-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmnist_train.py
497 lines (432 loc) · 22.6 KB
/
mnist_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
from __future__ import print_function
import argparse
import jsonpickle
import sys
import matplotlib
import torch
import torch.nn.functional as F
import torch.optim as optim
import torch.backends.cudnn as cudnn
import matplotlib.pyplot as plot
from matplotlib.pyplot import imshow
from torch.utils.data import Subset, DataLoader
from torchvision import datasets, transforms
from torch.optim.lr_scheduler import StepLR
import pathlib
from core.adversarial_training import AdversarialTrainer
from core.sparse_input_dataset_recoverer import SparseInputDatasetRecoverer
from core.sparse_input_recoverer import SparseInputRecoverer
from datasets.dataset_helper import DatasetHelper
from datasets.dataset_helper_factory import DatasetHelperFactory
from utils.batched_tensor_view_data_loader import BatchedTensorViewDataLoader
import utils.mnist_helper as mh
from utils import runs_helper as rh
from utils.ckpt_saver import CkptSaver
# Penalized L1 Loss for training adversarial images
from utils.tensorboard_helper import TensorBoardHelper
def compute_generator_loss(config, adv_data, adv_output, adv_targetG, model_all_l1):
lambd = config['lambd']
lambd_layers = config['lambd_layers']
include_likelihood = config['generator_include_likelihood']
include_layer = config['generator_include_layer']
if include_likelihood:
# Cross-entropy of adversarial image on real classes (0, 1, 2...)
nll_loss = F.nll_loss(adv_output, adv_targetG)
else:
nll_loss = 0.
# include l1 penalty only if it's given as true for that layer
l1_loss = 0.
if include_layer[0]:
l1_loss = lambd * (torch.norm(adv_data - mh.get_mnist_zero(), 1)
/ torch.numel(adv_data))
l1_layers = 0.
for include, lamb, l1 in zip(include_layer[1:], lambd_layers,
model_all_l1):
if include:
l1_layers += lamb * l1
loss = nll_loss + l1_loss + l1_layers
return loss
# Performs the training steps for the discriminator and the generator for
# adversarial training
def training_step_adversarial(config, model, optD, optG, data, target, adv_data, adv_targetD,
adv_targetG):
# Now train the "generator"
optG.zero_grad()
# Fake data output and losses for discriminator. Cross-entropy of
# adversarial images on fake-0, fake-1 etc classes
adv_outputG = model(adv_data)
# This should be computed here before adv_data gets changed
# Recomputation needed to separate out the two compute graphs
adv_outputD = model(adv_data.detach())
lossDF = F.nll_loss(adv_outputD, adv_targetD)
# Since we have adv_output here, better compute this as well instead of
# doing this twice
lossG = compute_generator_loss(config, adv_data, adv_outputG, adv_targetG, model.all_l1)
lossG.backward()
optG.step()
# Steps for training model on real data batch
# Zero out gradients accumulated in the model's params
optD.zero_grad()
# Real data output and losses. Cross-entropy on real target
output = model(data)
lossDR = F.nll_loss(output, target)
# Supervised loss is now for classifying real data correctly, as well
# as adversarial data correctly
supervised_loss = lossDR + lossDF
supervised_loss.backward()
# Step optD, which changes only the model's params
optD.step()
return supervised_loss, lossDR, lossDF, lossG
# Adversarially train a single epoch
#
# adversarial_train_loader points to 1k 28x28 tensors
# These are initialized to randomly generated mnist_transform(N(0, 0.1))
# continuously modified during training
def adversarial_train(args, config, model, device, train_loader,
adversarial_train_loader, optD, optG, epoch):
model.train()
for batch_idx, ((data, target), (adv_data, adv_targetD, adv_targetG)) in \
enumerate(zip(train_loader, adversarial_train_loader)):
# Some stupid pytorch things
data, target = data.to(device), target.to(device)
adv_data, adv_targetD, adv_targetG = adv_data.to(device), \
adv_targetD.to(device), adv_targetG.to(device)
