You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: lib/node_modules/@stdlib/math/base/special/README.md
+1-1
Original file line number
Diff line number
Diff line change
@@ -154,7 +154,7 @@ var fcns = special;
154
154
- <spanclass="signature">[`cabs2f( z )`][@stdlib/math/base/special/cabs2f]</span><spanclass="delimiter">: </span><spanclass="description">compute the squared absolute value of a single-precision complex floating-point number.</span>
155
155
- <spanclass="signature">[`cabsf( z )`][@stdlib/math/base/special/cabsf]</span><spanclass="delimiter">: </span><spanclass="description">compute the absolute value of a single-precision complex floating-point number.</span>
156
156
- <spanclass="signature">[`cceil( z )`][@stdlib/math/base/special/cceil]</span><spanclass="delimiter">: </span><spanclass="description">round each component of a double-precision complex floating-point number toward positive infinity.</span>
157
-
- <spanclass="signature">[`cceilf( z )`][@stdlib/math/base/special/cceilf]</span><spanclass="delimiter">: </span><spanclass="description">round a single-precision complex floating-point number toward positive infinity.</span>
157
+
- <spanclass="signature">[`cceilf( z )`][@stdlib/math/base/special/cceilf]</span><spanclass="delimiter">: </span><spanclass="description">round each component of a single-precision complex floating-point number toward positive infinity.</span>
158
158
- <spanclass="signature">[`cceiln( z, n )`][@stdlib/math/base/special/cceiln]</span><spanclass="delimiter">: </span><spanclass="description">round each component of a double-precision complex floating-point number to the nearest multiple of `10^n` toward positive infinity.</span>
159
159
- <spanclass="signature">[`ceil( x )`][@stdlib/math/base/special/ceil]</span><spanclass="delimiter">: </span><spanclass="description">round a double-precision floating-point number toward positive infinity.</span>
160
160
- <spanclass="signature">[`ceil10( x )`][@stdlib/math/base/special/ceil10]</span><spanclass="delimiter">: </span><spanclass="description">round a numeric value to the nearest power of 10 toward positive infinity.</span>
Copy file name to clipboardExpand all lines: lib/node_modules/@stdlib/stats/base/README.md
+5-2
Original file line number
Diff line number
Diff line change
@@ -61,7 +61,7 @@ The namespace contains the following statistical functions:
61
61
- <spanclass="signature">[`cumaxabs( N, x, strideX, y, strideY )`][@stdlib/stats/base/cumaxabs]</span><spanclass="delimiter">: </span><spanclass="description">calculate the cumulative maximum absolute value of a strided array.</span>
62
62
- <spanclass="signature">[`cumin( N, x, strideX, y, strideY )`][@stdlib/stats/base/cumin]</span><spanclass="delimiter">: </span><spanclass="description">calculate the cumulative minimum of a strided array.</span>
63
63
- <spanclass="signature">[`cuminabs( N, x, strideX, y, strideY )`][@stdlib/stats/base/cuminabs]</span><spanclass="delimiter">: </span><spanclass="description">calculate the cumulative minimum absolute value of a strided array.</span>
64
-
- <spanclass="signature">[`dmean( N, x, stride )`][@stdlib/stats/base/dmean]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a double-precision floating-point strided array.</span>
64
+
- <spanclass="signature">[`dmean( N, x, strideX )`][@stdlib/stats/base/dmean]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a double-precision floating-point strided array.</span>
65
65
- <spanclass="signature">[`dmeanpn( N, x, strideX )`][@stdlib/stats/base/dmeanpn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a double-precision floating-point strided array using a two-pass error correction algorithm.</span>
66
66
- <spanclass="signature">[`dmeanstdev( N, correction, x, strideX, out, strideOut )`][@stdlib/stats/base/dmeanstdev]</span><spanclass="delimiter">: </span><spanclass="description">calculate the mean and standard deviation of a double-precision floating-point strided array.</span>
67
67
- <spanclass="signature">[`dmeanstdevpn( N, correction, x, strideX, out, strideOut )`][@stdlib/stats/base/dmeanstdevpn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the mean and standard deviation of a double-precision floating-point strided array using a two-pass algorithm.</span>
