-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
674 lines (610 loc) · 31.2 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
"""
下面代码中实现的transformer模型参考知乎文章: https://zhuanlan.zhihu.com/p/118601295
原始代码连接: https://github.com/harvardnlp/annotated-transformer/blob/master/The%20Annotated%20Transformer.ipynb
根据自己对Transformer的理解对所有代码都进行了详细注释
dataloader全部,model中的训练逻辑和utils.py中除了attention外均为自行实现
"""
import torch
from torch import nn
from dataloader import Data
from torch.utils.data import DataLoader
import torch.nn.functional as F
import numpy as np
from utils import *
import copy
import time
import math
import argparse
import warnings
from tqdm import tqdm
warnings.filterwarnings("ignore")
# torch.manual_seed(1) # 设置随机种子,使结果可复现
class TranslateEn2Zh(nn.Module):
"""
英文翻译为中文的模型, 通用的Encoder和Decoder框架
"""
def __init__(self, encoder, decoder, src_embedding, dst_embedding, generator):
"""
构造函数, 使用Encoder和Decoder通用框架实现一个Transformer模型
:param encoder: 编码器, 本例中使用Transformer的Encoder
:param decoder: 解码器, 本例中使用Transformer的Decoder
:param src_embedding: 源语言的embedding
:param dst_embedding: 目标语言的embedding
:param generator: 将Decoder输入的隐状态输入一个全连和softmax用于输出概率
"""
super(TranslateEn2Zh, self).__init__()
self.encoder = encoder
self.decoder = decoder
self.src_embedding = src_embedding
self.dst_embedding = dst_embedding
self.generator = generator
def forward(self, english_seq, chinese_seq, english_mask, chinese_mask):
"""
前向传播函数
:param english_seq: 英文序列
:param chinese_seq: 中文序列
:param english_mask: 原始序列的mask, 主要作用是mask掉padding
:param chinese_mask: 目标序列的mask,防止标签泄露,所以是一个下三角矩阵
:return:
"""
# english_seq.shape=(batch_size, seq_len)
# chinese_seq.shape=(batch_size, seq_len)
# english_mask.shape=(batch_size, 1, seq_len)
# chinese_mask.shape=(batch_size, seq_len, seq_len)
memory = self.encode(english_seq, english_mask)
# memory.shape=(batch_size, seq_len, embedding_dim)
output = self.decode(memory=memory, chinese_seq=chinese_seq, english_mask=english_mask, chinese_mask=chinese_mask)
return output
def encode(self, english_seq, english_mask):
"""
Transformer的编码器
:param english_seq: 英文序列
:param english_mask:
:return:
"""
return self.encoder(self.src_embedding(english_seq), english_mask)
def decode(self, memory, english_mask, chinese_seq ,chinese_mask):
"""
Transformer的解码器
:param memory: 应该是encoder编码后的输出
:param english_mask: 英文序列mask
:param chinese_seq: 中文序列
:param chinses_mask: 中文序列mask
:return:
"""
return self.decoder(self.dst_embedding(chinese_seq), memory, english_mask, chinese_mask)
class Generator(nn.Module):
"""
根据Decoder输出的隐藏状态输出一个词
"""
def __init__(self, decoder_dim, vocab_len):
"""
generator的构造函数
:param decoder_dim: decoder的输出的维度
:param vocab_len: 词典大小
"""
super(Generator, self).__init__()
self.proj = nn.Linear(decoder_dim, vocab_len)
def forward(self, x):
"""
前向传播函数
:param x: 输出x,这里是decoder的输出
:return:
"""
proj = self.proj(x)
# 做一次softmax, 返回的是softmax的log值
# log_softmax + NLLLoss 效果类似与 softmax + CrossEntropyLoss
return F.log_softmax(proj, dim=-1)
class TransformerEncoder(nn.Module):
"""
Transformer的Encoder部分
由6个EncoderLayer堆叠而成,而每个EncoderLayer又包含一个self-attention层和全连层
"""
def __init__(self, encode_layer, N):
"""
构造函数
:param encode_layer: encode_layer, 包含一个self-attention层和一个全连层
:param N: encoder_layer 重复的次数,transformer中为6
"""
super(TransformerEncoder, self).__init__()
# 6层encode_layer
self.layers = clones(encode_layer, 6)
# 再加一层Norm层
self.norm = nn.LayerNorm(encode_layer.size)
