forked from plclub/metalib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Fsub_LetSum_Definitions.v
598 lines (528 loc) · 22.4 KB
/
Fsub_LetSum_Definitions.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
(** Definition of Fsub (System F with subtyping).
Authors: Brian Aydemir and Arthur Chargu\'eraud, with help from
Aaron Bohannon, Jeffrey Vaughan, and Dimitrios Vytiniotis.
Table of contents:
- #<a href="##syntax">Syntax (pre-terms)</a>#
- #<a href="##open">Opening</a>#
- #<a href="##lc">Local closure</a>#
- #<a href="##env">Environments</a>#
- #<a href="##wf">Well-formedness</a>#
- #<a href="##sub">Subtyping</a>#
- #<a href="##typing_doc">Typing</a>#
- #<a href="##values">Values</a>#
- #<a href="##reduction">Reduction</a>#
- #<a href="##auto">Automation</a>#
*)
Require Export Metatheory.
(* ********************************************************************** *)
(** * #<a name="syntax"></a># Syntax (pre-terms) *)
(** We use a locally nameless representation for Fsub, where bound
variables are represented as natural numbers (de Bruijn indices)
and free variables are represented as [atom]s. The type [atom],
defined in the MetatheoryAtom library, represents names: there are
infinitely many atoms, equality is decidable on atoms, and it is
possible to generate an atom fresh for any given finite set of
atoms.
We say that the definitions below define pre-types ([typ]) and
pre-expressions ([exp]), collectively pre-terms, since the
datatypes admit terms, such as [(typ_all typ_top (typ_bvar 3))],
where indices are unbound. A term is locally closed when it
contains no unbound indices.
Note that indices for bound type variables are distinct from
indices for bound expression variables. We make this explicit in
the definitions below of the opening operations. *)
Inductive typ : Set :=
| typ_top : typ
| typ_bvar : nat -> typ
| typ_fvar : atom -> typ
| typ_arrow : typ -> typ -> typ
| typ_all : typ -> typ -> typ
| typ_sum : typ -> typ -> typ
.
Inductive exp : Set :=
| exp_bvar : nat -> exp
| exp_fvar : atom -> exp
| exp_abs : typ -> exp -> exp
| exp_app : exp -> exp -> exp
| exp_tabs : typ -> exp -> exp
| exp_tapp : exp -> typ -> exp
| exp_let : exp -> exp -> exp
| exp_inl : exp -> exp
| exp_inr : exp -> exp
| exp_case : exp -> exp -> exp -> exp
.
(** We declare the constructors for indices and variables to be
coercions. For example, if Coq sees a [nat] where it expects an
[exp], it will implicitly insert an application of [exp_bvar];
similar behavior happens for [atom]s. Thus, we may write
[(exp_abs typ_top (exp_app 0 x))] instead of [(exp_abs typ_top
(exp_app (exp_bvar 0) (exp_fvar x)))]. *)
Coercion typ_bvar : nat >-> typ.
Coercion typ_fvar : atom >-> typ.
Coercion exp_bvar : nat >-> exp.
Coercion exp_fvar : atom >-> exp.
(* ********************************************************************** *)
(** * #<a name="open"></a># Opening terms *)
(** Opening replaces an index with a term. This operation is required
if we wish to work only with locally closed terms when going under
binders (e.g., the typing rule for [exp_abs]). It also
corresponds to informal substitution for a bound variable, which
occurs in the rule for beta reduction.
We need to define three functions for opening due the syntax of
Fsub, and we name them according to the following convention.
- [tt]: Denotes an operation involving types appearing in types.
- [te]: Denotes an operation involving types appearing in
expressions.
- [ee]: Denotes an operation involving expressions appearing in
expressions.
The notation used below for decidable equality on natural numbers
(e.g., [K == J]) is defined in the CoqEqDec library, which is
included by the Metatheory library. The order of arguments to
each "open" function is the same. For example, [(open_tt_rec K U
T)] can be read as "substitute [U] for index [K] in [T]."