loss, lossDR, lossDF, lossG = training_step_adversarial(config, model, optD, optG, data, target, adv_data, adv_targetD,
adv_targetG)
if batch_idx % args.log_interval == 0:
sys.stdout.write('Train Epoch: {} [{}/{} ({:.0f}%)]\tLossDR:'
'{:.6f}\tLossDF: {:.6f}\tLossG: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), lossDR.item(),
lossDF.item(), lossG.item()))
sys.stdout.write('\r')
if args.dry_run:
break
pass
def train(args, model, device, train_loader, optimizer, epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target) #+ model.get_weight_decay()
loss.backward()
optimizer.step()
if batch_idx % args.log_interval == 0:
sys.stdout.write('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
sys.stdout.write('\r')
if args.dry_run:
break
def test(model, device, test_loader):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.2f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
def main():
include_layer = {
"no penalty" : [ False, False, False, False],
"input only" : [ True, False, False, False],
"all layers" : [ True, True, True, True],
"layer 1 only" : [ False, True, False, False],
"layer 2 only" : [ False, False, True, False],
"layer 3 only" : [ False, False, False, True],
"all but input" : [ False, True, True, True],
}
generator_modes = list(include_layer.keys())
parser = argparse.ArgumentParser(description='Modified PyTorch MNIST Example', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
available_train_modes = ['normal', 'adversarial-continuous', 'adversarial-epoch', 'adversarial-batches', 'test']
parser.add_argument('--train-mode', type=str, default='normal', metavar='MODE', choices=available_train_modes,
help='Training mode. One of: ' + ', '.join(available_train_modes))
parser.add_argument('--name', type=str, default='')
parser.add_argument('--dataset', type=str, default='MNIST', metavar='MODE')
parser.add_argument('--pretrain', action='store_true', default=True, dest='pretrain', help='Pretrain before adversarial training')
parser.add_argument('--no-pretrain', action='store_false', default=True, dest='pretrain', help='Do not pretrain')
parser.add_argument('--batch-size', type=int, default=32, metavar='N', help='input batch size for training')
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N', help='input batch size for testing ')
parser.add_argument('--epochs', type=int, default=14, metavar='N', help='number of epochs to train')
parser.add_argument('--num-pretrain-epochs', type=int, default=1, metavar='N', help='number of epochs to pre-train before starting adversarial training')
parser.add_argument('--lr', type=float, default=1.0, metavar='LR', help='learning rate')
parser.add_argument('--gamma', type=float, default=0.7, metavar='M', help='Learning rate step gamma')
parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training')
parser.add_argument('--dry-run', action='store_true', default=False, help='quickly check a single pass')
parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed')
parser.add_argument('--log-interval', type=int, default=10, metavar='N', help='how many batches to wait before logging training status')
parser.add_argument('--save-model', action='store_true', default=True, dest='save_model', help='For Saving the current Model')
parser.add_argument('--no-save-model', action='store_false', default=True, dest='save_model', help='Do not save the current Model')
parser.add_argument('--run-dir', type=str, default=None, metavar='DIR', help='Directory under which model and outputs are saved')
parser.add_argument('--run-suffix', type=str, default='', required=False, metavar='S', help='Will be appended to the run directory provided')
parser.add_argument('--early-epoch', action='store_true', default=False, dest='early_epoch', help='Finish epoch early (for debugging)')
parser.add_argument('--num-batches-early-epoch', type=int, default=10, metavar='N', help='Number of batches before epoch finishes')
