrC3keVK0L6OPHs2s+bavAwqFoT2y5YyHhwcREREkJiZqtd2FCxdibm7OwIEDs3Vfo0aN2LdvH2fPnqVFixbExMRoNS5t8vX15ejRo7x48SLXbYlkP39SKpWcPn2a6OjoXLUjZlT/MWjQIO7evcvBgwdzdL++KvJv27aNyMhITWG+t+ndqhCuRY0MZjm/TAY2VnJGdrXXdyiCIAhvMJCPSkEQ9KVGOTNWTXKmUa30WRRdPS/LZOBkr2D2aCeGdLQrEDP6GXSxxzUpKYlFixYxYMAAbGxssn2/t7c3f//9N1evXqVp06a8fPlSa7FpU9u2bVGr1ezevTvXbYlkP39q0qQJarWaQ4cO5bgNMbOfmbe3N+XLl2fZsmU5ul9fyb6/vz8NGzakQoUK77zG2EjGd/0LI8Mw6s5IEozr44CVhXikFgTB8IhPJkEQKGSl4IeBhflpSGGs//+BRVtJf8bsS6fG1iyf4EzV0gUvEdNFsr9+/XpevHjBqFGjctyGp6cnBw8e5N69eyiVSiIjI7UWn7YULVoULy8vrSzlF8l+/lSiRAk8PDxyvZRfzOz/QyaTMWjQILZu3ZqjgT59JPtXr14lNDT0jcJ8b1PWzYQJgwobRLb/eVc7sXxfEASDJZJ9QRA06le34M+pLozpZY+HszGQfm5wdmU8c1uayeiitGbNZGdGdrHDzKRgfuQUL14chUKhtYJWkiTh5+dHmzZtKF26dK7aql69OiEhITx79oxGjRrx7NkzrcSoTb6+vuzZsyfX53qLZD//UiqVHDhwIMf3i5n9N/Xt2xeVSsW6deuyfa+7uzuPHj0iLS1NB5G93aJFi3B0dKRjx45Zut6nhgXj+zog02Oh2c862NKpsThqTxAEw1Uwn7wFQcgxc1M5bT6xYun3RZk3tgjNvCwpav9PcTi5DIwU6YMACvk/v85gYSajRllTxvWxZ/NvxRjWyY5iTsZ6+E7yjpGREcWKFdPaTFhoaCgXLlz44HF7WVWpUiUOHTpETEwMDRs2zPGRXLri6+vL69evCQkJyVU7GTUTRLKf/yiVSi5dusTz589z3IaY2c/MyckJX19fli5dmu3BEHd3d9LS0njy5ImOosssISGBVatWMXDgQExNTbN8X/M6lkwanF5oNq/28GfsQPuyux2fNs/+FitBEIS8ZKTvAARBMEwymYyKJUypWCL9wet1opqbD1K48SCFqBgVKakSarWEibEMS3M5pYqZUNbNhKIOio/yoVubx+/5+flRqVIlmjRpopX2AMqWLcuhQ4dQKpX4+PgQHByMh8f/tXfn4VGVdxvHv2cmmcxkNQkhYU1YNCAIKCCgZTGooEKKuygVEalV1LdoW8RqRX0LYm1xqTW1gIqAywsugIpSREArqIi4FFlkCWsgJCHrzCQz5/1jJIpkTyaZGe7PdXmZzJzlmSRnmPv8niWtyY7fGD179iQtLY1ly5YxYsSIBh/neGW/PmFBAsMFF1wAwIcffsi1115b7/1V2a/aLbfcwqWXXsrGjRvp169fnfc7/t6wZ88eOnbs6KfW/ei1116joKCAX//61/Xed8jZkWTdm8LMF46y60A5/vxLMAxIircy7abEkBySJiKhR5V9EamTaIeFs9PtXHtRLJOvimfK2ATuuSGRO69J4ObRpzH0nEjatAo7JYM+NN0Y1127dvHWW29x1113NfnPsnPnzqxZswaLxcLQoUPZsWNHkx6/oQzDYPTo0SxdurRRoc3pdGKz2bAEyjTdUmdt27alW7dujRq3f6q+99Tk4osvpn379syZM6de+/ljHpKaZGVlMWLECDp37tyg/bu0t5E1LYWbRsVV9jprSsffUi4fFsPzfwrNuWdEJDTpE5GISBNoqsr+3//+d+Lj4xk3blzjG1WF1NRU1qxZg8PhYOjQoXz33Xd+OU99ZWZmsnfvXjZv3tzgYzidTnXhD2IZGRkNDvuq7FfNarUyYcIEXn75ZUpKSuq8X1RUFImJic0S9jdt2sSGDRvqNDFfTcKsBr+6NI5/TkvhF70dWAwavaTs8ZDfN93Ok3e35o6rQ3fuGREJTXrHEhFpAqmpqRw8eBC3293gYxQXFzN37lwmTZpEZGRkE7buRO3atWPNmjUkJCQwdOhQvv76a7+dq66GDBlCbGxso2bldzqdOByaFTtYZWRksGPHDrKzsxu0vyr7VZswYQKFhYUsXry4Xvs114z8//znP2nbti2jRo1qkuN1bmfjwUlJvDqjHeMviyM+5sePurVV/K2Wn0ww6zC4ZngMCx5uy6w7W3OWqvkiEoQU9kVEmkBaWhqmabJ3716gYZXGF198keLiYiZPntzUzTtJcnIyq1evpm3btgwbNowvvvjC7+esic1m45JLLml02FdlP3gNGzYMgNWrV9d7X1X2q9epUycuvPBC5s6dW6/9miPsFxUVsXDhQiZNmkRYWNNOI5UYZ+VXl8bx2ox2PDs1mSlj4xkxKIpObcMJs564rdUC7VuHMbx/FJOviuepe5JZ8mh7fn15PG1baXorEQleegcTEWmErVu3snLlSr788ksARowYQV5eHna7nX379tV5/LjX6+XJJ5/kiiuuoEOHDn5s8Y9atWrFBx98wMiRIxk+fDgrVqxgwIABzXLuqmRmZnLDDTewf/9+2rVrV+/9FfaDW2JiIn369OGDDz5g/Pjx9d5flf3qTZw4kbFjx7J161bS09PrtE9qairvvPOOX9u1cOFCSktLueWWW/x2DqvVID01gvTUCEb/5HGv16TCA1YrWBvb319EJECpsi8i0ghTpkzhzjvv5MUXXwTg+++/Jz8/n9jY2FrDx5YtW3j00UfZt28fK1asYPv27U223F5dxcfHs3LlSnr06MFFF13ERx991Kzn/6lLLrkEq9XK8uXLG7S/wn7wOz5uv76VelX2azZmzBgSEhKYN29enfdJS0sjOzvbbz9b0zTJyspi9OjRtG/f3i/nqInFYmALNxT0RSSkKeyLiDTCAw88gGEYVFRUVD5msVgYP358rWF/yZIlTJs2jdTUVG6++WbS09MZNGiQv5t8ktjYWFasWEG/fv0YMWJEo2ZEb4z4+HgGDx7c4K78CvvBLyMjg3379jVopQhV9qtnt9sZN24cL7zwAuXl5XXaJzU1FafTyeHDh/3Spg0bNrB58+ZGT8wnIiLVU9gXEWmEQYMGMWXKlBO663u9Xq6//vpa942JicEwDLxeLzk5OWzdupV+/frx9ttv+7PJVYqOjubtt99m8ODBXHbZZbz33nvN3gbwdeVftWoVxcXF9d5XYT/4DR48GKvVWu8bTqrs127ixIkcPny4zu8v/l5+Lysri7S0NC6++GK/HF9ERBT2RUQa7X//939JS0urrCwOGjSo8oNyTWJjY08KKZs2beIPf/iDX9pZG4fDwZtvvslFF11EZmYmy5Yta/Y2ZGZm4nK5WLlyZb33LSsrU9gPcrGxsfTv379BvUtU2a9Zr1696N+/P3PmzKnT9v4M+3l5ebz66qvceuutdZ7XRERE6k/vsCIijeRwOJg/f35lcL/xxhvrtF9sbOwJ31utVrp37+73SbFqYrfbWbx4MaNHj+aKK65gyZIlzXr+Ll26cOaZZzboRoMq+6EhIyOD1atX4/V667yPKvt1c8stt/Duu++yf//+WreNj48nOjraL2F//vz5eDweJkyY0OTHFhGRHynsi4g0gfPPP5+RI0cCcPXVV9dpn5+H/REjRrBhw4Y69QrwJ5vNxiuvvMI111zDtddey6JFi5r1/KNHj2b58uV4PJ567aewHxqGDx/OkSNH+Pbbb+u1nyr7tbvuuuuw2+288MILtW5rGIZflt87PjHfFVdcQXJycpMeW0RETqSl90REGqnM5eX7feXc/LtX6DXiCH9+qQKX+xAer4ndZiEm0kKX9uGkp0ZwRkcbiXG+RZ4jIyMrj3H33Xfz2GOPYbVaqztNswoLC2P+/PnYbDbGjRuH0+nk5ptvbpZzZ2ZmMmvWLDZs2MB5551X5/0U9kPDoEGDiIiIYNWqVZx11ll12keV/bqJjY3lmmuuYd68eUybNq3WLvRpaWns3r27SduwZs0atm7dSlZWVpMeV0RETqawLyLSAGVOL//+rISla4vZeaAc0wTDAIthw+N1nbCtYcD6b8rw/NArOT7GwkUDouiT1oawsDDuv/9+HnzwwRZ4FTWzWq3MnTsXu93OxIkTcbvdzTJz9oABA0hKSmLp0qX1DvsOh8OPLZPm4HA4OO+88/jggw/47W9/W+f9VNmvm4kTJ/LCCy/w4YcfkpGRUeO2qamprFu3rknPn5WVRXp6OkOHDm3S44qIyMkU9kVE6iE7p5w3Pyzi3U9KcLlNDAOOFxVNEzxVFBh//nh+kZfFHxTxmjeMu/+2n4uHxWCaZkCGFYvFwj/+8Q8iIiK47bbbcDqd9QpgDWG1Whk1ahRLly7l0UcfrfN+quyHjoyMDP7yl79QUVFBWFjtH1VU2a+7888/n/T0dObOnVunsL9gwYImO3dOTg6vv/46jz32WEC+34mIhBqN2RcRqYPyCpMXlhdw88MHWbauGJfbFy4amjGOzz22cauTPz57hD88fZjDeRVN1NqmZRgGs2fPZurUqUyZMoVZs2b5/ZyZmZls2bKlXuutK+yHjoyMDAoLC/niiy/qvI/CY90YhsHEiRNZsmQJ+fn5NW6bmppKYWEhBQUFTXLu559/HqvVWudJTEVEpHEU9kVEarFjr5tbZx5i/juFeE0qu+M3heOhf9M2Fzc9fJB3Pi4OyCqlYRjMnDmTBx98kHvvvZeHHnrIr+286KKLiIiIqNes/Ar7oaN///5ERUXVeQm+QLxmAtmNN96Ix+Nh4cKFNW7XlMvveb1e/vnPf3LttdeSkJDQ6OOJiEjtFPZFRGrw1poifvPoIfbmlPv1PF4vON0mjy/M4/6sXJzuJryj0EQMw2D69OnMmDGD6dOn88c//tFvISsqKorhw4ezdOnSOu+jsB86wsPDGTJkSJ3DPqiyXx/JycmMHj2aOXPm1HgNN2XYf//999m9e3ezzPshIiI+CvsiItVY8O4xnnw1v8mr+bXZ8E0Zv3/qMCVlgRf4AaZNm8bf/vY3Zs6cyT333OO3wJ+Zmcm6detq7Wp8nMJ+aMnIyOCjjz7C5XLVuq0q+/V3yy23sHnz5hqHSiQnJ2Oz2ZpkRv6srCx69+7NgAEDGn0sERGpG4V9EZEqvPx+IfOWHWuRc3tN2LLbzb3PHA7ICj/AlClTeOaZZ5g9ezaTJ0/G6236do4aNQqPx8O7775b67amaVJWVqawH0IyMjIoKytjw4YNddpelf36GTFiBO3atWPOnDnVbmOxWEhNTW10ZX/fvn0sW7aM3/zmN/o9iYg0I4V9EZGfeX99Mf96s6BF2+D1wpZdbh6akxuwVcvbb7+dOXPmkJWVxaRJk/B4PE16/Hbt2tG3b986deWvqKjA6/Uq7IeQ3r17Ex8fX6eu/IF6jQQyq9XKhAkTWLRoEaWlpdVu1xRhf86cOURGRnLDDTc06jgiIlI/CvsiIj9x6GgFs1+uW7dxf/OasOEbJ29/XNLSTanWxIkTmT9/Pi+88ALjx4+noqJpVxTIzMzk3Xffxe1217id0+kEUNgPIVarlWHDhtV53L4qxvU3YcIECgsLWbx4cbXbNDbsV1RU8K9//YsbbriBmJiYBh9HRETqT2FfROQHpmny2EtHqfAEVpXwmcX55ATosnwA48aN45VXXuHVV19l7NixlJc33WSGmZmZFBYWsnbt2iqf37ZtG++88w4rV64EYP/+/fz3v/8lLy+vydogLScjI4P169dTUlLzDS9V9humc+fODB8+nLlz51a7TWPD/vLlyzlw4AC33nprg48hIiINo7AvIvKDtz8u4cttrmadjK8uKip8NyECOdBcffXVLFmyhKVLl3LVVVfVaVK1uujduzcdOnRg0aJFPPvss4wZM+aEMfw33HADl112GVdeeSUA99xzDz169KBLly5Ncn5pWRkZGZSXl/Pxxx/Xuq0q+w0zceJE1q5dy7Zt20543DRNcnJyqKio4MiRI8yYMYM77riDZ555pl7Hz8rKYsCAAZx99tlN2WwREakDhX0REaDM6eXZJYHRff/nPF7YtNXFR5vLWropNcrMzOStt97i/fffZ8yYMZSVNa6933zzDQ8//DClpaU8//zzTJ48mbfeeosvv/yycpuxY8eetJ9hGFx66aWNOrcEhu7du5OcnFxrV/5AvhEW6C6//HLi4+OZN28e+fn5ZGVlsW7dOnr16kVKSgoPP/wwAA888ADPPPMMixYtqvF4RUVFvPbaaxQUFLBz507ee+89LbcnItJCFPZFRIBVn5dS5grcwGCxwBsfFrV0M2o1cuRIli9fztq1axk1alSt3a+rU1ZWxjnnnMP06dM5evQo8GOg69mzZ+V2kyZNIjo6+oR9rVYrf/7znxv4CiSQGIZBRkZGncbtq7LfMDabjaFDh/LEE0+QnJzMbbfdxtNPP31SJd7r9WIYBtdff32Nx1uxYgXXXnstKSkpjBkzhujoaK655hp/vgQREamGwr6InPJM02TJ6kICOSt4vfDlNhfZOU03Ht5fhg8fzooVK/j0008ZOXIkhYWF9T6Gw+Fg+vTpVT7Xo0ePyq9jYmK48847sVh8/5xZLBYmT55MWlpaQ5ouASgjI4ONGzdSUFBQ7Taq7DfMwoUL6dSpE2+++SYul4vy8nKsVitJSUk8+eSTJCUlnXATxTCMWoP78Un4XC4XX3/9NcXFxZx33nm89NJLfn0tIiJyMoV9ETnlfbvTzZ6DFQR6XrBYYNm64pZuRp0MHjyYlStX8vXXX3PxxRfXGNSqc9999zF16tQTHrPb7ScF+bvuuqsykNhsNu6///6GNlsC0PDhw/F6vaxZs6bG7VTZr7+3336b7OzsEx4zDIOUlBTi4+OZM2dO5Y0UwzAYMWIESUlJNR6zVatWJz22efNmJk6cSHFxcLx/iYiECoV9ETnl/fvTEqxB8G7o9cJ7nxQHTRVz4MCBrFq1iu3btzN8+PDK7vj1MXPmTCZPnlz5fdeuXSur+MelpKRw8cUXA3DHHXdUGTYkeHXq1Im0tLQau/IHyzURaObNm8eYMWNOuFFSUVFBSkoK4JuH4/i8GKZp8qtf/arWY/78+rNarURGRvLOO++cNORGRET8K6ylGyAi0tK+3XXyDPyb3rqWggPrscd2ZNAN6054ruzYHtYvGgJAp3PvYdenf618zrCEYQ2Pwh7TnoQOQ2h/1gQiopIrn9/12Wx2f/7E8a2xhEUQbk8kOrEbbbpdQ1LnkTW2tbjMJCfPQ0picLx99+3bl9WrV3PhhRdywQUXsHLlSpKTfT+PtWvX0rdvX6Kioqrd3zAMnnrqKXJzc3n11VeJjY094fkyp5cyl8nv75vFwSNl/M/d92Gapqq8IaYu4/b1O68/u93O4sWLuf3223nuuecqHz8e9gGefvppXn/9dcrLy8nMzKz1mD8N+xaLhVatWvH+++/Tq1evpm28iIjUKjg+LYqI+El5hcnuAyePg09Jv4qCA+txFmZTcPAzTmvTv/K5Q9ve8H1hWEg548rKsB9uT8Ae046ywr0U535Lce63HNzyKr0ue5HY1id/0I1u1R1PeRnOor0cLd7P0T2rSEm/mm4X/KXG4LJ1jztowj5Ar169WLNmDcOHD2fYsGGsWrWKV155hXvuuYepU6fy6KOP1ri/xWJhwYIFHM7NZ9glt7JwxTG27nGzZbeLo8eO36WJI77/i9z4SBGOiGJO72CjW5qN9I42ep1uJzHO6v8XKn6TkZHBvHnzyMnJwev1kp2dTadOnXjiiSdwu92sX7+eI0eO8Pvf/x6LxcKECRPo1q1bSzc7KFitVrKysmjTpg0PPfQQAK1bt658PiEhgSf/8RJfbsln7WYTd3kRGGALN4iPtnJ6R9sJ11dUVBQWiwWv18vpp5/Ov//9b9q3b9/sr0tERBT2ReQUt+tA+UlVfYCkLpeyfd2f8FSUkrPtjRPCfs52X9iPbzsIe0y7yscTUzPonuEL/jnb3mTL6t9R7szj2/dvZ8DYD7BYbSeco+eI53DEdsBVksOWD+4mf99HHNr6f8Sl9KXtmScvKQdgtcC2bDdDz4ls7EtvVt27d2ft2rVkZGTQu3dvcnNzAViwYAEzZsw4qWv+T+0/Us6ydcVE9ZrDh9+brN11DEzwVtNzu8xl8tUOl6/HhgcMA87v5WDM0BjOTo9QBTjI5OXlVS7j2KdPHw4dOgTA8uXLmTlzJlarFdM0MU2T2bNn4/F4SE1NVdivB8MwmD59Oi6Xi8cff5yImI68sLyA/+5y890eF8WlAwD4y4I8jl89P7384qItdE+z