@@ -122,6 +122,7 @@ The namespace contains the following statistical functions:
122
122
- <spanclass="signature">[`nanvariancetk( N, correction, x, stride )`][@stdlib/stats/base/nanvariancetk]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a strided array ignoring `NaN` values and using a one-pass textbook algorithm.</span>
123
123
- <spanclass="signature">[`nanvariancewd( N, correction, x, strideX )`][@stdlib/stats/base/nanvariancewd]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a strided array ignoring `NaN` values and using Welford's algorithm.</span>
124
124
- <spanclass="signature">[`nanvarianceyc( N, correction, x, strideX )`][@stdlib/stats/base/nanvarianceyc]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a strided array ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and Cramer.</span>
- <spanclass="signature">[`rangeBy( N, x, stride, clbk[, thisArg] )`][@stdlib/stats/base/range-by]</span><spanclass="delimiter">: </span><spanclass="description">calculate the range of a strided array via a callback function.</span>
126
127
- <spanclass="signature">[`range( N, x, stride )`][@stdlib/stats/base/range]</span><spanclass="delimiter">: </span><spanclass="description">calculate the range of a strided array.</span>
127
128
- <spanclass="signature">[`sdsnanmean( N, x, stride )`][@stdlib/stats/base/sdsnanmean]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values and using extended accumulation.</span>
@@ -131,7 +132,7 @@ The namespace contains the following statistical functions:
131
132
- <spanclass="signature">[`smeankbn2( N, x, stride )`][@stdlib/stats/base/smeankbn2]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array using a second-order iterative Kahan–Babuška algorithm.</span>
132
133
- <spanclass="signature">[`smeanlipw( N, x, stride )`][@stdlib/stats/base/smeanlipw]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array using a one-pass trial mean algorithm with pairwise summation.</span>
133
134
- <spanclass="signature">[`smeanors( N, x, stride )`][@stdlib/stats/base/smeanors]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array using ordinary recursive summation.</span>
134
-
- <spanclass="signature">[`smeanpn( N, x, stride )`][@stdlib/stats/base/smeanpn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array using a two-pass error correction algorithm.</span>
135
+
- <spanclass="signature">[`smeanpn( N, x, strideX )`][@stdlib/stats/base/smeanpn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array using a two-pass error correction algorithm.</span>
135
136
- <spanclass="signature">[`snanmean( N, x, stride )`][@stdlib/stats/base/snanmean]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values.</span>
136
137
- <spanclass="signature">[`snanmskmax( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/snanmskmax]</span><spanclass="delimiter">: </span><spanclass="description">calculate the maximum value of a single-precision floating-point strided array according to a mask, ignoring `NaN` values.</span>
137
138
- <spanclass="signature">[`snanmskmin( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/snanmskmin]</span><spanclass="delimiter">: </span><spanclass="description">calculate the minimum value of a single-precision floating-point strided array according to a mask, ignoring `NaN` values.</span>
Copy file name to clipboardExpand all lines: lib/node_modules/@stdlib/stats/base/ndarray/README.md
+18
Original file line number
Diff line number
Diff line change
@@ -43,6 +43,14 @@ The namespace exposes the following APIs:
43
43
44
44
<!-- <toc pattern="*"> -->
45
45
46
+
<divclass="namespace-toc">
47
+
48
+
- <spanclass="signature">[`dmax( arrays )`][@stdlib/stats/base/ndarray/dmax]</span><spanclass="delimiter">: </span><spanclass="description">compute the maximum value of a one-dimensional double-precision floating-point ndarray.</span>
49
+
- <spanclass="signature">[`max( arrays )`][@stdlib/stats/base/ndarray/max]</span><spanclass="delimiter">: </span><spanclass="description">compute the maximum value of a one-dimensional ndarray.</span>
50
+
- <spanclass="signature">[`smax( arrays )`][@stdlib/stats/base/ndarray/smax]</span><spanclass="delimiter">: </span><spanclass="description">compute the maximum value of a one-dimensional single-precision floating-point ndarray.</span>
0 commit comments