def forward(self, x, mask):
"""
前向函数
:param x: 待编码的数据
:param mask:
:return: Transformer的Encoder编码后的数据
"""
# x.shape=(batch_size, seq_len, embedding_dim)
# mask.shape=(batch_size, 1, seq_len)
for layer in self.layers:
x = layer(x, mask)
# x.shape=(batch_size, seq_len, embedding_dim)
# 最后加一层Normalization层
return self.norm(x)
class EncodeLayer(nn.Module):
"""
transformer中Encoder部分的encode layer,一共6个encode layer组成一个Encoder
一个encode layer包含两个子层, 每个子层包括self-attention、feed_forward等操作
"""
def __init__(self, size, self_attention, feed_forward, dropout):
"""
构造函数
:param size:
:param self_attention:
:param feed_forward:
:param dropout:
:return:
"""
super(EncodeLayer, self).__init__()
self.self_attention = self_attention
self.feed_forward = feed_forward
# 两个子层
self.sublayer = clones(SubLayer(size, dropout), 2)
self.size = size
def forward(self, x, mask):
"""
前向函数
:param x: 输入
:param mask:
:return:
"""
# x.shape=(batch_size, seq_len, embedding_dim)
# mask.shape=(batch_size, 1, seq_len)
##
# 进行self attention
# self-attention需要四个输入, 分别是Query,Key,Value和最后的Mask
# lambda 表达式中的x不是EncodeLayer的输入x,而是一个形式参数,可以是y或者其他任何名称,最终输入到lambda中的应该是SubEncodeLayer层中的self.norm(x)
x = self.sublayer[0](x, lambda x: self.self_attention(x, x, x, mask))
# 进行feed_forward
return self.sublayer[1](x, self.feed_forward)
class SubLayer(nn.Module):
"""
Encode Layer或者Decode Layer的一个子层(通用结构)
这里会构造LayerNorm 和 Dropout,但是Self-Attention 和 Dense 不在这里构造,作为参数传入
"""
def __init__(self, size, dropout):
"""
构造函数
:param size:
:param dropout:
"""
super(SubLayer, self).__init__()
self.norm = nn.LayerNorm(size)
self.dropout = nn.Dropout(dropout)
def forward(self, x, function_layer):
"""
前向函数
:param x: 传入数据
:param sublayer: 功能层,Encoder中可以为self-attention 或者 feed_forward中的一个
:return:
"""
# x.shape=(batch_size, seq_len, embedding_dim)
# x + 对应那个残差操作
# 这个dropout和原文不太一样,加在这里是为了防止过拟合吧
# layer normalization的位置也和原文不太一样,原文是放在最后,这里是放在最前面并且在最后一层再加一层layer normalization
# 为了方便SubEncodeLayer层的复用,self-attention和feed_forward作为参数<function_layer>
return x + self.dropout(function_layer(self.norm(x)))
class TransformerDecoder(nn.Module):
"""
Transformer的Decoder端,包含6个DecodeLayer, 每个DecoderLayer又包含三个子层,分别是self-attention层,attention层和feed_foraward层
"""
def __init__(self, decode_layer, N):
"""
构造函数
:param layer: DecodeLayer
:param N: Transformer中的Deocder包含6个Deocde层,所以N为6
"""
super(TransformerDecoder, self).__init__()
self.layers = clones(decode_layer, N)
self.norm = nn.LayerNorm(decode_layer.size)
def forward(self, x, memory, src_mask, dst_mask):
"""
前向传播函数
:param x: 自回归输入,一开始只有一个起始符
:param memory: 应该是Encoder编码的信息
:param src_mask: padding mask
:param dst_mask: 防止标签泄露的mask
:return:
"""
# x.shape=(batch_size, seq_len, embedding_dim)
# memory.shape=(batch_size, seq_len, embedding_dim)
# src_mask.shpae=(batch_size, 1, seq_len)
# dst_mask.shape=(batch_size, 1, seq_len)
for layer in self.layers:
x = layer(x, memory, src_mask, dst_mask)
return self.norm(x)
class DecodeLayer(nn.Module):
"""
Transformer的Decoder的一个Decode层
包含三个子层,分别对应self-attention, attention(与Encoder编码的memory做attention), feed_forward
"""
def __init__(self, size, self_attenton, attention, feed_forward, dropout):
"""
构造函数
:param size:
:param self_attenton: self attention层
:param attention: 与Encoder编码的memory做attention
:param feed_forward: 全连层
:param dropout: 防止过拟合加的dropout层
"""
super(DecodeLayer, self).__init__()
self.size = size