0bNzBBcNiMJut9O6dWs2bNhAXFxcs78eERHxCYJRqiIi/vP9fneVj4eFR5HUxbdW++Hvl+P1uAA4dmgjZcd2A5DS7apqj5t8xhja9bwRAGfRXvL2rat224ioZM4c/gQWawQAB/5b/TrWHi9s31t1mwNd165duf322yuDPsD+/fv55JNPqtx+W7abPzx9mF89eJDFHxRR4vTFC6+3+qD/Ux6P7/+mCZ98XcbvnvId690gmvfgVPfcc8/RqlUrJk2aBFAZ9GNjY7nkkkvo06cP4FsWzjRNPB4PcXFxdRpbLifyeE1GjX2A3/51H3f/vZwFKwrZuMVJcemJ14rJiUEf4Fixlw3fOpm37BjX3X+AO2dt57W3vz1p2I2IiDQvhX0ROaUVl3qxVFPoTUn3hfkK1zFyd68CIOeHLvxWWwxJnS6p8dg/7Q1Qmre9xm1tkUk44joBUJJf87aFJZ4anw9UL7/8Mvfdd98Jj1mtVhYuXHjCY+5yk3nLCrht1iG+2OoEfAG/MY733jiQW8FfXsrjd08dJievonEHFb/r1asXVuuJQzAMw2DgwIFYLBYeeeQRPB7PCc/de++9lcu/Sd1s+LaM6x84wANZuWza5rux6fWeHOprYv7Q28Y0YeN3FUz9ey43PXyQb753+afRIiJSK4V9ETmluctNquvVfVrbgdhjOgC+kO/1lHP4++UAtO58KdZwR43HNs16JtQ6bu9yB2dVeunSpZimSVjYjyPIPB4PCxcupLzcN2/Ctmw3v555kIXvFvrCQyNDfnW+2u7ipocPsvwjVfkD2cCBA09an91isTBo0CAALrvsMnr37l35XFxcHHfccUeztjGYFZd6mTX/KNOeOUJuge+mSVNcc8dvru0/XMFdf83h2SX5ON1+uphFRKRaCvsickqrafi2YRikpF8JwNHs1RzatoRyZz4AKd2urvXYxw5+Vvl1ZMLpNW7rKj1MWeEeAKLia97WUl1XhAC3cOFCPvnkE+6++27S0tIqHy8sLOSll15i3ZelTH7sEPsOV9SrotgQHq/vpsnfFuXxt0V5eOoyLkBaxHXXXcfMmTMrv/d4PAwY4BtDbhgGjzzySOVz06ZN0/JudfTFVifjHzrAyg0lgK8i39SOX1aLPyhi4iMH+W63qvwiIs1JYV9ETmm2cKPGD7m+sG9gesvZ8fHDADji0k7ool+VnO1vsf/bBQC+ZfjaD652W1dJDltWTamcF6C6yfmOiwgPzrBvsVgYOHAgs2bNYufOnXzzzTfcd999JCYmsvVgAtP/lesbj9/MBcC3Py5hxvNHFfgD2NSpUyvH7QOce+65lV+PGjWKhIQEwsLCuP3221uieUFn9ecl/OHpwxQUe+s0/0VjmSbk5Hn47ezDbPzO6f8TiogIAIap/osicgpb/XkJj8w7WuM2m966loID6yu/73TuPaT1vevHYzybChxfeq89zqK9lT0Awu0JJyy9t+uz2ez+/AkAoludiafcibMoG9PrGz9e29J7FgPO6+Xg4VuTGvaCA9DHm0v503O5fqks1pUBjBwUxe/GJWi2/gBVUVFB9+7dOXjwIEVFReQe87A9201BkZft3+/m2LFC+p3Ti9goC1072EhOsOp3WYVVn5Xw5+drfs/zF8PwvYfNuD2J/mfWPAxKREQaT0vvicgp7YyOtlq3SUm/6sewb1hIOePKKrcrd+ZR4TqGNTyK6MQzSegwhPa9biYiKrnK7Ytzt2Cx2rA5kohu1Z023a4lqfPImhtjQHpq7W0OFrsPlvPQnNzaN/QzE3j3kxI6poRz7UWaQTwQHS2E+5/4lK+2l3L5H/ZTWPJjFxDDiAVi+XBLXuVj0Q6DM1Ij6NnZxkXnRtGudXgLtDqwrP+6jBkvtEzQhx8m8QPuzzrC336bTI/OES3WFhGRU4Eq+yJySjNNk1F376PMFTxvhbPuCI2qmMdjcvtjh9i5v7xyQq+WFmaFOX9sQ8cUBcNA4PWabPzOyRsfFrHhWyeG4QuMdf3kYgCGxTc0pG+3CMYMi2FgTwfWIJ33ojGOFFRw00MHcbpMv8+JURuLAafFWHjhwbZEOzSiVETEX/QOKyKnNMMwOL0O1f1AUpfeCMHgtVVFbN8bOEEffCFy5osavx8INm93Mv6hg0z9+xE++6+zcnWG+pQoTH6cA2LTNhcPZOVy/QMH+PTbMr+0OVCZpsnjC/Jwl7d80AffxH0FRV6eXZzf0k0REQlpCvsicsrr1TUCS5C8G7ZtFUZctLX2DQPcnoPlzFta0NLNOInHC1v3uFm8qqilm3LKKnN5+ftreUyZfZiDub65LJrihtDx0J9b4OHeZ47w2EtHKS4LoDtNfvT+hhI++68zoG6seU3f0JlT7caLiEhzCpKPtyIi/jNyUHSzzwDfEIYBmUNCY1mxhe8da+km1GjBu8dwaV3wZrdll4ubHznIG2uKAfwyU/zxngHvry/hpocO8MXW0J4d/lixh6deDcwKumHAYy8d1bUmIuInCvsicspr2yqM/mfaA766b7XAiIFRLd2MRjtW7GH156UBVWX8uRKnyYdflLZ0M04pn35bxm9n53Ak39MsKzN4Tcgv8jL16cOsCeHf9bv/KcHpDoTO+yczTcgr9Ib0z19EpCUF+EdbEZHmcfnQmICu7lstkNEvMiS68L/7n5JmWdu7MQwD3viwuKWbccpY/00Zf3z2CBUe/1Tzq2OaviECD8/N5YPPS5rvxM3E4zV5Y01Riy5rWRvDgNd1rYmI+IXCvogI0L+HnbatwgjUSbo9XrjiguBfEs4bBOEDfCFwW7abbdnulm5KyPt6h5M//fMI3nrMst/UTBNmPH+U9d+E1vjxz/7r5Ei+p6WbUSNdayIi/qOwLyICWC0GU29MCMiKs2HAVRkxITEL/55D5QEfPo6zWGBDiIW/QFNU6uXB53Lx1HOWfX8wgUfm5nL0WHD8fdbF0rVFAT88CXw9l5Z/pOq+iEhTC2vpBoiIBIqzutq5MiOG11cHTuXZYoHkeCs3Z8a1dFOaxHY/V+/y93/Cl0uvA2DgDR/hiO1Q+ZynvJRdnz9B7q73cJUcwrCEY49uR8oZl9Ohz60YxondOkwTtqra6FdPv5ZHYYk3IK430wRXucnjC48y47akk/4ego1pmny1wxXQw5OO83jhi+9Ce6JEEZGWoLAvIvITEzPj+M/mUnLyPAFR5fd6YdpNrbDbgqA8Vwfbst1YreBpgeLptnUPcGjrYgCi4s+gwl1ESd53fL9+JpawCNqfNeGE7U3TNzu8+Md/virl358G1sRsXi9s+MbJyk9LuXhAcE+GefCoh1Kn/97Earqxtuuz2ez+/Ikq9xt66/dYLCd//DyQW0Gp00ukPTTe60REAoHCvojIT9htFh6clMT//DUHd4XZ4hXHm0fH0bNLRMs2oglt2e2uMuh/suB8nEX76NjnN3gqSsnZvhTDsJJ8eiZdzrsfiyUMr8fFno3PkLPjLZxF+wmzxZKYlkGXgfdhcyScFDDWL/wFACnpV9E9468cO/gZAAkdhtJ71Hw8FU4+mtcLr8eFs2h/le3NL/KSV+ghITb4J0YMJE63l8cX5GEYLd99vypPvpLHgB72oJ4QMxDGwIfbE3DEpp7wmEH1PSa273XT+3S7v5slInLKUNgXEfmZMzramHF7ElP/frhFxxJflRHDDSODf1K+n8rOKa/x+b1fzcUaHoU1zI6r5BD7vn6eqIR02p45lq9X3Epe9moMw0pkwhk4i/Zx6Lv/ozDnS/pdtZyIqBQi47tSmr8DgOhWZ2KxROCI7QhAXJtzKSvcQ97eNXz6ykVUuIvwelzEtTmXDr0nVd+mQ+UK+03sg89KKSgO3P7lTrfJik9KuPai4L3+tu1xVdmLpjlurB2XmJpxwvc1MQzfDQqFfRGRpqOwLyJShbPT7cy6ozX3/eMI5RVms3fpv+7iWCb9Mi7oxw3/nLu85h9kRFQK/a9+B8NqY/2iIbhLcsjf/zGO0zqRl70agD6ZL3Na2wG4SnJYv2gIpfnbydn+Jm3PHIsjLq2ya3HPEc+d0LU4feifwfRyaNsSSvK3AWBYbEQndiMsovo5EVy1tFnqxzRNXl9dFLBVffC16801RVw9PAZLoC7RUYsjBR7MGu6n+PPGWmUbdr7L4R3LCIuIJSbpLDr1v4eYpJ5VtsdqgdyC0JkcUUQkECjsi4hU4+x0O0/c3ZoHn8v1fXD2czCxWnzVrd9cEc8VF8T492QtpLax+q3SLiIswldNdcR0wF2Sg7v0CEU5X1Zus+mta07arzBnE227X1fjsfdunsuhba8Tl9KPniOfo7zsKJveuob938zHMMI4/RcPVrlfeUWAJtIg9d1uNzsP1NzDIxDk5HnY+J2T/mc6WropDeJy13yT0p831gAMw4otMgnDsFJa8D1H93xA/r6POefy16sN/C63rjURkaaksC8iUoP01Aie/1Mb5rxVwBsfFmMx8FuVv0t7G9PGJ5LaJtw/JwgAVit4K6p//njQBzCqmMQLILb12Sc9ZotMqvG8nvIydn32V8AkqfMl2ByJ2ByJxKX0I3f3SvL3fVR9m8KCs7IbqJZ9VIzV4puBPZBZLbB0bXHQhv3a3qf8eWMt+fRf0v6sCYTbTwPgaPYavnr7RrweF/u/mU+3Cx47aR/TBE8gzIoqIhJCFPZFRGrhiLBw5zUJDOkTyayXjnLoqKfJQr9hQJgVJow+jauHx2AN0i7DdRUeZjSoUh7Tunfl1x3PuZ2kThcD4PVWkL/vIyJP6wKANezHYOatKKv82lNRhvnDXYaiI1//8JiTkjxfd35LeGS1544ID+3fSXPbtNUZ8EEffDcjvtzuxDTNoBxOYwszahwq4a8bawCRp3U+4fvEjkMJt8dT7szHWXygyn0MQ9eaiEhTU9gXEamj3mfYeWl6W9Z/U8YbHxbxxVZXgyqUx/dJTrByxQUxjBgYRWzUqTEBXIfWYWzNrn8X7vh2g0joMJS8vWv4ZsUkX7g3LLiK9uOpKKVP5is4YjvgiEvFsIRjesv5ctn12KPb06HPJFp3uYy4NgM4dnADOdvfpPDwl3jcJbjLjgDQJv3K6tucHLo9LZpbcamXnDz/jcuuaTm4vZvncnDr//3wN+PE5kggNvkc0vrdRXRi9yqPV1JmkpPnISUx+D4uRToMLAZ46nlvrbE31gD2bHqW5K6Z2GPaAZC3dx3lznwA7DHtqzyvaUKkQ8vuiYg0peD710tEpAVZrQbn947k/N6R7DtczjsfF7N5u4sd+9yU/9A93WoBDDDwfYD1mj9W19olhdGjcwTD+0fSt5s9aCf/aqhunSLYsa+8QZXdniOfI/uLf5CzYyllhdlYw6OIjO9KQsehRCWkAxBuj+f0X0xnzxfP4Co+iLv0CO5SX6A/65J/kf3FPziy631cJQexWG3Etj6bdmeNJ+WMy6s8Z1y0hcS4U+NGTHPYtrflloMrOLiB8rKj2GM74PW4KC3YyZGd75C//z+c96tPsFbTu2Nbtjsow37ntja8Zkm992uKG2sHvl3AzvWziIhuizXcQWn+9wBYwyLp0OvmKs/r8ULndrZGvWYRETlR8P3rJSISINq3DufXl8cDvrGm2YfK2Z7tJveYB3e5b3IsW5hBlMNC1/bhdG1vw2E/tStXZ3S0VRn0B437+KTHzv7lqyd8bw2z0+ncu+l07t01nqNdj3G06zHupMfDI+LoMmgaXQZNq1NbDQO6pSl8NKVt2e4qh8A0x3JwZ174FNawH5d12/np4+zZ+DQVrgJKC74nJumsk9prtfjaPOTs6od5BKozOtoaPKloY2+spZ4zmcPfv01J3jachbnYY9oRl9KPtL53ERnfpcY2i4hI01HYFxFpAlaLQae2Njq11YfVmqQH0Yd5ixFc7Q0GufkVWCzgraYnvz+Xg7OG2TmycwXZm7KoKC+itGAnAOH2RBxxnapsjwkcya9hRskA1rVDeJVj9pvjxlrbM6+n7ZnX16u9kXaDNonqRSMi0pQU9kVEpNmktgknIdZCXmHgz9Dm8cK5PYJzJvZA5So3a6w2+3s5OHdZLoWHN1V+b4/pQK9L5xFmi66yPabpa3MwstssdEgOI/tQ4N+sMAxfVT8YJ0IUEQlkp3Z/UhERaVZWi8GYoTEE+md6w4DObcPprm78Tcpbyz2e48vBWcPsOGJ8Qb2q5eBWP5vKf+afi7fCCfiWg6uLdj3GMew3uxk07j+07joaZ9Fevn1/MhXu4iq39y0HV6dDB6QL+0cF/LUGvp/zhf2jWroZIiIhR2FfRESa1aXnRRPo8xKaJlx+QYwqjU3MFm7UGD7ruhzcz/+ry3Jwlcc1DOwx7Ug9ZzIAJfnbOLxjaZXbWoJ8ObhguNYAHBEGGf2Db14EEZFAp278IiLSrBLirAw+O5J1m0oDtmrqiDDI6Kfw0dSiHBYa0im+scvBlTvzObpnNa27jsJi9fXWOLpndeXznvLSKs9rGBAVxJNqBsO1ZrHApedHY7cF789ZRCRQKeyLiEizu2FELGu/qDpgtTQDuO7iWBwRCh9NrVPbcDzVTM5Xk8YuBxeT1IstH0xh69ppOGJTqXAX4So+AIA1PJqkziOrPK/XC53bhzfmJbe4MUOj+XBjYF5r4PsZjx5c9ZwJIiLSOPokIyIiza5LexvjLokl0HoYWyy+QDr24tjaN5Z6S09t+BwIPUc+R1rf/8ER14mywmzcpUeIjO9Kat87T1oOLiK6Le5S32R87tIjhEXE0rprJrbI1pQV7sFdepiI6LYkn3E5fa98E3tM+yrPaRL8y8Gd1SWCX/R2YAnAT3wWAzKHRNMxObhvqIiIBCrDNBu6CquIiEjDlVeY3DrzENk55bVO3NZcrBbIujeFLu2DO+AFKq/XZNTd+3C6g+Ojh8UC78zugC2Ix+0D5BV6GP/QAUrLzAYNo/AHiwGJp1l54YE2OIJ4qISISCDTu6uIiLSI8DCD+25KDKjq/o2Xxino+5HFYvywxFpLt6RuUlPCgz7oAyTEWpkyNiFggj6A14R7b0xU0BcR8SO9w4qISIvp2sHGveMTW7oZGAYMOyeS60eq+76/XXhuFMHQp9AwfG0NFRf0jWToOY6AuNFiAFdeEM3Z6faWboqISEhT2BcRkRY1vH8Ud1+f0GLnNww4t4ed+yYkYg2GdcqC3PB+kdhtgf9zthhwyaDQCfuGYTBtfCt6dY1o0eX4DAOGnO3gN1fGt1wjREROEQr7IiLS4kb9ItrXpd+g2YNIRr9IHrk1iTBr4AfQUOCwW7jkvCisAfwJxGrxVcJPi7G2dFOalC3c4M+3JdGjS0SLVPgN4PxeDu6b0Eo31kREmkEA/1MrIiKnkgvPjeKJKa1pnWD1exCxWiDMCrddeRrTxicq6DezzMExAbvuO4DHC78cGtPSzfCLSLuFx+5IYmBPR7Od8/j1PGJQFA/e0orwMF1vIiLNQbPxi4hIQHG6vcx56xivry7CYvgm8mpq3dNsTB2fqCW/WtDfFh3lnY9L/PL7bQyLBQb3dvDgpKSWbopfmabJsnXFPLukgAqP6bebLxYLOCIM7h6bwLC+kRiBMGmAiMgpQmFfREQC0lc7nDz3RgH/3eXGaqFRYeT4TYOEWAvXj4jjl0Oj1Y24hZWUebnp4YPkF3oCJvAbBkQ7LLz4YJuQ68JfnUNHK5g1/yibt7ua9OaaxQJeL/yit4Pfjk0gIfbU+HmKiAQShX0REQlo3+9zs3RdMe+tL8FdbtY5+Fut4PH4vj4nPYLLh8UwsKcDq7rsB4yN3zn5/VOHW7oZJ5g+qRVDzo5s6WY0K9M0WfNFKUtWF/HtzsbdXDse8vt2i+DKjFgG9LCrmi8i0kIU9kVEJCiUlHnZ+J2TbdluvtvjZutuFyXOk/8JC7NCWttwuqdFcEZHG31Oj6Bda3XXD1RPv5rHm2uKW3wNeMOAjL6R/PHmVi3ckpa1c7+bpWuLeW9DCS6377fy0xtnP/fT56LsBpeeH03m4GhdcyIiAUBhX0REgpJpmuQVenG6vLgrTKxWA1uYQavTrJpwL4h4vCYPzcnl481ltNQnEosBfc6IYMbtrbGF628HfL+X7EPlbM92szXbzdY9bo4Ve3GVmxiAzWaQEGOlW5qNMzr6/muXFIZFw2NERAKGwr6IiIi0KHe5ycNzc/nkq7Jmr/AbBvQ+PYI/35aEI0KLFImISOhQ2BcREZEW5/GYPL4wj/fWl2BAs4X+X/R2cP/NrVTRFxGRkKOwLyIiIgHBNE1Wbyxl9st5lLlMvH5aDs5qgfAwgzuujueS86I0gZyIiIQkhX0REREJKHmFHmYvyuPjr8oqZ3dvCseXljsnPYI//CqR1glhTXNgERGRAKSwLyIiIgHHNE02fONkyepCNn7nalToP76U