parser.add_argument('--dump-config', action='store_true', default=False, required=False, help='Print config json and exit')
parser.add_argument('--resume-epoch', type=int, default=None, required=False, help='Resume from checkpoint for this saved epoch')
parser.add_argument('--load-model', action='store_true', default=False, required=False, help='Load model from default location')
parser.add_argument('--discriminator-model-file', type=str, metavar='DMF',
default=None, required=False,
help='Discriminator model file')
# Arguments specific to adversarial training
parser.add_argument('--generator-lr', type=float, default=0.05,
metavar='GLR',
help='learning rate for image generation')
parser.add_argument('--generator-mode', type=str, default='input only',
metavar='GM',
help='Generator penalty mode. One of: "' +
'", "'.join(generator_modes) + '"')
#parser.add_argument('--generator-lambda', type=float, default=0.1, metavar='LAMBDA',
# help='lambda value for input layer')
#parser.add_argument('--generator-lambda-layers', nargs=3, type=float, default=[0.1,
# 0.1, 0.1], metavar='a b c',
# help='lambda value for input layer')
#parser.add_argument('--generator-include-likelihood',
# dest='generator_include_likelihood',
# action='store_true', default=True,
# help='include likelihood loss')
#include_likelihood = config_dict['generator_include_likelihood']
#include_layer = config_dict['generator_include_layer']
AdversarialTrainer.add_command_line_arguments(parser)
SparseInputDatasetRecoverer.add_command_line_arguments(parser)
SparseInputRecoverer.add_command_line_arguments(parser)
DatasetHelperFactory.add_command_line_arguments(parser)
args = parser.parse_args()
config = args
use_cuda = not args.no_cuda and torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
config.use_cuda = use_cuda
config.device = device
SparseInputRecoverer.setup_default_config(config)
# dataset name is 'MNIST'
#config.dataset_name = 'mnist'
dataset_helper: DatasetHelper = DatasetHelperFactory.get(config.dataset, config.non_sparse_dataset)
dataset_helper.setup_config(config)
# Setup runs directory, tensorboard helper and sparse input recoverer
rh.setup_run_dir(config, 'train_runs')
tbh = TensorBoardHelper(config.run_dir)
sparse_input_recoverer = SparseInputRecoverer(config, tbh, verbose=True)
config.ckpt_dir = f"{args.run_dir}/ckpt/"
config.ckpt_save_path = pathlib.Path(f"mnist_cnn.pt")
ckpt_saver = CkptSaver(config.ckpt_dir)
# Log config to tensorboard
tbh.log_config_as_text(config)
tbh.flush()
# Set config_dict from args
config_dict = vars(args)
config_dict['lambd'] = 0.1
config_dict['lambd_layers'] = [0.1, 0.1, 0.1]
config_dict['generator_include_likelihood'] = True
config_dict['generator_include_layer'] = include_layer[args.generator_mode]
torch.manual_seed(args.seed)
train_kwargs = {'batch_size': args.batch_size}
test_kwargs = {'batch_size': args.test_batch_size}
if use_cuda:
cuda_kwargs = {'num_workers': 3,
'pin_memory': True,
'shuffle': True}
train_kwargs.update(cuda_kwargs)
test_kwargs.update(cuda_kwargs)
# test_transform=transforms.Compose([
# transforms.ToTensor(),
# transforms.Normalize((0.1307,), (0.3081,))
# ])
# From this tutorial:
# https://pytorch.org/tutorials/beginner/data_loading_tutorial.html#iterating-through-the-dataset
# , transforms are applied on each batch dynamically. Hence data gets
# augmented due to random transforms.
# train_transform = transforms.Compose([
# transforms.RandomAffine(degrees=5, translate=(0.1, 0.1), scale=(0.9,
# 1.1), shear=None),
# transforms.ToTensor(),
# transforms.Normalize((0.1307,), (0.3081,))
# ])
#dataset1 = datasets.MNIST('./data', train=True, download=True)
#pilimage, label = dataset1[0]
#print(label)
#pilimage.show()
# dataset1 = datasets.MNIST('./data', train=True, download=True,
# transform=train_transform)
#
# Print out the l0 norm of the images
#dataset1 = datasets.MNIST('./data', train=True, download=True,
# transform=transforms.Compose([transforms.ToTensor()]))
#lst = []
#for i in range(len(dataset1)):