self.self_attention = self_attenton
self.attention = attention
self.feed_forward = feed_forward
self.sublayer = clones(SubLayer(size, dropout), 3)
def forward(self, x, memory, src_mask, dst_mask):
"""
前向传播函数
:param x: 输出
:param memory: Encoder编码的memory
:param src_mask: 源端的padding mask
:param dst_mask: 防止标签泄露的mask
:return:
"""
# x.shape=(batch_size, seq_len, embedding_dim)
# memory.shape=(batch_size, seq_len, embedding_dim)
# src_mask.shpae=(batch_size, 1, seq_len)
# dst_mask.shape=(batch_size, 1, seq_len)
m = memory
# 这里是self-attention子层,对于self-attention来说,Query, Key和Value都是等于x
# lambda表达式中的x只是一个形式参数,不是输入x
x = self.sublayer[0](x, lambda x: self.self_attention(x, x, x, dst_mask))
# 第二个子层是attention层,与memory做attention, 此时的Query为x,Key为m,Value也为m
x = self.sublayer[1](x, lambda x: self.attention(x, m, m, src_mask))
# 第三个子层是一个全连层
output = self.sublayer[2](x, self.feed_forward)
return output
class MultiHeadAttention(nn.Module):
"""
多头注意力机制的实现
"""
def __init__(self, head_num, multi_output_dim, dropout=0.1):
"""
构造函数
:param head_num: head的数目
:param d_model: Multi-Head输出的维度,就等于embedding_dim
:param dropout: dropout率
"""
super(MultiHeadAttention, self).__init__()
assert multi_output_dim % head_num == 0
self.d_k = multi_output_dim // head_num
self.head_num = head_num
# 下面的四个线性层的前三个相当于对Q,K, V分别乘以一个权重矩阵,最后一个对计算完的整体结果加一个权重矩阵
self.linears = clones(nn.Linear(multi_output_dim, multi_output_dim), 4)
self.attention = None
self.dropout = nn.Dropout(p=dropout)
def forward(self, query, key, value, mask=None):
"""
前向传播函数
:param query: Q
:param key: K
:param value: V
:param mask:
:return:
"""
# query.shape=key.shape=value.shape=(batch_size, seq_len, embedding_dim)
# mask.shape=(batch_size, 1, seq_len) in Encoder(self-attention)
# mask.shape=(batch_size, seq_len, seq_len) in Decoder(self-attention)
# 注意这里的embedding_dim = multi_output_dim,为了保证后面计算的一致性
if mask is not None:
# 扩维,原本mask.shap = (batch_size, 1, seq_len)
# 扩充之后变为(batch_size, 1, 1, seq_len)
mask = mask.unsqueeze(1)
# mask.shape=(batch_size, 1, 1, seq_len)
# 由于广播机制,所有head的mask都一样
batch_size = query.size(0)
# 首先使用线性变换,然后将multi_output_dim分配给head_num个头,每个头为 d_k = multi_output_dim / head_num
# 经过线性变换后,query,key,value等的维度不变,还是(batch_size, seq_len, embedding_dim)
# 在经过view操作后,query.shape=(batch_size, seq_len, head_num, d_k)
# 再经过transpose操作后,query.shape=(batch_size, head_num, seq_len, d_k)和attention函数要求的维度一致
query, key, value = [l(x).view(batch_size, -1, self.head_num, self.d_k).transpose(1, 2) for l, x in zip(self.linears, (query, key, value))]
# key.shape=value.shape=query.shape=(batch_size, head_num, seq_len, d_k)
x, self.attention = attention(query, key, value, mask=mask, dropout=self.dropout)
# attention 函数操作完之后x.shape=(batch_size ,head_num, seq_len, d_k)
# self.attention.shape=(batch_size, head_num ,seq_len, seq_len)
# 下面将multi head的最后一个维度d_k拼接在一起,然后再使用一个线性变换,最终embendding_dim维度不变
x = x.transpose(1, 2).contiguous().view(batch_size, -1, self.head_num * self.d_k)
# 此时的x.shape=(batch_size, seq_len, embedding_dim)
return self.linears[-1](x)
class PositionWiseFeedForward(nn.Module):
"""
全连层,有两个线性变化和之间的ReLU组成
"""
def __init__(self, embedding_dim, hidden_num, dropout=0.1):
"""
构造函数
:param embedding_dim: embedding_dim 也等于 multi_output_dim
:param hidden_num: 中间隐藏单元的个数
:param dropout: dropout
"""
super(PositionWiseFeedForward, self).__init__()
self.linear1 = nn.Linear(embedding_dim, hidden_num)
self.linear2 = nn.Linear(hidden_num, embedding_dim)