3FldIrgyI4bBfRyq5ouISMhT2BcREZGAtv9wOUvXFfPOx8WVyy3WdTk4u81gxKAofjkkhrQ2Wg5OREROHQr7IiIiEhS8XpP9RyrYlu1mW7ab7/a4yS/04C43MYGIcIO4aAvpqRGVy8F1SA7DquXgRETkFKSwLyIiIiIiIhJitKCsiIiIiIiISIhR2BcREREREREJMQr7IiIiIiIiIiFGYV9EREREREQkxCjsi4iIiIiIiIQYhX0RERERERGREKOwLyIiIiIiIhJiFPZFREREREREQozCvoiIiIiIiEiIUdgXERERERERCTEK+yIiIiIiIiIhRmFfREREREREJMQo7IuIiIiIiIiEGIV9ERERERERkRCjsC8iIiIiIiISYhT2RUREREREREKMwr6IiIiIiIhIiFHYFxEREREREQkxCvsiIiIiIiIiIUZhX0RERERERCTEKOyLiIiIiIiIhBiFfREREREREZEQo7AvIiIiIiIiEmIU9kVERERERERCjMK+iIiIiIiISIhR2BcREREREREJMQr7IiIiIiIiIiFGYV9EREREREQkxCjsi4iIiIiIiIQYhX0RERERERGREKOwLyIiIiIiIhJiFPZFREREREREQozCvoiIiIiIiEiIUdgXERERERERCTEK+yIiIiIiIiIhRmFfREREREREJMQo7IuIiIiIiIiEGIV9ERERERERkRCjsC8iIiIiIiISYhT2RUREREREREKMwr6IiIiIiIhIiFHYFxEREREREQkxCvsiIiIiIiIiIUZhX0RERERERCTEKOyLiIiIiIiIhBiFfREREREREZEQo7AvIiIiIiIiEmIU9kVERERERERCjMK+iIiIiIiISIhR2BcREREREREJMQr7IiIiIiIiIiFGYV9EREREREQkxCjsi4iIiIiIiIQYhX0RERERERGREKOwLyIiIiIiIhJiFPZFREREREREQozCvoiIiIiIiEiIUdgXERERERERCTEK+yIiIiIiIiIhRmFfREREREREJMQo7IuIiIiIiIiEGIV9ERERERERkRCjsC8iIiIiIiISYhT2RUREREREREKMwr6IiIiIiIhIiFHYFxEREREREQkxCvsiIiIiIiIiIUZhX0RERERERCTEKOyLiIiIiIiIhBiFfREREREREZEQo7AvIiIiIiIiEmIU9kVERERERERCjMK+iIiIiIiISIj5fzVWpENHqd4qAAAAAElFTkSuQmCC\n" }, "metadata": {} }, @@ -3987,10 +3967,9 @@ "output_type": "stream", "name": "stderr", "text": [ - "\u001b[32m2024-12-04 09:50:01.909\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mgdsfactory.pdk\u001b[0m:\u001b[36mactivate\u001b[0m:\u001b[36m337\u001b[0m - \u001b[1m'sky130' PDK is now active\u001b[0m\n", - ":11: UserWarning: Unnamed cells, 20 in 'final_layout'\n", - " Componente.write_gds('Component.gds')\n", - "\u001b[32m2024-12-04 09:53:14.293\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mgdsfactory.component\u001b[0m:\u001b[36m_write_library\u001b[0m:\u001b[36m1851\u001b[0m - \u001b[1mWrote to 'Component.gds'\u001b[0m\n" + ":11: UserWarning: Unnamed cells, 20 in 'final_layout'\n", + " Componente.write_gds('Component.gds') # Write the layout to a GDS file\n", + "\u001b[32m2025-01-07 08:57:13.839\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mgdsfactory.component\u001b[0m:\u001b[36m_write_library\u001b[0m:\u001b[36m1851\u001b[0m - \u001b[1mWrote to 'Component.gds'\u001b[0m\n" ] }, { @@ -3999,24 +3978,24 @@ "text/plain": [ "" ], - "image/svg+xml": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n" + "image/svg+xml": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n" }, "metadata": {} } ], "source": [ "#_________USER INPUT_________________________\n", - "circuit_name = \"VMA\"\n", + "circuit_name = \"VMA\" # Define the name of the circuit\n", "#_________PROGRAM____________________________\n", - "sch_file_name = '/content/'+str(circuit_name)+'.sch'\n", - "netlist_file_name = '/content/'+str(circuit_name)+'.spice'\n", - "df_SpacePosition = parse_transistor_file(sch_file_name, sort_by='Y')\n", - "sorted = sort_positions(df_SpacePosition)\n", - "netlist = extract_transistor_data_from_file(netlist_file_name)\n", - "G = create_grapho(netlist,k_value=1, fig_size=(10,10))\n", - "Componente = create_layout(sky130_mapped_pdk,width=2,length=2,sorted_positions=sorted,info_transistors=df_SpacePosition,connections=0)\n", - "Componente.write_gds('Component.gds')\n", - "display_gds('Component.gds',scale=2)" + "sch_file_name = '/content/Files_MicroNina/sch/'+str(circuit_name)+'.sch' # Define the schematic file path\n", + "netlist_file_name = '/content/Files_MicroNina/spice/'+str(circuit_name)+'.spice' # Define the netlist file path\n", + "df_SpacePosition = parse_transistor_file(sch_file_name, sort_by='Y') # Parse the transistor file and sort by Y-coordinate\n", + "sorted = sort_positions(df_SpacePosition) # Sort the transistor positions\n", + "netlist = extract_transistor_data_from_file(netlist_file_name) # Extract transistor data from the netlist file\n", + "G = create_grapho(netlist, k_value=1, fig_size=(10, 10)) # Create a graph of the netlist\n", + "Componente = create_layout(sky130_mapped_pdk, width=2, length=2, sorted_positions=sorted, info_transistors=df_SpacePosition, connections=0) # Create the layout with specified parameters\n", + "Componente.write_gds('Component.gds') # Write the layout to a GDS file\n", + "display_gds('Component.gds', scale=2) # Display the GDS file\n" ] }, { @@ -4084,13 +4063,13 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 37, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "ZzvboTOPnhvv", - "outputId": "4beacf52-becc-4fbe-9853-14ef00eb019e" + "outputId": "88265f24-e5c3-4f85-a41a-7ce4379d36bb" }, "outputs": [ { @@ -4099,1191 +4078,1191 @@ "text": [ "\u001b[32m\"input\" in: sky130.lydrc:71\n", "\u001b[0m\u001b[32m Polygons (raw): 32 (flat) 32 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:72\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:73\n", "\u001b[0m\u001b[32m Polygons (raw): 18 (flat) 18 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:74\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:75\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:76\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:77\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:78\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:79\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:80\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:81\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:82\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:83\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:84\n", "\u001b[0m\u001b[32m Polygons (raw): 156 (flat) 156 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:85\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:86\n", "\u001b[0m\u001b[32m Polygons (raw): 20 (flat) 20 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:87\n", "\u001b[0m\u001b[32m Polygons (raw): 12 (flat) 12 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:88\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:89\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:90\n", "\u001b[0m\u001b[32m Polygons (raw): 152 (flat) 152 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:91\n", "\u001b[0m\u001b[32m Polygons (raw): 328 (flat) 328 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.010s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:93\n", "\u001b[0m\u001b[32m Polygons (raw): 760 (flat) 760 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:94\n", "\u001b[0m\u001b[32m Polygons (raw): 300 (flat) 300 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:96\n", "\u001b[0m\u001b[32m Polygons (raw): 496 (flat) 496 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.010s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:97\n", "\u001b[0m\u001b[32m Polygons (raw): 40 (flat) 40 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:99\n", "\u001b[0m\u001b[32m Polygons (raw): 60 (flat) 60 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:100\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:102\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:103\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:105\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:106\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:108\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:110\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:111\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:112\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:113\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:114\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:115\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:116\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:117\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:118\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:119\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:120\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:121\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:122\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:123\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:124\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:125\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.010s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:126\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:127\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:128\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