-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfunctional_forms.py
138 lines (120 loc) · 5.51 KB
/
functional_forms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import numpy as np
from typing import Dict, Any
import warnings
class FunctionalForms:
@staticmethod
def ces(price_ratio: float, initial_value: float, elasticity: float) -> float:
"""Constant Elasticity of Substitution form."""
return initial_value * (price_ratio ** elasticity)
@staticmethod
def log_linear(price_ratio: float, initial_value: float, elasticity: float) -> float:
"""
Log-linear (Cobb-Douglas) form.
Correctly represents elasticities for all price changes.
Args:
price_ratio: Current price / Initial price
initial_value: Initial quantity
elasticity: Elasticity of response
Returns:
New quantity after price change
"""
return initial_value * (price_ratio ** elasticity)
@staticmethod
def linear(price_ratio: float, initial_value: float, elasticity: float) -> float:
"""
Linear form.
WARNING: Only accurate for small price changes (less than 10%).
For larger changes, use log_linear form instead.
Args:
price_ratio: Current price / Initial price
initial_value: Initial quantity
elasticity: Elasticity of response
Returns:
New quantity after price change
"""
warnings.warn("Linear form is only accurate for small price changes (<10%). "
"For larger changes, use log_linear form instead.",
RuntimeWarning)
return initial_value * (1 + elasticity * (price_ratio - 1))
@staticmethod
def translog(price_ratio: float, initial_value: float, params: Dict[str, float]) -> float:
"""
Translog form with quadratic terms.
WARNING: Only accurate for small price changes (less than 10%).
For larger changes, use log_linear form instead.
Args:
price_ratio: Current price / Initial price
initial_value: Initial quantity
params: Dictionary containing 'elasticity' and 'quadratic_term'
Returns:
New quantity after price change
"""
warnings.warn("Translog form is only accurate for small price changes (<10%). "
"For larger changes, use log_linear form instead.",
RuntimeWarning)
elasticity = params['elasticity']
quadratic_term = params['quadratic_term']
return initial_value * np.exp(elasticity * np.log(price_ratio) +
0.5 * quadratic_term * np.log(price_ratio)**2)
@staticmethod
def quadratic(price_ratio: float, initial_value: float, params: Dict[str, float]) -> float:
"""
Quadratic form.
WARNING: Only accurate for small price changes (less than 10%).
For larger changes, use log_linear form instead.
Args:
price_ratio: Current price / Initial price
initial_value: Initial quantity
params: Dictionary containing 'elasticity' and 'quadratic_term'
Returns:
New quantity after price change
"""
warnings.warn("Quadratic form is only accurate for small price changes (<10%). "
"For larger changes, use log_linear form instead.",
RuntimeWarning)
elasticity = params['elasticity']
quadratic_term = params['quadratic_term']
return initial_value * (1 + elasticity * (price_ratio - 1) +
0.5 * quadratic_term * (price_ratio - 1)**2)
@staticmethod
def piecewise(price_ratio: float, initial_value: float, params: Dict[str, float]) -> float:
"""
Piecewise linear form with different elasticities above/below threshold.
WARNING: Only accurate for small price changes (less than 10%).
For larger changes, use log_linear form instead.
Args:
price_ratio: Current price / Initial price
initial_value: Initial quantity
params: Dictionary containing 'elasticity_low', 'elasticity_high', and 'price_threshold'
Returns:
New quantity after price change
"""
warnings.warn("Piecewise linear form is only accurate for small price changes (<10%). "
"For larger changes, use log_linear form instead.",
RuntimeWarning)
threshold = params['price_threshold']
elasticity_low = params['elasticity_low']
elasticity_high = params['elasticity_high']
if price_ratio <= threshold:
return initial_value * (1 + elasticity_low * (price_ratio - 1))
else:
return initial_value * (1 + elasticity_low * (threshold - 1) +
elasticity_high * (price_ratio - threshold))
@classmethod
def get_function(cls, form: str) -> callable:
"""
Get the appropriate function based on the form name.
Defaults to log_linear if form not found.
"""
functions = {
'ces': cls.ces,
'log_linear': cls.log_linear,
'linear': cls.linear,
'translog': cls.translog,
'quadratic': cls.quadratic,
'piecewise': cls.piecewise
}
if form not in functions:
warnings.warn(f"Unknown functional form '{form}'. Using log_linear instead.",
RuntimeWarning)
return functions.get(form, cls.log_linear)