self.dropout = nn.Dropout(p=dropout)
def forward(self, x):
"""
前向传播函数
:param x: 输入
:return:
"""
return self.linear2(self.dropout(F.relu(self.linear1(x))))
class Embeddings(nn.Module):
"""
原始输出的seq是每个word在vocab中的index的序列,需要embedding序列
"""
def __init__(self, embedding_dim, vocab_len):
"""
构造函数
:param embedding_dim: embedding的维度
:param vocab_len: 词表vocab的长度
"""
super(Embeddings, self).__init__()
self.lut = nn.Embedding(vocab_len, embedding_dim)
self.embedding_dim = embedding_dim
def forward(self, x):
# 这里看懂为啥要乘以embedding_dim的平方根
return self.lut(x) * math.sqrt(self.embedding_dim)
class PositionalEncoding(nn.Module):
"""
位置编码
"""
def __init__(self, embedding_dim, dropout, max_len=5000):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
# 在log空间中计算位置编码
positionalEncode = torch.zeros(max_len, embedding_dim)
position = torch.arange(0, max_len).unsqueeze(1)
div_term = torch.exp(torch.arange(0, embedding_dim, 2) * -(math.log(10000.0) / embedding_dim))
positionalEncode[:, 0::2] = torch.sin(position * div_term)
positionalEncode[:, 1::2] = torch.cos(position * div_term)
positionalEncode = positionalEncode.unsqueeze(0)
# 创建一个buffer,将pe保存下来
self.register_buffer('pe', positionalEncode)
def forward(self, x):
"""
前向传播函数
:param x: 输入
:return:
"""
x = x + torch.tensor(self.pe[:, :x.size(1)], requires_grad=False)
return self.dropout(x)
if __name__ == '__main__':
# 设置命令行参数
parser = argparse.ArgumentParser()
parser.add_argument('mode', type=str, help="train or test")
parser.add_argument('--batch_size', type=int, default=64, help='minibatch size')
parser.add_argument('--lr', type=float, default=1e-3, help='learning rate')
parser.add_argument('--num_epochs', type=int, default=1, help='number of epochs')
parser.add_argument('--embedding_dim', type=int, default=128, help='number of word embedding')
parser.add_argument('--gpu', type=int, default=0, help='GPU No, only support 1 or 2')
parser.add_argument('--head_num', type=int, default=8, help="Multi head number")
parser.add_argument('--hidden_num', type=int, default=2048, help="hidden neural number")
parser.add_argument('--dropout', type=float, default=0.2, help="dropout rate")
parser.add_argument('--padding', type=int, default=50, help="padding length")
parser.add_argument('--model_path', type=str, \
default='../data/model/lr:0.001-batch_size:128-epochs:10-embedding_dim:256-head_num:8-bleu:0.17267120509754869-date:2020-12-06-01-02-translate_params.pkl', help="model path")
args = parser.parse_args()
# 指定device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 设置运行在哪张gpu上面
torch.cuda.set_device(args.gpu)
# 准备数据读取数据
trainData = Data(padding=args.padding, mode='train')
validData = Data(padding=args.padding, mode='valid')
testData = Data(padding=args.padding, mode='test')
# 准备dataloader, 使用tqdm封装打印进度条, 方便查看运行进度
trainDataLoader = DataLoader(trainData, batch_size=args.batch_size, shuffle=True, num_workers=32, drop_last=True)
validDataLoader = DataLoader(validData, batch_size=args.batch_size, shuffle=True, num_workers=32, drop_last=True)
testDataLoader = DataLoader(testData, batch_size=args.batch_size, shuffle=True, num_workers=32, drop_last=True)
# 对于Vocab来说,三种模式下的vocabZh和vocabEn都一样
zhVocabLen = trainData.getVocabZhLen()
enVocabLen = trainData.getVocabEnLen()
# 实例化attention
cp = copy.deepcopy
multiHeadAttention = MultiHeadAttention(head_num=args.head_num, multi_output_dim=args.embedding_dim).to(device)
