|
| 1 | +// Copyright (c) 2020-2021 The Bitcoin Core developers |
| 2 | +// Distributed under the MIT software license, see the accompanying |
| 3 | +// file COPYING or http://www.opensource.org/licenses/mit-license.php. |
| 4 | + |
| 5 | +#include <crypto/chacha20poly1305.h> |
| 6 | +#include <span.h> |
| 7 | +#include <test/fuzz/FuzzedDataProvider.h> |
| 8 | +#include <test/fuzz/fuzz.h> |
| 9 | +#include <test/fuzz/util.h> |
| 10 | +#include <test/util/xoroshiro128plusplus.h> |
| 11 | + |
| 12 | +#include <cstddef> |
| 13 | +#include <cstdint> |
| 14 | +#include <vector> |
| 15 | + |
| 16 | +FUZZ_TARGET(crypto_aeadchacha20poly1305) |
| 17 | +{ |
| 18 | + FuzzedDataProvider provider{buffer.data(), buffer.size()}; |
| 19 | + |
| 20 | + auto key = provider.ConsumeBytes<std::byte>(32); |
| 21 | + key.resize(32); |
| 22 | + AEADChaCha20Poly1305 aead(key); |
| 23 | + |
| 24 | + // Initialize RNG deterministically, to generate contents and AAD. We assume that there are no |
| 25 | + // (potentially buggy) edge cases triggered by specific values of contents/AAD, so we can avoid |
| 26 | + // reading the actual data for those from the fuzzer input (which would need large amounts of |
| 27 | + // data). |
| 28 | + XoRoShiRo128PlusPlus rng(provider.ConsumeIntegral<uint64_t>()); |
| 29 | + |
| 30 | + LIMITED_WHILE(provider.ConsumeBool(), 10000) |
| 31 | + { |
| 32 | + // Mode: |
| 33 | + // - Bit 0: whether to use single-plain Encrypt/Decrypt; otherwise use a split at prefix. |
| 34 | + // - Bit 2: whether this ciphertext will be corrupted (making it the last sent one) |
| 35 | + // - Bit 3-4: controls the maximum aad length (max 511 bytes) |
| 36 | + // - Bit 5-7: controls the maximum content length (max 16383 bytes, for performance reasons) |
| 37 | + unsigned mode = provider.ConsumeIntegral<uint8_t>(); |
| 38 | + bool use_splits = mode & 1; |
| 39 | + bool damage = mode & 4; |
| 40 | + unsigned aad_length_bits = 3 * ((mode >> 3) & 3); |
| 41 | + unsigned aad_length = provider.ConsumeIntegralInRange<unsigned>(0, (1 << aad_length_bits) - 1); |
| 42 | + unsigned length_bits = 2 * ((mode >> 5) & 7); |
| 43 | + unsigned length = provider.ConsumeIntegralInRange<unsigned>(0, (1 << length_bits) - 1); |
| 44 | + // Generate aad and content. |
| 45 | + std::vector<std::byte> aad(aad_length); |
| 46 | + for (auto& val : aad) val = std::byte{(uint8_t)rng()}; |
| 47 | + std::vector<std::byte> plain(length); |
| 48 | + for (auto& val : plain) val = std::byte{(uint8_t)rng()}; |
| 49 | + std::vector<std::byte> cipher(length + AEADChaCha20Poly1305::EXPANSION); |
| 50 | + // Generate nonce |
| 51 | + AEADChaCha20Poly1305::Nonce96 nonce = {(uint32_t)rng(), rng()}; |
| 52 | + |
| 53 | + if (use_splits && length > 0) { |
| 54 | + size_t split_index = provider.ConsumeIntegralInRange<size_t>(1, length); |
| 55 | + aead.Encrypt(Span{plain}.first(split_index), Span{plain}.subspan(split_index), aad, nonce, cipher); |
| 56 | + } else { |
| 57 | + aead.Encrypt(plain, aad, nonce, cipher); |
| 58 | + } |
| 59 | + |
| 60 | + // Test Keystream output |
| 61 | + std::vector<std::byte> keystream(length); |
| 62 | + aead.Keystream(nonce, keystream); |
| 63 | + for (size_t i = 0; i < length; ++i) { |
| 64 | + assert((plain[i] ^ keystream[i]) == cipher[i]); |
| 65 | + } |
| 66 | + |
| 67 | + std::vector<std::byte> decrypted_contents(length); |
| 68 | + bool ok{false}; |
| 69 | + |
| 70 | + // damage the key |
| 71 | + unsigned key_position = provider.ConsumeIntegralInRange<unsigned>(0, 31); |
| 72 | + std::byte damage_val{(uint8_t)(1U << (key_position & 7))}; |
| 73 | + std::vector<std::byte> bad_key = key; |
| 74 | + bad_key[key_position] ^= damage_val; |
| 75 | + |
| 76 | + AEADChaCha20Poly1305 bad_aead(bad_key); |
| 77 | + ok = bad_aead.Decrypt(cipher, aad, nonce, decrypted_contents); |
| 78 | + assert(!ok); |
| 79 | + |
| 80 | + // Optionally damage 1 bit in either the cipher (corresponding to a change in transit) |
| 81 | + // or the aad (to make sure that decryption will fail if the AAD mismatches). |
| 82 | + if (damage) { |
| 83 | + unsigned damage_bit = provider.ConsumeIntegralInRange<unsigned>(0, (cipher.size() + aad.size()) * 8U - 1U); |
| 84 | + unsigned damage_pos = damage_bit >> 3; |
| 85 | + std::byte damage_val{(uint8_t)(1U << (damage_bit & 7))}; |
| 86 | + if (damage_pos >= cipher.size()) { |
| 87 | + aad[damage_pos - cipher.size()] ^= damage_val; |
| 88 | + } else { |
| 89 | + cipher[damage_pos] ^= damage_val; |
| 90 | + } |
| 91 | + } |
| 92 | + |
| 93 | + if (use_splits && length > 0) { |
| 94 | + size_t split_index = provider.ConsumeIntegralInRange<size_t>(1, length); |
| 95 | + ok = aead.Decrypt(cipher, aad, nonce, Span{decrypted_contents}.first(split_index), Span{decrypted_contents}.subspan(split_index)); |
| 96 | + } else { |
| 97 | + ok = aead.Decrypt(cipher, aad, nonce, decrypted_contents); |
| 98 | + } |
| 99 | + |
| 100 | + // Decryption *must* fail if the packet was damaged, and succeed if it wasn't. |
| 101 | + assert(!ok == damage); |
| 102 | + if (!ok) break; |
| 103 | + assert(decrypted_contents == plain); |
| 104 | + } |
| 105 | +} |
0 commit comments