# image, label = dataset1[i]
# l0_norm = torch.sum(image != 0.).item() / 784.
# lst.append(l0_norm)
#print("%.3f" % l0_norm)
#norms = np.array(lst)
#print("mean = %.3f, median = %.3f, std = %.3f" % ( norms.mean(),
# np.median(norms),
# norms.std()))
#sys.exit(1)
# Plot some images
#
#for i in range(10):
# # Show one image
# image, label = dataset1[0]
#
# imshow(image[0], cmap='gray')
# plot.show()
# imshow(mh.undo_transform(image)[0], cmap='gray')
# plot.show()
#np_img = mh.undo_transform(image)[0].numpy()
#img = Image.fromarray(np.uint8(np_img * 255), 'L')
#img.show()
# Show one image
#sys.exit(1)
test_transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
# From this tutorial:
# https://pytorch.org/tutorials/beginner/data_loading_tutorial.html#iterating-through-the-dataset
# , transforms are applied on each batch dynamically. Hence data gets
# augmented due to random transforms.
# train_transform = transforms.Compose([
# transforms.RandomAffine(degrees=5, translate=(0.1, 0.1), scale=(0.9,
# 1.1), shear=None),
# transforms.ToTensor(),
# transforms.Normalize((0.1307,), (0.3081,))
# ])
# dataset1 = datasets.MNIST('./data', train=True, download=True,
# transform=train_transform)
#
# dataset2 = datasets.MNIST('./data', train=False,
# transform=test_transform)
dataset1 = dataset_helper.get_dataset(which='train', transform='train')
dataset2 = dataset_helper.get_dataset(which='test', transform='test')
print(f"Dataset name : {config.dataset}, train_len = {len(dataset1)}, test_len = {len(dataset2)}")
train_loader = torch.utils.data.DataLoader(dataset1,**train_kwargs)
test_loader = torch.utils.data.DataLoader(dataset2, **test_kwargs)
# full_train_data = datasets.MNIST('./data', train=True, download=True,
# transform=test_transform)
full_train_data = dataset_helper.get_dataset(which='train', transform='test')
train_samples = DataLoader(Subset(full_train_data, indices=torch.randperm(len(full_train_data))[0:10000]), **test_kwargs)
#imshow(mh.undo_transform(image)[0], cmap='gray')
#plot.show()
if args.train_mode == 'adversarial-continuous':
# 1000 images of size 28x28, 1 channel
# initialize images with a Gaussian ball close to mnist 0
#images = torch.normal(mnist_zero + 0.1, 0.1, (1000, 1, 28, 28), requires_grad=True)
images = torch.randn(1000, 1, 28, 28, requires_grad=True)
real_class_targets = torch.randint(10, (1000, ))
# class fake-0 is 10, fake-1 is 11 etc
fake_class_targets = real_class_targets + 10
adversarial_dataset = torch.utils.data.TensorDataset(images,
real_class_targets, fake_class_targets)
#adversarial_train_loader = InfiniteDataLoader(adversarial_dataset,
# **train_kwargs)
adversarial_train_loader = BatchedTensorViewDataLoader(args.batch_size,
images, real_class_targets, fake_class_targets)
batch_a, batch_b, batch_c = next(iter(adversarial_train_loader))
#print(len(batch_a))
#print(batch_a[0], batch_b[0], batch_c[0])
#sys.exit(0)
assert not (args.load_model and (args.resume_epoch is not None))
load = False
#if config.dataset.lower() == 'cifar':
# load = True
# # config.discriminator_model_file =
model = dataset_helper.get_model(config.adversarial_classification_mode, device, load=args.load_model, config=config)
# T_max for cifar lr scheduler needs to be set correctly
# We do not care about resume_epoch here because in case of resumption, we just load everything from the checkpoint
if config.train_mode in ['adversarial-epoch', 'adversarial-batches']:
if config.pretrain and config.num_pretrain_epochs > 0:
config.cifar_t_max = config.num_pretrain_epochs
elif config.train_fresh_network:
if config.adv_data_generation_steps < config.epochs:
config.cifar_t_max = config.adv_data_generation_steps