Note that we assume [U] is locally closed (and similarly for the
other opening functions). This assumption simplifies the
implementations of opening by letting us avoid shifting. Since
bound variables are indices, there is no need to rename variables
to avoid capture. Finally, we assume that these functions are
initially called with index zero and that zero is the only unbound
index in the term. This eliminates the need to possibly subtract
one in the case of indices. *)
Fixpoint open_tt_rec (K : nat) (U : typ) (T : typ) {struct T} : typ :=
match T with
| typ_top => typ_top
| typ_bvar J => if K == J then U else (typ_bvar J)
| typ_fvar X => typ_fvar X
| typ_arrow T1 T2 => typ_arrow (open_tt_rec K U T1) (open_tt_rec K U T2)
| typ_all T1 T2 => typ_all (open_tt_rec K U T1) (open_tt_rec (S K) U T2)
| typ_sum T1 T2 => typ_sum (open_tt_rec K U T1) (open_tt_rec K U T2)
end.
Fixpoint open_te_rec (K : nat) (U : typ) (e : exp) {struct e} : exp :=
match e with
| exp_bvar i => exp_bvar i
| exp_fvar x => exp_fvar x
| exp_abs V e1 => exp_abs (open_tt_rec K U V) (open_te_rec K U e1)
| exp_app e1 e2 => exp_app (open_te_rec K U e1) (open_te_rec K U e2)
| exp_tabs V e1 => exp_tabs (open_tt_rec K U V) (open_te_rec (S K) U e1)
| exp_tapp e1 V => exp_tapp (open_te_rec K U e1) (open_tt_rec K U V)
| exp_let e1 e2 => exp_let (open_te_rec K U e1) (open_te_rec K U e2)
| exp_inl e1 => exp_inl (open_te_rec K U e1)
| exp_inr e2 => exp_inr (open_te_rec K U e2)
| exp_case e1 e2 e3 =>
exp_case (open_te_rec K U e1) (open_te_rec K U e2) (open_te_rec K U e3)
end.
Fixpoint open_ee_rec (k : nat) (f : exp) (e : exp) {struct e} : exp :=
match e with
| exp_bvar i => if k == i then f else (exp_bvar i)
| exp_fvar x => exp_fvar x
| exp_abs V e1 => exp_abs V (open_ee_rec (S k) f e1)
| exp_app e1 e2 => exp_app (open_ee_rec k f e1) (open_ee_rec k f e2)
| exp_tabs V e1 => exp_tabs V (open_ee_rec k f e1)
| exp_tapp e1 V => exp_tapp (open_ee_rec k f e1) V
| exp_let e1 e2 => exp_let (open_ee_rec k f e1) (open_ee_rec (S k) f e2)
| exp_inl e1 => exp_inl (open_ee_rec k f e1)
| exp_inr e2 => exp_inr (open_ee_rec k f e2)
| exp_case e1 e2 e3 =>
exp_case (open_ee_rec k f e1)
(open_ee_rec (S k) f e2)
(open_ee_rec (S k) f e3)
end.
(** Many common applications of opening replace index zero with an
expression or variable. The following definitions provide
convenient shorthands for such uses. Note that the order of
arguments is switched relative to the definitions above. For
example, [(open_tt T X)] can be read as "substitute the variable
[X] for index [0] in [T]" and "open [T] with the variable [X]."
Recall that the coercions above let us write [X] in place of
[(typ_fvar X)], assuming that [X] is an [atom]. *)
Definition open_tt T U := open_tt_rec 0 U T.
Definition open_te e U := open_te_rec 0 U e.
Definition open_ee e1 e2 := open_ee_rec 0 e2 e1.
(* ********************************************************************** *)
(** * #<a name="lc"></a># Local closure *)
(** Recall that [typ] and [exp] define pre-terms; these datatypes
admit terms that contain unbound indices. A term is locally
closed, or syntactically well-formed, when no indices appearing in
it are unbound. The proposition [(type T)] holds when a type [T]
is locally closed, and [(expr e)] holds when an expression [e] is
locally closed.