feedForward = PositionWiseFeedForward(embedding_dim=args.embedding_dim, hidden_num=args.hidden_num, dropout=args.dropout).to(device)
position = PositionalEncoding(embedding_dim=args.embedding_dim, dropout=args.dropout).to(device)
# 构建Encoder
encodeLayer = EncodeLayer(args.embedding_dim, cp(multiHeadAttention), cp(feedForward), dropout=args.dropout).to(device)
transformerEncoder = TransformerEncoder(encode_layer=encodeLayer, N=6).to(device)
# 构建Decoder
decodeLayer = DecodeLayer(args.embedding_dim, cp(multiHeadAttention), cp(multiHeadAttention), cp(feedForward), args.dropout).to(device)
transformerDecoder = TransformerDecoder(decode_layer=decodeLayer, N=6).to(device)
# 构建srd_embedding
src_embedding = nn.Sequential(Embeddings(args.embedding_dim, enVocabLen), cp(position)).to(device)
dst_embedding = nn.Sequential(Embeddings(args.embedding_dim, zhVocabLen), cp(position)).to(device)
# 构建generator
generator = Generator(decoder_dim=args.embedding_dim, vocab_len=zhVocabLen).to(device)
# 构建transformer 机器翻译模型
translateEn2Zh = TranslateEn2Zh(encoder=transformerEncoder, decoder=transformerDecoder, src_embedding=src_embedding,\
dst_embedding=dst_embedding, generator=generator).to(device)
# 随机初始化
for param in translateEn2Zh.parameters():
if param.dim() > 1:
nn.init.xavier_uniform(param)
# 定义优化器,损失函数等基本组件
optimizer = torch.optim.Adam(translateEn2Zh.parameters(), lr=args.lr)
criterion = torch.nn.NLLLoss()
# 日志文件存储位置
log_save_path = '../data/log/lr:{}-batch_size:{}-epochs:{}-embedding_dim:{}-head_num:{}-date:{}-translate_params.log'.format( \
args.lr, args.batch_size, args.num_epochs, args.embedding_dim, args.head_num, time.strftime("%Y-%m-%d-%H-%M", time.localtime()))
f = open(log_save_path, 'w')
#
index2wordEn = np.load('../data/index2word_en.npy').item()
index2wordZh = np.load('../data/index2word_zh.npy').item()
if args.mode == 'train':
# 开始训练
bleu = []
for epoch in range(args.num_epochs):
# 每个epoch的loss
loss_sum = 0
batch_sum = 0
# Training
for batchIndex, (englishSeq, chineseSeq, chineseSeqY, _) in enumerate(tqdm(trainDataLoader)):
batch_sum += 1
# englishSeq.shape=(batch_size, paded_seq_len)
# chineseSeq.shape=(batch_size, paded_seq_len)
# chineseSeqY.shape=(batch_size, padded_seq_len)
englishSeq = englishSeq.to(device)
chineseSeq = chineseSeq.to(device)
chineseSeqY = chineseSeqY.to(device)
src_mask = (englishSeq != 3).unsqueeze(-2)
# src_mask.shape=(batch_size, 1, seq_len)
dst_mask = make_std_mask(chineseSeq, 3)
# dst_mask.shape=(batch_size, seq_len, seq_len)
out = translateEn2Zh.forward(english_seq=englishSeq, english_mask=src_mask, chinese_seq=chineseSeq, chinese_mask=dst_mask)
# out.shape=(batch_size, seq_len, embedding_dim)
output = translateEn2Zh.generator(out)
# output.shape=(batch_size, seq_len, zhVocabLen)
output = output.view(-1, output.size(-1))
# output.shape=(batch_size * seq_len, zhVocabLen)
chineseSeqY = chineseSeqY.view(-1)
# chineseSeqY.shape=(baych_size * seq_len, )
loss = criterion(output, chineseSeqY)
loss_sum += loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
print("epoch {}, loss {:.4f}".format(epoch + 1, loss_sum / batch_sum))
print("epoch {}, loss {:.4f}".format(epoch + 1, loss_sum / batch_sum), file=f)
# Validing
with torch.no_grad():
blue_socres = []
for valid_index, (englishSeq, chineseSeq, chineseSeqY, chineseSeqY_lens) in enumerate(tqdm(validDataLoader)):