else:
config.cifar_t_max = config.epochs
else:
# If not pretraining and not using a fresh network, then we set T max to the entire number of epochs
config.cifar_t_max = config.epochs
elif config.train_mode == 'normal':
config.cifar_t_max = config.epochs
print(f'cifar_t_max = {config.cifar_t_max}')
optimizer, scheduler = dataset_helper.get_optimizer_scheduler(config, model)
start_epoch = 0
if args.resume_epoch is not None:
model, optimizer, scheduler = ckpt_saver.load_evertything(model, optimizer, scheduler, args.resume_epoch)
start_epoch = args.resume_epoch + 1
if args.train_mode == 'adversarial-continuous':
optD = optimizer
optG = optim.Adam([images], lr=args.generator_lr)
# Setup sparse dataset recovery here, after model etc are all set up
if args.train_mode in [ 'adversarial-epoch', 'adversarial-batches' ]:
if args.train_mode == 'adversarial-epoch':
dataset_len = config.num_adversarial_images_epoch_mode
elif args.train_mode == 'adversarial-batches':
dataset_len = config.num_adversarial_images_batch_mode
dataset_recoverer = SparseInputDatasetRecoverer(
sparse_input_recoverer,
model,
num_recovery_steps=config.recovery_num_steps,
batch_size=config.recovery_batch_size,
sparsity_mode=config.recovery_penalty_mode,
num_real_classes=dataset_helper.get_num_classes(),
dataset_len=dataset_len,
each_entry_shape=dataset_helper.get_each_entry_shape(),
device=device, ckpt_saver=ckpt_saver, config=config)
#images, targets = dataset_recoverer.recover_image_dataset()
#print("Recovered images, targets", images.shape, targets.shape, targets.detach().numpy())
#sys.exit(0)
# Now we can create an AdversarialTrainer!!!!!
adversarial_trainer = AdversarialTrainer(train_loader, train_samples, dataset_recoverer, model, optimizer, config.batch_size,
device, config.log_interval, config.dry_run, config.early_epoch,
config.num_batches_early_epoch, test_loader, scheduler,
config.adversarial_classification_mode, config)
# Log config to tensorboard
# tbh.log_config_as_text(config)
# tbh.flush()
# Dump configuration after setting everything up. For quick debugging
config_str = jsonpickle.encode(vars(config), indent=2)
with open(f"{config.run_dir}/config.json" , 'w') as f:
f.write(config_str)
if config.dump_config:
#json.dump(vars(config), sys.stdout, indent=2, sort_keys=True)
print(config_str)
sys.exit(0)
if args.train_mode == 'test':
print('Testing only, no training')
test(model, device, test_loader)
elif args.train_mode not in ['adversarial-batches', 'adversarial-epoch']:
print('Testing before training:')
test(model, device, test_loader)
for epoch in range(start_epoch, args.epochs):
# Perform pre-training for 1 epoch in adversarial mode
if args.train_mode == 'normal' or epoch == 0:
if args.train_mode == 'adversarial-continuous':
print('Performing pre-training for 1 epoch')
train(args, model, device, train_loader, optimizer, epoch)
elif args.train_mode == 'adversarial-continuous':
adversarial_train(args, config_dict, model, device, train_loader,
adversarial_train_loader, optD, optG, epoch)
else:
raise ValueError("invalid train_mode : " + args.train_mode)
test(model, device, test_loader)
ckpt_saver.save_model(model, epoch, config.model_classname)
ckpt_saver.save_everything(model, optimizer, scheduler, {}, epoch)
scheduler.step()
else:
adversarial_trainer.train_loop(start_epoch, args.epochs, args.train_mode, args.pretrain, args.num_pretrain_epochs, config)
if args.save_model:
save_path = config.ckpt_save_path
save_path.parent.mkdir(exist_ok=True, parents=True)
print("Saving model to : ", save_path)
torch.save(model.state_dict(), save_path)
tbh.close()
if __name__ == '__main__':
main()
#import cProfile
#cProfile.run('main()')