The inductive definitions below formalize local closure such that
the resulting induction principles serve as structural induction
principles over (locally closed) types and (locally closed)
expressions. In particular, unlike the situation with pre-terms,
there are no cases for indices. Thus, these induction principles
correspond more closely to informal practice than the ones arising
from the definitions of pre-terms.
The interesting cases in the inductive definitions below are those
that involve binding constructs, e.g., [typ_all]. Intuitively, to
check if the pre-term [(typ_all T1 T2)] is locally closed, we must
check that [T1] is locally closed and that [T2] is locally closed
when opened with a variable. However, there is a choice as to how
many variables to quantify over. One possibility is to quantify
over only one variable ("existential" quantification), as in
<<
type_all : forall X T1 T2,
type T1 ->
type (open_tt T2 X) ->
type (typ_all T1 T2) .
>> Or, we could quantify over as many variables as possible ("universal"
quantification), as in
<<
type_all : forall T1 T2,
type T1 ->
(forall X : atom, type (open_tt T2 X)) ->
type (typ_all T1 T2) .
>> It is possible to show that the resulting relations are equivalent.
The former makes it easy to build derivations, while the latter
provides a strong induction principle. McKinna and Pollack used
both forms of this relation in their work on formalizing Pure Type
Systems.
We take a different approach here and use "cofinite"
quantification: we quantify over all but finitely many variables.
This approach provides a convenient middle ground: we can build
derivations reasonably easily and get reasonably strong induction
principles. With some work, one can show that the definitions
below are equivalent to ones that use existential, and hence also
universal, quantification. *)
Inductive type : typ -> Prop :=
| type_top :
type typ_top
| type_var : forall X,
type (typ_fvar X)
| type_arrow : forall T1 T2,
type T1 ->
type T2 ->
type (typ_arrow T1 T2)
| type_all : forall L T1 T2,
type T1 ->
(forall X : atom, X `notin` L -> type (open_tt T2 X)) ->
type (typ_all T1 T2)
| type_sum : forall T1 T2,
type T1 ->
type T2 ->
type (typ_sum T1 T2)
.
Inductive expr : exp -> Prop :=
| expr_var : forall x,
expr (exp_fvar x)
| expr_abs : forall L T e1,
type T ->
(forall x : atom, x `notin` L -> expr (open_ee e1 x)) ->
expr (exp_abs T e1)
| expr_app : forall e1 e2,
expr e1 ->
expr e2 ->
expr (exp_app e1 e2)
| expr_tabs : forall L T e1,
type T ->
(forall X : atom, X `notin` L -> expr (open_te e1 X)) ->
expr (exp_tabs T e1)
| expr_tapp : forall e1 V,
expr e1 ->
type V ->
expr (exp_tapp e1 V)
| expr_let : forall L e1 e2,
expr e1 ->
(forall x : atom, x `notin` L -> expr (open_ee e2 x)) ->
expr (exp_let e1 e2)
| expr_inl : forall e1,
expr e1 ->
expr (exp_inl e1)
| expr_inr : forall e1,
expr e1 ->
expr (exp_inr e1)
| expr_case : forall L e1 e2 e3,
expr e1 ->
(forall x : atom, x `notin` L -> expr (open_ee e2 x)) ->
(forall x : atom, x `notin` L -> expr (open_ee e3 x)) ->
expr (exp_case e1 e2 e3)
.
(** #<a name="body_e_doc"></a># We also define what it means to be the
body of an abstraction, since this simplifies slightly the
definition of reduction and subsequent proofs. It is not strictly
necessary to make this definition in order to complete the
development. *)
Definition body_e (e : exp) :=
exists L, forall x : atom, x `notin` L -> expr (open_ee e x).
(* ********************************************************************** *)
(** * #<a name="env"></a># Environments *)
(** In our presentation of System F with subtyping, we use a single
environment for both typing and subtyping assumptions. We
formalize environments by representing them as association lists
(lists of pairs of keys and values) whose keys are atoms.