# englishSeq.shape=(batch_size, paded_seq_len)
# chineseSeq.shape=(batch_size, paded_seq_len)
# chineseSeqY.shape=(batch_size, padded_seq_len)
englishSeq = englishSeq.to(device)
chineseSeq = chineseSeq.to(device)
chineseSeqY = chineseSeqY.to(device)
src_mask = (englishSeq != 3).unsqueeze(-2)
# src_mask.shape=(batch_size, 1, seq_len)
memory = translateEn2Zh.encode(englishSeq, src_mask)
# memory.shape=(batch_size, seq_len, embedding_dim)
translate = torch.ones(args.batch_size, 1).fill_(0).type_as(englishSeq.data)
# translate_ = chineseSeqY[:, 0]
# ys.shape=(1, 1)
for i in range(args.padding):
translate_mask = make_std_mask(translate, 3)
out = translateEn2Zh.decode(memory, src_mask, translate, translate_mask)
prob = translateEn2Zh.generator(out[:, -1])
_, next_word = torch.max(prob, dim=1)
next_word = next_word.unsqueeze(1)
translate = torch.cat([translate, next_word], dim=1)
# translate_ = chineseSeqY[:, :]
blue_socres += compute_bleu(translate, chineseSeqY, chineseSeqY_lens)
if (valid_index + 1) % 1 == 0:
reference_sentence = chineseSeqY[0].tolist()
translate_sentence = translate[0].tolist()
englishSeq_sentence = englishSeq[0].tolist()
reference_sentence_len = chineseSeqY_lens.tolist()[0]
if 1 in translate_sentence:
index = translate_sentence.index(1)
else:
index = len(translate_sentence)
print("原文: {}".format(" ".join([index2wordEn.get(x) for x in englishSeq_sentence])))
print("机翻译文: {}".format("".join([index2wordZh.get(x) for x in translate_sentence[:index]])))
print("参考译文: {}".format(
"".join([index2wordZh.get(x) for x in reference_sentence[:reference_sentence_len]])))
print("原文: {}".format(" ".join([index2wordEn.get(x) for x in englishSeq_sentence])), file=f)
print("机翻译文: {}".format("".join([index2wordZh.get(x) for x in translate_sentence[:index]])), file=f)
print("参考译文: {}".format("".join([index2wordZh.get(x) for x in reference_sentence[:reference_sentence_len]])), file=f)
#
epoch_bleu = np.sum(blue_socres) / len(blue_socres)
bleu.append(epoch_bleu)
print("epoch {}, Valid average bleu: {:.2%}".format((epoch + 1), epoch_bleu))
print("epoch {}, Valid average bleu: {:.2%}".format((epoch + 1), epoch_bleu), file=f)
# Testing
print("Start Testing...")
print("Start Testing...", file=f)
blue_socres = []
for batch_index, (englishSeq, chineseSeq, chineseSeqY, chineseSeqY_lens) in enumerate(testDataLoader):
englishSeq = englishSeq.to(device)
chineseSeq = chineseSeq.to(device)
chineseSeqY = chineseSeqY.to(device)
src_mask = (englishSeq != 3).unsqueeze(-2)
memory = translateEn2Zh.encode(englishSeq, src_mask)
translate = torch.ones(args.batch_size, 1).fill_(0).type_as(englishSeq.data)
# ys.shape=(1, 1)
for i in range(args.padding):
translate_mask = make_std_mask(translate, 3)
out = translateEn2Zh.decode(memory, src_mask, translate, translate_mask)
prob = translateEn2Zh.generator(out[:, -1])
_, next_word = torch.max(prob, dim=1)
next_word = next_word.unsqueeze(1)
translate = torch.cat([translate, next_word], dim=1)
blue_socres += compute_bleu(translate, chineseSeqY, chineseSeqY_lens)
if (batch_index + 1) % 10 == 0:
reference_sentence = chineseSeqY[0].tolist()
translate_sentence = translate[0].tolist()
englishSeq_sentence = englishSeq[0].tolist()
reference_sentence_len = chineseSeqY_lens.tolist()[0]
if 1 in translate_sentence:
index = translate_sentence.index(1)
else:
index = len(translate_sentence)
print("原文: {}".format(" ".join([index2wordEn.get(x) for x in englishSeq_sentence])))