:129\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:130\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:131\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:132\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:133\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:134\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:135\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:136\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:137\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:138\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:139\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:140\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:141\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:142\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:143\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:144\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:145\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:146\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:147\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:148\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:149\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:150\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:151\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:152\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:153\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:154\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:155\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:156\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:157\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:158\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:159\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:160\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:161\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:162\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32mDRC section\n", "\u001b[0m\u001b[32mBEOL section\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:427\n", "\u001b[0m\u001b[32m Polygons (raw): 760 (flat) 760 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"width\" in: sky130.lydrc:428\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.010s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.010s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:428\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 188.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 187.00M\n", "\u001b[0m\u001b[32m\"-\" in: sky130.lydrc:430\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.010s Memory: 747.00M\n", "\u001b[0m\u001b[32m\"width\" in: sky130.lydrc:431\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 747.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:431\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 747.00M\n", "\u001b[0m\u001b[32m\"space\" in: sky130.lydrc:435\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.060s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.050s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:435\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"space\" in: sky130.lydrc:436\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:436\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"enclosing\" in: sky130.lydrc:437\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.010s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.020s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:437\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"interacting\" in: sky130.lydrc:437\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"enclosing\" in: sky130.lydrc:438\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.010s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"second_edges\" in: sky130.lydrc:438\n", "\u001b[0m\u001b[32m Edges: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"edges\" in: sky130.lydrc:439\n", "\u001b[0m\u001b[32m Edges: 1312 (flat) 1312 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"-\" in: sky130.lydrc:439\n", "\u001b[0m\u001b[32m Edges: 1312 (flat) 1312 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"width\" in: sky130.lydrc:439\n", "\u001b[0m\u001b[32m Edge pairs: 656 (flat) 656 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.010s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.020s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:439\n", "\u001b[0m\u001b[32m Polygons (raw): 656 (flat) 656 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"not_interacting\" in: sky130.lydrc:440\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:440\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"with_area\" in: sky130.lydrc:441\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:441\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"edges\" in: sky130.lydrc:444\n", "\u001b[0m\u001b[32m Edges: 1200 (flat) 1200 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.010s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.010s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"without_length\" in: sky130.lydrc:444\n", "\u001b[0m\u001b[32m Edges: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.010s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:444\n", "\u001b[0m\u001b[32m Edges: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"space\" in: sky130.lydrc:445\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.010s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:445\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"-\" in: sky130.lydrc:447\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.010s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:447\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"width\" in: sky130.lydrc:454\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.010s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.010s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:454\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"sized\" in: sky130.lydrc:456\n", "\u001b[0m\u001b[32m Polygons (raw): 1 (flat) 1 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.010s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"sized\" in: sky130.lydrc:456\n", "\u001b[0m\u001b[32m Polygons (raw): 1 (flat) 1 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"-\" in: sky130.lydrc:457\n", "\u001b[0m\u001b[32m Polygons (raw): 441 (flat) 441 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.020s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"space\" in: sky130.lydrc:459\n", "\u001b[0m\u001b[32m Edge pairs: 6 (flat) 6 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.020s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.030s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:459\n", "\u001b[0m\u001b[32m Edge pairs: 6 (flat) 6 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"separation\" in: sky130.lydrc:461\n", "\u001b[0m\u001b[32m Edge pairs: 11 (flat) 11 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.010s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"space\" in: sky130.lydrc:461\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"+\" in: sky130.lydrc:461\n", "\u001b[0m\u001b[32m Edge pairs: 11 (flat) 11 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:461\n", "\u001b[0m\u001b[32m Edge pairs: 11 (flat) 11 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"input\" in: sky130.lydrc:464\n", "\u001b[0m\u001b[32m Polygons (raw): 496 (flat) 496 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"enclosing\" in: sky130.lydrc:465\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.020s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.020s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:465\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"input\" in: sky130.lydrc:467\n", "\u001b[0m\u001b[32m Polygons (raw): 496 (flat) 496 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.010s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"enclosing\" in: sky130.lydrc:468\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.010s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.010s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:468\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"with_area\" in: sky130.lydrc:469\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:469\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"holes\" in: sky130.lydrc:470\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"with_area\" in: sky130.lydrc:470\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:470\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"enclosing\" in: sky130.lydrc:472\n", "\u001b[0m\u001b[32m Edge pairs: 38 (flat) 38 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.010s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.010s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:472\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"interacting\" in: sky130.lydrc:472\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"enclosing\" in: sky130.lydrc:473\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.010s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"second_edges\" in: sky130.lydrc:473\n", "\u001b[0m\u001b[32m Edges: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"edges\" in: sky130.lydrc:474\n", "\u001b[0m\u001b[32m Edges: 1200 (flat) 1200 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.010s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"-\" in: sky130.lydrc:474\n", "\u001b[0m\u001b[32m Edges: 1200 (flat) 1200 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"width\" in: sky130.lydrc:474\n", "\u001b[0m\u001b[32m Edge pairs: 600 (flat) 600 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.010s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.020s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:474\n", "\u001b[0m\u001b[32m Polygons (raw): 600 (flat) 600 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"not_interacting\" in: sky130.lydrc:475\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:475\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"-\" in: sky130.lydrc:486\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.010s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:486\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"-\" in: sky130.lydrc:488\n", "\u001b[0m\u001b[32m Polygons (raw): 40 (flat) 40 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"edges\" in: sky130.lydrc:488\n", "\u001b[0m\u001b[32m Edges: 150 (flat) 150 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.010s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"without_length\" in: sky130.lydrc:488\n", "\u001b[0m\u001b[32m Edges: 13 (flat) 13 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:488\n", "\u001b[0m\u001b[32m Edges: 13 (flat) 13 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"&\" in: sky130.lydrc:489\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"&\" in: sky130.lydrc:489\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"edges\" in: sky130.lydrc:489\n", "\u001b[0m\u001b[32m Edges: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"without_length\" in: sky130.lydrc:489\n", "\u001b[0m\u001b[32m Edges: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"&\" in: sky130.lydrc:489\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"edges\" in: sky130.lydrc:489\n", "\u001b[0m\u001b[32m Edges: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"without_length\" in: sky130.lydrc:489\n", "\u001b[0m\u001b[32m Edges: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"or\" in: sky130.lydrc:489\n", "\u001b[0m\u001b[32m Edges: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"&\" in: sky130.lydrc:489\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"edges\" in: sky130.lydrc:489\n", "\u001b[0m\u001b[32m Edges: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"without_length\" in: sky130.lydrc:489\n", "\u001b[0m\u001b[32m Edges: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"or\" in: sky130.lydrc:489\n", "\u001b[0m\u001b[32m Edges: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"not_interacting\" in: sky130.lydrc:489\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:489\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.010s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"isolated\" in: sky130.lydrc:490\n", "\u001b[0m\u001b[32m Edge pairs: 4 (flat) 4 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.010s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:490\n", "\u001b[0m\u001b[32m Edge pairs: 4 (flat) 4 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"edges\" in: sky130.lydrc:491\n", "\u001b[0m\u001b[32m Edges: 140 (flat) 140 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"without_length\" in: sky130.lydrc:491\n", "\u001b[0m\u001b[32m Edges: 13 (flat) 13 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"not_interacting\" in: sky130.lydrc:491\n", "\u001b[0m\u001b[32m Polygons (raw): 29 (flat) 29 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"enclosing\" in: sky130.lydrc:491\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 748.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:491\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 748.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"edges\" in: sky130.lydrc:492\n", "\u001b[0m\u001b[32m Edges: 140 (flat) 140 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 748.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"without_length\" in: sky130.lydrc:492\n", "\u001b[0m\u001b[32m Edges: 140 (flat) 140 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"not_interacting\" in: sky130.lydrc:492\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 748.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.010s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"enclosing\" in: sky130.lydrc:492\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 748.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:492\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 748.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"edges\" in: sky130.lydrc:493\n", "\u001b[0m\u001b[32m Edges: 140 (flat) 140 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 748.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"without_length\" in: sky130.lydrc:493\n", "\u001b[0m\u001b[32m Edges: 13 (flat) 13 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"not_interacting\" in: sky130.lydrc:493\n", "\u001b[0m\u001b[32m Polygons (raw): 29 (flat) 29 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"enclosing\" in: sky130.lydrc:493\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.020s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.010s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"second_edges\" in: sky130.lydrc:493\n", "\u001b[0m\u001b[32m Edges: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"edges\" in: sky130.lydrc:494\n", "\u001b[0m\u001b[32m Edges: 140 (flat) 140 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"without_length\" in: sky130.lydrc:494\n", "\u001b[0m\u001b[32m Edges: 13 (flat) 13 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"not_interacting\" in: sky130.lydrc:494\n", "\u001b[0m\u001b[32m Polygons (raw): 29 (flat) 29 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.010s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"edges\" in: sky130.lydrc:494\n", "\u001b[0m\u001b[32m Edges: 116 (flat) 116 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"-\" in: sky130.lydrc:494\n", "\u001b[0m\u001b[32m Edges: 116 (flat) 116 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"width\" in: sky130.lydrc:494\n", "\u001b[0m\u001b[32m Edge pairs: 58 (flat) 58 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:494\n", "\u001b[0m\u001b[32m Polygons (raw): 58 (flat) 58 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"edges\" in: sky130.lydrc:495\n", "\u001b[0m\u001b[32m Edges: 140 (flat) 140 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"without_length\" in: sky130.lydrc:495\n", "\u001b[0m\u001b[32m Edges: 13 (flat) 13 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"not_interacting\" in: sky130.lydrc:495\n", "\u001b[0m\u001b[32m Polygons (raw): 29 (flat) 29 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.010s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"not_interacting\" in: sky130.lydrc:495\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:495\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.010s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"edges\" in: sky130.lydrc:496\n", "\u001b[0m\u001b[32m Edges: 140 (flat) 140 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"without_length\" in: sky130.lydrc:496\n", "\u001b[0m\u001b[32m Edges: 