-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfunctions.py
198 lines (155 loc) · 6.58 KB
/
functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import matplotlib.pyplot as plt
import tensorflow as tf
from keras.layers import Input, Conv2D, MaxPooling2D, Dense, GlobalAveragePooling2D ,concatenate
from keras.models import Model
from keras import layers
from keras.layers import Flatten, Concatenate, Dropout, BatchNormalization
from keras.applications.densenet import DenseNet121
from keras.regularizers import l2
import pydicom
import cv2
import numpy as np
LABELS = [ 'Atelectasis', 'Cardiomegaly', 'Effusion', 'Infiltration', 'Mass', 'Nodule', 'Pneumonia',
'Pneumothorax', 'Consolidation', 'Edema', 'Emphysema', 'Fibrosis', 'Pleural_Thickening', 'Hernia']
# tf.compat.v1.enable_eager_execution()
IMAGE_SIZE= 224
#Load Model
tf.compat.v1.disable_eager_execution()
def chexnet(input_shape=(IMAGE_SIZE, IMAGE_SIZE, 3), num_classes=14, weights_path=None):
# tf.compat.v1.enable_eager_execution()
tf.compat.v1.disable_eager_execution()
# tf.compat.v1.enable_eager_execution()
input_layer = Input(shape=input_shape, name='input_1')
base_model = DenseNet121(weights=None, include_top=False, input_tensor=input_layer)
if weights_path is not None:
base_model.load_weights(weights_path, by_name=True)
for layer in base_model.layers:
layer.trainable = False
x = base_model.output
x = GlobalAveragePooling2D()(x)
predictions = Dense(num_classes, activation='softmax')(x) # Adjust num_classes based on your task
model = Model(inputs=base_model.input, outputs=predictions)
return model
## get image arrays from dicom file
def get_array(dicom_path):
dcm_data = pydicom.dcmread(dicom_path)
array= dcm_data.pixel_array
resized_image = cv2.resize(array, (224, 224))
# Convert grayscale to 3-channel RGB if needed
img = cv2.cvtColor(resized_image, cv2.COLOR_GRAY2RGB)
return img
def grad_cam(input_model, image, cls, layer_name):
"""GradCAM method for visualizing input saliency."""
# prediction
y_c = input_model.output[0, cls]
conv_output = input_model.get_layer(layer_name).output
print( conv_output)
# prediction= m.predict(image)
# with tf.GradientTape() as g:
grads = K.gradients(y_c, conv_output)[0]
# Normalize if necessary
# grads = normalize(grads)
grads = tf.convert_to_tensor(grads)
print(grads)
gradient_function = K.function([input_model.input], [conv_output, grads])
output, grads_val = gradient_function([image])
output, grads_val = output[0, :], grads_val[0, :, :, :]
weights = np.mean(grads_val, axis=(0, 1))
cam = np.dot(output, weights)
# Process CAM
cam = cv2.resize(cam, (224, 224), cv2.INTER_LINEAR)
cam = np.maximum(cam, 0)
cam_max = cam.max()
if cam_max != 0:
cam = cam / cam_max
return cam
def compute_gradcam(model, img, selected_labels, layer_name='bn'):
"""
Computes the GradCAM for the given image and labels.
Args:
model: The Keras model to use for computing the GradCAM.
img: The preprocessed image.
labels: The list of labels for the image.
selected_labels: The list of labels to generate GradCAMs for.
layer_name: The name of the layer to use for computing the GradCAM.
Returns:
A list of GradCAMs for the selected labels.
"""
# Preprocess the image
processed_img = np.expand_dims(img, axis=0)
# Make a prediction on the image
predictions = model.predict(processed_img)
# Create a list to store the GradCAMs
gradcams = []
# Iterate over the selected labels
for i in range(len(LABELS)):
if labels[i] in selected_labels:
# Compute the GradCAM for the current label
gradcam = grad_cam(model, processed_img, i, layer_name)
# Add the GradCAM to the list
gradcams.append(gradcam)
return gradcams
# def visualize_gradcam(img, gradcams, labels, predictions):
def visualize_gradcam(img, gradcams, predictions):
"""
Visualizes the GradCAMs for the given image and labels.
Args:
img: The preprocessed image.
gradcams: The list of GradCAMs to visualize.
labels: The list of labels for the image.
predictions: The list of predictions for the image.
Returns:
A list of GradCAMs drawn on the image.
"""
# Create a figure to display the GradCAMs
fig, axs = plt.subplots(1, len(gradcams) + 1, figsize=(15, 10))
# Plot the original image
axs[0].imshow(img, cmap='gray')
axs[0].axis('off')
axs[0].set_title("Original")
# Plot the GradCAMs
gradcam_images = []
for i, gradcam in enumerate(gradcams):
axs[i + 1].imshow(img, cmap='gray')
axs[i + 1].imshow(gradcam, cmap='jet', alpha=min(0.5, predictions[0][i]))
axs[i + 1].axis('off')
axs[i + 1].set_title(f"{LABELS[i]}: p={predictions[0][i]:.3f}")
# Convert the GradCAM to an image
gradcam_image = np.array(axs[i + 1].figure.canvas.renderer._renderer.buffer_rgba())
# Add the GradCAM image to the list
gradcam_images.append(gradcam_image)
# Close the figure
plt.close(fig)
return gradcam_images
def get_predicted_label(predictions, labels):
# Find the index of the highest probability in the predictions array
max_prob_index = predictions.argmax()
# Retrieve the corresponding label from the labels list
predicted_label = labels[max_prob_index]
return predicted_label
def compute_gc(model, img, labels, selected_labels,
layer_name='bn'):
# preprocessed_input = load_image(img, image_dir, df)
prep_img= np.resize(img, ( 1, 224, 224, 3))
# processed_img= np.expand_dims(prep_img, axis=0)
print(img.shape)
# with graph.as_default():
predictions = model.predict(prep_img)
print("Loading original image")
plt.figure(figsize=(15, 10))
plt.subplot(151)
plt.title("Original")
plt.axis('off')
plt.imshow(np.resize(img, ( 224, 224, 3)), cmap='gray')
j = 1
for i in range(len(labels)):
if labels[i] in selected_labels:
print(f"Generating gradcam for class {labels[i]}")
gradcam = grad_cam(model, prep_img, i, layer_name)
print(gradcam.shape)
plt.subplot(151 + j)
plt.title(f"{labels[i]}: p={predictions[0][i]:.3f}")
plt.axis('off')
plt.imshow(img,cmap='gray')
plt.imshow(gradcam, cmap='jet', alpha=min(0.5, predictions[0][i]))
j += 1