The Metatheory and MetatheoryEnv libraries provide functions,
predicates, tactics, notations and lemmas that simplify working
with environments. They treat environments as lists of type [list
(atom * A)]. The notation [(x ~ a)] denotes a list consisting of
a single binding from [x] to [a].
Since environments map [atom]s, the type [A] should encode whether
a particular binding is a typing or subtyping assumption. Thus,
we instantiate [A] with the type [binding], defined below. *)
Inductive binding : Set :=
| bind_sub : typ -> binding
| bind_typ : typ -> binding.
(** A binding [(X ~ bind_sub T)] records that a type variable [X] is a
subtype of [T], and a binding [(x ~ bind_typ U)] records that an
expression variable [x] has type [U].
We define an abbreviation [env] for the type of environments, and
an abbreviation [empty] for the empty environment.
Note: Each instance of [Notation] below defines an abbreviation
since the left-hand side consists of a single identifier that is
not in quotes. These abbreviations are used for both parsing (the
left-hand side is equivalent to the right-hand side in all
contexts) and printing (the right-hand side is pretty-printed as
the left-hand side). Since [nil] is normally a polymorphic
constructor whose type argument is implicit, we prefix the name
with "[@]" to signal to Coq that we are going to supply arguments
to [nil] explicitly. *)
Notation env := (list (atom * binding)).
Notation empty := (@nil (atom * binding)).
(** #<b>#Examples:#</b># We use a convention where environments are
never built using a cons operation [((x, a) :: E)] where [E] is
non-[nil]. This makes the shape of environments more uniform and
saves us from excessive fiddling with the shapes of environments.
For example, Coq's tactics sometimes distinguish between consing
on a new binding and prepending a one element list, even though
the two operations are convertible with each other.
Consider the following environments written in informal notation.
<<
1. (empty environment)
2. x : T
3. x : T, Y <: S
4. E, x : T, F
>> In the third example, we have an environment that binds an
expression variable [x] to [T] and a type variable [Y] to [S].
In Coq, we would write these environments as follows.
<<
1. empty
2. x ~ bind_typ T
3. Y ~ bind_sub S ++ x ~ bind_typ T
4. F ++ x ~ bind_typ T ++ E
>> The symbol "[++]" denotes list concatenation and associates to the
right. (That notation is defined in Coq's List library.) Note
that in Coq, environments grow on the left, since that is where
the head of a list is. *)
(* ********************************************************************** *)
(** * #<a name="wf"></a># Well-formedness *)
(** A type [T] is well-formed with respect to an environment [E],
denoted [(wf_typ E T)], when [T] is locally-closed and its free
variables are bound in [E]. We need this relation in order to
restrict the subtyping and typing relations, defined below, to
contain only well-formed types. (This relation is missing in the
original statement of the POPLmark Challenge.)
Note: It is tempting to define the premise of [wf_typ_var] as [(X
`in` dom E)], since that makes the rule easier to apply (no need
to guess an instantiation for [U]). Unfortunately, this is
incorrect. We need to check that [X] is bound as a type-variable,
not an expression-variable; [(dom E)] does not distinguish between
the two kinds of bindings. *)
Inductive wf_typ : env -> typ -> Prop :=
| wf_typ_top : forall E,
wf_typ E typ_top
| wf_typ_var : forall U E (X : atom),
binds X (bind_sub U) E ->
wf_typ E (typ_fvar X)
| wf_typ_arrow : forall E T1 T2,
wf_typ E T1 ->
wf_typ E T2 ->
wf_typ E (typ_arrow T1 T2)
| wf_typ_all : forall L E T1 T2,
wf_typ E T1 ->
(forall X : atom, X `notin` L ->
wf_typ (X ~ bind_sub T1 ++ E) (open_tt T2 X)) ->
wf_typ E (typ_all T1 T2)
| wf_typ_sum : forall E T1 T2,
wf_typ E T1 ->
wf_typ E T2 ->
wf_typ E (typ_sum T1 T2)
.