140 (flat) 140 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"not_interacting\" in: sky130.lydrc:496\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"enclosing\" in: sky130.lydrc:496\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.010s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"second_edges\" in: sky130.lydrc:496\n", "\u001b[0m\u001b[32m Edges: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"edges\" in: sky130.lydrc:497\n", "\u001b[0m\u001b[32m Edges: 140 (flat) 140 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"without_length\" in: sky130.lydrc:497\n", "\u001b[0m\u001b[32m Edges: 140 (flat) 140 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"not_interacting\" in: sky130.lydrc:497\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.010s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"edges\" in: sky130.lydrc:497\n", "\u001b[0m\u001b[32m Edges: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"-\" in: sky130.lydrc:497\n", "\u001b[0m\u001b[32m Edges: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"width\" in: sky130.lydrc:497\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.010s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:497\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"edges\" in: sky130.lydrc:498\n", "\u001b[0m\u001b[32m Edges: 140 (flat) 140 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"without_length\" in: sky130.lydrc:498\n", "\u001b[0m\u001b[32m Edges: 140 (flat) 140 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"not_interacting\" in: sky130.lydrc:498\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"not_interacting\" in: sky130.lydrc:498\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:498\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"width\" in: sky130.lydrc:511\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.010s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.010s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:511\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"sized\" in: sky130.lydrc:513\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"sized\" in: sky130.lydrc:513\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"-\" in: sky130.lydrc:514\n", "\u001b[0m\u001b[32m Polygons (raw): 60 (flat) 60 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"space\" in: sky130.lydrc:516\n", "\u001b[0m\u001b[32m Edge pairs: 18 (flat) 18 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.020s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.010s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:516\n", "\u001b[0m\u001b[32m Edge pairs: 18 (flat) 18 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"separation\" in: sky130.lydrc:518\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"space\" in: sky130.lydrc:518\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"+\" in: sky130.lydrc:518\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:518\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"with_area\" in: sky130.lydrc:521\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:521\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"holes\" in: sky130.lydrc:522\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.010s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"with_area\" in: sky130.lydrc:522\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:522\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"-\" in: sky130.lydrc:523\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:523\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"enclosing\" in: sky130.lydrc:525\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:525\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"enclosing\" in: sky130.lydrc:526\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"second_edges\" in: sky130.lydrc:526\n", "\u001b[0m\u001b[32m Edges: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"edges\" in: sky130.lydrc:527\n", "\u001b[0m\u001b[32m Edges: 140 (flat) 140 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"-\" in: sky130.lydrc:527\n", "\u001b[0m\u001b[32m Edges: 140 (flat) 140 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"width\" in: sky130.lydrc:527\n", "\u001b[0m\u001b[32m Edge pairs: 65 (flat) 65 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.010s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:527\n", "\u001b[0m\u001b[32m Polygons (raw): 65 (flat) 65 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"not_interacting\" in: sky130.lydrc:528\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:528\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"-\" in: sky130.lydrc:539\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:539\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"-\" in: sky130.lydrc:541\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"edges\" in: sky130.lydrc:541\n", "\u001b[0m\u001b[32m Edges: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"without_length\" in: sky130.lydrc:541\n", "\u001b[0m\u001b[32m Edges: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:541\n", "\u001b[0m\u001b[32m Edges: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"&\" in: sky130.lydrc:542\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.010s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"&\" in: sky130.lydrc:542\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"edges\" in: sky130.lydrc:542\n", "\u001b[0m\u001b[32m Edges: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"without_length\" in: sky130.lydrc:542\n", "\u001b[0m\u001b[32m Edges: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"&\" in: sky130.lydrc:542\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"edges\" in: sky130.lydrc:542\n", "\u001b[0m\u001b[32m Edges: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"without_length\" in: sky130.lydrc:542\n", "\u001b[0m\u001b[32m Edges: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"or\" in: sky130.lydrc:542\n", "\u001b[0m\u001b[32m Edges: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"&\" in: sky130.lydrc:542\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"edges\" in: sky130.lydrc:542\n", "\u001b[0m\u001b[32m Edges: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"without_length\" in: sky130.lydrc:542\n", "\u001b[0m\u001b[32m Edges: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"or\" in: sky130.lydrc:542\n", "\u001b[0m\u001b[32m Edges: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"not_interacting\" in: sky130.lydrc:542\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.010s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:542\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"isolated\" in: sky130.lydrc:543\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:543\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"enclosing\" in: sky130.lydrc:544\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:544\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"edges\" in: sky130.lydrc:545\n", "\u001b[0m\u001b[32m Edges: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"without_length\" in: sky130.lydrc:545\n", "\u001b[0m\u001b[32m Edges: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"not_interacting\" in: sky130.lydrc:545\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"enclosing\" in: sky130.lydrc:545\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:545\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"enclosing\" in: sky130.lydrc:546\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"second_edges\" in: sky130.lydrc:546\n", "\u001b[0m\u001b[32m Edges: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"edges\" in: sky130.lydrc:547\n", "\u001b[0m\u001b[32m Edges: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"-\" in: sky130.lydrc:547\n", "\u001b[0m\u001b[32m Edges: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"width\" in: sky130.lydrc:547\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:547\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.010s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"not_interacting\" in: sky130.lydrc:548\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:548\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"width\" in: sky130.lydrc:559\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:559\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"sized\" in: sky130.lydrc:561\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"sized\" in: sky130.lydrc:561\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"-\" in: sky130.lydrc:562\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"space\" in: sky130.lydrc:564\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:564\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"separation\" in: sky130.lydrc:566\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"space\" in: sky130.lydrc:566\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"+\" in: sky130.lydrc:566\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:566\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"with_area\" in: sky130.lydrc:569\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:569\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"-\" in: sky130.lydrc:570\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.010s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:570\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"enclosing\" in: sky130.lydrc:572\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:572\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"enclosing\" in: sky130.lydrc:573\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"second_edges\" in: sky130.lydrc:573\n", "\u001b[0m\u001b[32m Edges: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"-\" in: sky130.lydrc:588\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:588\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"-\" in: sky130.lydrc:590\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"edges\" in: sky130.lydrc:590\n", "\u001b[0m\u001b[32m Edges: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"without_length\" in: sky130.lydrc:590\n", "\u001b[0m\u001b[32m Edges: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:590\n", "\u001b[0m\u001b[32m Edges: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"&\" in: sky130.lydrc:591\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"&\" in: sky130.lydrc:591\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.010s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"edges\" in: sky130.lydrc:591\n", "\u001b[0m\u001b[32m Edges: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"without_length\" in: sky130.lydrc:591\n", "\u001b[0m\u001b[32m Edges: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"&\" in: sky130.lydrc:591\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"edges\" in: sky130.lydrc:591\n", "\u001b[0m\u001b[32m Edges: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.010s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"without_length\" in: sky130.lydrc:591\n", "\u001b[0m\u001b[32m Edges: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"or\" in: sky130.lydrc:591\n", "\u001b[0m\u001b[32m Edges: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"not_interacting\" in: sky130.lydrc:591\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:591\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"isolated\" in: sky130.lydrc:592\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:592\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"enclosing\" in: sky130.lydrc:593\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:593\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.010s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"enclosing\" in: sky130.lydrc:594\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"second_edges\" in: sky130.lydrc:594\n", "\u001b[0m\u001b[32m Edges: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"edges\" in: sky130.lydrc:595\n", "\u001b[0m\u001b[32m Edges: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"-\" in: sky130.lydrc:595\n", "\u001b[0m\u001b[32m Edges: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"width\" in: sky130.lydrc:595\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.010s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"polygons\" in: sky130.lydrc:595\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"not_interacting\" in: sky130.lydrc:596\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:596\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"width\" in: sky130.lydrc:607\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:607\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"sized\" in: sky130.lydrc:609\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"sized\" in: sky130.lydrc:609\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"-\" in: sky130.lydrc:610\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"space\" in: sky130.lydrc:612\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:612\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 740.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 739.00M\n", "\u001b[0m\u001b[32m\"separation\" in: sky130.lydrc:614\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"space\" in: sky130.lydrc:614\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"+\" in: sky130.lydrc:614\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:614\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"with_area\" in: sky130.lydrc:616\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:616\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"-\" in: sky130.lydrc:617\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:617\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"enclosing\" in: sky130.lydrc:619\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:619\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"edges\" in: sky130.lydrc:635\n", "\u001b[0m\u001b[32m Edges: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"without_length\" in: sky130.lydrc:635\n", "\u001b[0m\u001b[32m Edges: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:635\n", "\u001b[0m\u001b[32m Edges: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"isolated\" in: sky130.lydrc:636\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:636\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"enclosing\" in: sky130.lydrc:638\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:638\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"-\" in: sky130.lydrc:639\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.010s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:639\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"width\" in: sky130.lydrc:645\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:645\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"space\" in: sky130.lydrc:647\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:647\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"-\" in: sky130.lydrc:649\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:649\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"enclosing\" in: sky130.lydrc:650\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:650\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"width\" in: sky130.lydrc:653\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:653\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"isolated\" in: sky130.lydrc:654\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:654\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"enclosing\" in: sky130.lydrc:655\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:655\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"enclosing\" in: sky130.lydrc:656\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:656\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"enclosing\" in: sky130.lydrc:657\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:657\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"enclosing\" in: sky130.lydrc:658\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:658\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"enclosing\" in: sky130.lydrc:659\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:659\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"enclosing\" in: sky130.lydrc:660\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:660\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"enclosing\" in: sky130.lydrc:661\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:661\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"enclosing\" in: sky130.lydrc:662\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:662\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"enclosing\" in: sky130.lydrc:663\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:663\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"enclosing\" in: sky130.lydrc:664\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:664\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"separation\" in: sky130.lydrc:666\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:666\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"separation\" in: sky130.lydrc:667\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:667\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"separation\" in: sky130.lydrc:668\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:668\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"separation\" in: sky130.lydrc:669\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:669\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"separation\" in: sky130.lydrc:670\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:670\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"separation\" in: sky130.lydrc:671\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 731.