print("机翻译文: {}".format("".join([index2wordZh.get(x) for x in translate_sentence[:index]])))
print("参考译文: {}".format("".join([index2wordZh.get(x) for x in reference_sentence[:reference_sentence_len]])))
print("原文: {}".format(" ".join([index2wordEn.get(x) for x in englishSeq_sentence])), file=f)
print("机翻译文: {}".format("".join([index2wordZh.get(x) for x in translate_sentence[:index]])), file=f)
print("参考译文: {}".format("".join([index2wordZh.get(x) for x in reference_sentence[:reference_sentence_len]])), file=f)
print('\n\n')
print('\n\n', file=f)
epoch_bleu = np.sum(blue_socres) / len(blue_socres)
print("Final test, Test average bleu: {:.2%}".format(epoch_bleu))
print("Final test, Test average bleu: {:.2%}".format(epoch_bleu), file=f)
# save model
save_path = '../data/model/lr:{}-batch_size:{}-epochs:{}-embedding_dim:{}-head_num:{}-bleu:{}-date:{}-translate_params.pkl'.format(\
args.lr, args.batch_size, args.num_epochs, args.embedding_dim, args.head_num, epoch_bleu, time.strftime("%Y-%m-%d-%H-%M", time.localtime()))
torch.save(translateEn2Zh.state_dict(), save_path)
print("Save model to {}".format(save_path))
print("Save model to {}".format(save_path), file=f)
f.close()
else:
translateEn2Zh.load_state_dict(torch.load(args.model_path))
blue_socres = []
fp = open('../data/test.zh_translate_{}.txt'.format( time.strftime("%Y-%m-%d-%H-%M", time.localtime())), 'w')
for batch_index, (englishSeq, chineseSeq, chineseSeqY, chineseSeqY_lens) in enumerate(testDataLoader):
englishSeq = englishSeq.to(device)
chineseSeq = chineseSeq.to(device)
chineseSeqY = chineseSeqY.to(device)
src_mask = (englishSeq != 3).unsqueeze(-2)
memory = translateEn2Zh.encode(englishSeq, src_mask)
translate = torch.ones(args.batch_size, 1).fill_(0).type_as(englishSeq.data)
# ys.shape=(1, 1)
for i in range(args.padding):
translate_mask = make_std_mask(translate, 3)
out = translateEn2Zh.decode(memory, src_mask, translate, translate_mask)
prob = translateEn2Zh.generator(out[:, -1])
_, next_word = torch.max(prob, dim=1)
next_word = next_word.unsqueeze(1)
translate = torch.cat([translate, next_word], dim=1)
blue_socres += compute_bleu(translate, chineseSeqY, chineseSeqY_lens)
for translate_sentence, reference_sentence, englishSeq_sentence, reference_sentence_len in zip(translate, chineseSeqY, englishSeq, chineseSeqY_lens):
reference_sentence = reference_sentence.tolist()
translate_sentence = translate_sentence.tolist()
englishSeq_sentence = englishSeq_sentence.tolist()
reference_sentence_len = reference_sentence_len.tolist()
if 1 in englishSeq_sentence:
index_eng = englishSeq_sentence.index(1)
else:
index_eng = len(englishSeq_sentence)
if 1 in translate_sentence:
index = translate_sentence.index(1)
else:
index = len(translate_sentence)
print("原文: {}".format(" ".join([index2wordEn.get(x) for x in englishSeq_sentence[:index_eng]])))
print("机翻译文: {}".format("".join([index2wordZh.get(x) for x in translate_sentence[:index]])))
print("参考译文: {}\n\n".format(
"".join([index2wordZh.get(x) for x in reference_sentence[:reference_sentence_len]])))
print("原文: {}".format(" ".join([index2wordEn.get(x) for x in englishSeq_sentence[:index_eng]])), file=fp)
print("机翻译文: {}".format("".join([index2wordZh.get(x) for x in translate_sentence[:index]])), file=fp)
print("参考译文: {}\n\n".format(
"".join([index2wordZh.get(x) for x in reference_sentence[:reference_sentence_len]])), file=fp)
fp.close()