(** An environment [E] is well-formed, denoted [(wf_env E)], if each
atom is bound at most at once and if each binding is to a
well-formed type. This is a stronger relation than the [uniq]
relation defined in the MetatheoryEnv library. We need this
relation in order to restrict the subtyping and typing relations,
defined below, to contain only well-formed environments. (This
relation is missing in the original statement of the POPLmark
Challenge.) *)
Inductive wf_env : env -> Prop :=
| wf_env_empty :
wf_env empty
| wf_env_sub : forall (E : env) (X : atom) (T : typ),
wf_env E ->
wf_typ E T ->
X `notin` dom E ->
wf_env (X ~ bind_sub T ++ E)
| wf_env_typ : forall (E : env) (x : atom) (T : typ),
wf_env E ->
wf_typ E T ->
x `notin` dom E ->
wf_env (x ~ bind_typ T ++ E).
(* ********************************************************************** *)
(** * #<a name="sub"></a># Subtyping *)
(** The definition of subtyping is straightforward. It uses the
[binds] relation from the MetatheoryEnv library (in the
[sub_trans_tvar] case) and cofinite quantification (in the
[sub_all] case). *)
Inductive sub : env -> typ -> typ -> Prop :=
| sub_top : forall E S,
wf_env E ->
wf_typ E S ->
sub E S typ_top
| sub_refl_tvar : forall E X,
wf_env E ->
wf_typ E (typ_fvar X) ->
sub E (typ_fvar X) (typ_fvar X)
| sub_trans_tvar : forall U E T X,
binds X (bind_sub U) E ->
sub E U T ->
sub E (typ_fvar X) T
| sub_arrow : forall E S1 S2 T1 T2,
sub E T1 S1 ->
sub E S2 T2 ->
sub E (typ_arrow S1 S2) (typ_arrow T1 T2)
| sub_all : forall L E S1 S2 T1 T2,
sub E T1 S1 ->
(forall X : atom, X `notin` L ->
sub (X ~ bind_sub T1 ++ E) (open_tt S2 X) (open_tt T2 X)) ->
sub E (typ_all S1 S2) (typ_all T1 T2)
| sub_sum : forall E S1 S2 T1 T2,
sub E S1 T1 ->
sub E S2 T2 ->
sub E (typ_sum S1 S2) (typ_sum T1 T2)
.
(* ********************************************************************** *)
(** * #<a name="typing_doc"></a># Typing *)
(** The definition of typing is straightforward. It uses the [binds]
relation from the MetatheoryEnv library (in the [typing_var] case)
and cofinite quantification in the cases involving binders (e.g.,
[typing_abs] and [typing_tabs]). *)
Inductive typing : env -> exp -> typ -> Prop :=
| typing_var : forall E x T,
wf_env E ->
binds x (bind_typ T) E ->
typing E (exp_fvar x) T
| typing_abs : forall L E V e1 T1,
(forall x : atom, x `notin` L ->
typing (x ~ bind_typ V ++ E) (open_ee e1 x) T1) ->
typing E (exp_abs V e1) (typ_arrow V T1)
| typing_app : forall T1 E e1 e2 T2,
typing E e1 (typ_arrow T1 T2) ->
typing E e2 T1 ->
typing E (exp_app e1 e2) T2
| typing_tabs : forall L E V e1 T1,
(forall X : atom, X `notin` L ->
typing (X ~ bind_sub V ++ E) (open_te e1 X) (open_tt T1 X)) ->
typing E (exp_tabs V e1) (typ_all V T1)
| typing_tapp : forall T1 E e1 T T2,
typing E e1 (typ_all T1 T2) ->
sub E T T1 ->
typing E (exp_tapp e1 T) (open_tt T2 T)
| typing_sub : forall S E e T,
typing E e S ->
sub E S T ->
typing E e T
| typing_let : forall L T1 T2 e1 e2 E,
typing E e1 T1 ->
(forall x : atom, x `notin` L ->
typing (x ~ bind_typ T1 ++ E) (open_ee e2 x) T2) ->
typing E (exp_let e1 e2) T2
| typing_inl : forall T1 T2 e1 E,
typing E e1 T1 ->
wf_typ E T2 ->
typing E (exp_inl e1) (typ_sum T1 T2)
| typing_inr : forall T1 T2 e1 E,
typing E e1 T2 ->
wf_typ E T1 ->
typing E (exp_inr e1) (typ_sum T1 T2)
| typing_case : forall L T1 T2 T e1 e2 e3 E,
typing E e1 (typ_sum T1 T2) ->
(forall x : atom, x `notin` L ->
typing (x ~ bind_typ T1 ++ E) (open_ee e2 x) T) ->
(forall x : atom, x `notin` L ->
typing (x ~ bind_typ T2 ++ E) (open_ee e3 x) T) ->
typing E (exp_case e1 e2 e3) T
.