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:671\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", @@ -5377,7 +5356,7 @@ "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:832\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.010s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", "\u001b[0m\u001b[32m\"ongrid\" in: sky130.lydrc:833\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", @@ -5416,7 +5395,7 @@ "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", "\u001b[0m\u001b[32m\"ongrid\" in: sky130.lydrc:839\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.010s Memory: 732.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:839\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", @@ -5434,40 +5413,40 @@ "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", "\u001b[0m\u001b[32m\"with_angle\" in: sky130.lydrc:841\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 733.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:841\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.010s Memory: 733.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", "\u001b[0m\u001b[32m\"&\" in: sky130.lydrc:842\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 733.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", "\u001b[0m\u001b[32m\"&\" in: sky130.lydrc:842\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 733.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", "\u001b[0m\u001b[32m\"with_angle\" in: sky130.lydrc:842\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 733.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:842\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 733.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", "\u001b[0m\u001b[32m\"&\" in: sky130.lydrc:843\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 733.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", "\u001b[0m\u001b[32m\"-\" in: sky130.lydrc:843\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.010s Memory: 733.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", "\u001b[0m\u001b[32m\"with_angle\" in: sky130.lydrc:843\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 733.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:843\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 733.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", "\u001b[0m\u001b[32m\"&\" in: sky130.lydrc:844\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 733.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", "\u001b[0m\u001b[32m\"&\" in: sky130.lydrc:844\n", "\u001b[0m\u001b[32m Polygons (raw): 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 733.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 732.00M\n", "\u001b[0m\u001b[32m\"with_angle\" in: sky130.lydrc:844\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 733.00M\n", @@ -5509,10 +5488,10 @@ "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 733.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:850\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.010s Memory: 733.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 733.00M\n", "\u001b[0m\u001b[32m\"ongrid\" in: sky130.lydrc:851\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 733.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.010s Memory: 733.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:851\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 733.00M\n", @@ -5524,19 +5503,19 @@ "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 733.00M\n", "\u001b[0m\u001b[32m\"ongrid\" in: sky130.lydrc:853\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 733.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.010s Memory: 733.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:853\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 733.00M\n", "\u001b[0m\u001b[32m\"with_angle\" in: sky130.lydrc:854\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.010s Memory: 733.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 733.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:854\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 733.00M\n", "\u001b[0m\u001b[32m\"ongrid\" in: sky130.lydrc:855\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 733.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.010s Memory: 733.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:855\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 733.00M\n", @@ -5548,7 +5527,7 @@ "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 733.00M\n", "\u001b[0m\u001b[32m\"ongrid\" in: sky130.lydrc:857\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.020s Memory: 733.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.010s Memory: 733.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:857\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 733.00M\n", @@ -5653,7 +5632,7 @@ "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 733.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:874\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.010s Memory: 733.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 733.00M\n", "\u001b[0m\u001b[32m\"ongrid\" in: sky130.lydrc:875\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 733.00M\n", @@ -5689,7 +5668,7 @@ "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 733.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:880\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 733.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.010s Memory: 733.00M\n", "\u001b[0m\u001b[32m\"ongrid\" in: sky130.lydrc:881\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 733.00M\n", @@ -5782,7 +5761,7 @@ "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 733.00M\n", "\u001b[0m\u001b[32m\"with_angle\" in: sky130.lydrc:896\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", - "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 733.00M\n", + "\u001b[0m\u001b[32m Elapsed: 0.010s Memory: 733.00M\n", "\u001b[0m\u001b[32m\"output\" in: sky130.lydrc:896\n", "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 733.00M\n", @@ -5805,7 +5784,7 @@ "\u001b[0m\u001b[32m Edge pairs: 0 (flat) 0 (hierarchical)\n", "\u001b[0m\u001b[32m Elapsed: 0.000s Memory: 733.00M\n", "\u001b[0m\u001b[32mWriting report database: /content/OpenFASOC/openfasoc/generators/glayout/sky130_drc.txt ..\n", - "\u001b[0m\u001b[32mTotal elapsed: 0.870s Memory: 733.00M\n", + "\u001b[0m\u001b[32mTotal elapsed: 0.850s Memory: 733.00M\n", "\u001b[0m'm1.2'\n", "edge-pair: (40.965,19.57;41.03,19.57)|(41.095,19.695;41.03,19.695)\n", "'m1.2'\n", @@ -5988,15 +5967,15 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 38, "metadata": { "cellView": "form", "id": "k4uRIu9nC0BL", "colab": { "base_uri": "https://localhost:8080/", - "height": 411 + "height": 0 }, - "outputId": "bf52cf93-50a5-44f1-a00f-5d755dde1505" + "outputId": "ba2631c1-35df-4971-8698-328ebd2ff111" }, "outputs": [ { @@ -6117,15 +6096,15 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 39, "metadata": { "cellView": "form", "id": "dRMd7lhxD8Xk", "colab": { "base_uri": "https://localhost:8080/", - "height": 1000 + "height": 0 }, - "outputId": "94fe423c-edff-4c98-dc2f-9230e7d9033c" + "outputId": "e8fd3c35-f57f-4f5f-adec-587c3aaaefbc" }, "outputs": [ { @@ -6172,7 +6151,7 @@ ], "text/html": [ "\n", - "
\n", + "
\n", "
\n", "