(* ********************************************************************** *)
(** * #<a name="values"></a># Values *)
Inductive value : exp -> Prop :=
| value_abs : forall T e1,
expr (exp_abs T e1) ->
value (exp_abs T e1)
| value_tabs : forall T e1,
expr (exp_tabs T e1) ->
value (exp_tabs T e1)
| value_inl : forall e1,
value e1 ->
value (exp_inl e1)
| value_inr : forall e1,
value e1 ->
value (exp_inr e1)
.
(* ********************************************************************** *)
(** * #<a name="reduction"></a># Reduction *)
Inductive red : exp -> exp -> Prop :=
| red_app_1 : forall e1 e1' e2,
expr e2 ->
red e1 e1' ->
red (exp_app e1 e2) (exp_app e1' e2)
| red_app_2 : forall e1 e2 e2',
value e1 ->
red e2 e2' ->
red (exp_app e1 e2) (exp_app e1 e2')
| red_tapp : forall e1 e1' V,
type V ->
red e1 e1' ->
red (exp_tapp e1 V) (exp_tapp e1' V)
| red_abs : forall T e1 v2,
expr (exp_abs T e1) ->
value v2 ->
red (exp_app (exp_abs T e1) v2) (open_ee e1 v2)
| red_tabs : forall T1 e1 T2,
expr (exp_tabs T1 e1) ->
type T2 ->
red (exp_tapp (exp_tabs T1 e1) T2) (open_te e1 T2)
| red_let_1 : forall e1 e1' e2,
red e1 e1' ->
body_e e2 ->
red (exp_let e1 e2) (exp_let e1' e2)
| red_let : forall v1 e2,
value v1 ->
body_e e2 ->
red (exp_let v1 e2) (open_ee e2 v1)
| red_inl_1 : forall e1 e1',
red e1 e1' ->
red (exp_inl e1) (exp_inl e1')
| red_inr_1 : forall e1 e1',
red e1 e1' ->
red (exp_inr e1) (exp_inr e1')
| red_case_1 : forall e1 e1' e2 e3,
red e1 e1' ->
body_e e2 ->
body_e e3 ->
red (exp_case e1 e2 e3) (exp_case e1' e2 e3)
| red_case_inl : forall v1 e2 e3,
value v1 ->
body_e e2 ->
body_e e3 ->
red (exp_case (exp_inl v1) e2 e3) (open_ee e2 v1)
| red_case_inr : forall v1 e2 e3,
value v1 ->
body_e e2 ->
body_e e3 ->
red (exp_case (exp_inr v1) e2 e3) (open_ee e3 v1)
.
(* ********************************************************************** *)
(** * #<a name="auto"></a># Automation *)
(** We declare most constructors as [Hint]s to be used by the [auto]
and [eauto] tactics. We exclude constructors from the subtyping
and typing relations that use cofinite quantification. It is
unlikely that [eauto] will find an instantiation for the finite
set [L], and in those cases, [eauto] can take some time to fail.
(A priori, this is not obvious. In practice, one adds as hints
all constructors and then later removes some constructors when
they cause proof search to take too long.) *)
Hint Constructors type expr wf_typ wf_env value red.
Hint Resolve sub_top sub_refl_tvar sub_arrow.
Hint Resolve sub_sum typing_inl typing_inr.
Hint Resolve typing_var typing_app typing_tapp typing_sub.
Hint Resolve typing_inl typing_inr.