-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
45 lines (36 loc) · 1.93 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
from DataGenerator import DatasetGenerator, ChexDataModule, CFG
from torchvision import transforms
from model import Densenet201
import pytorch_lightning as pl
from pytorch_lightning.loggers import TensorBoardLogger
from pytorch_lightning.callbacks import ModelCheckpoint
# ## Data Directories
# data_dir= r'C:\Users\patra\Desktop\New folder\ds' ## Folder with images
# testfile= r'C:\Users\patra\Desktop\New folder\test.txt'
# trainfile= r'C:\Users\patra\Desktop\New folder\train.txt'
# valfile=r'C:\Users\patra\Desktop\New folder\val.txt'
##Data Augmentation
train_transform = transforms.Compose([
transforms.RandomRotation(20),
transforms.RandomResizedCrop(224, scale=(0.63, 1)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ])
test_transform = transforms.Compose([
# transforms.Resize(230),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ])
##Data Generators
train_data = DatasetGenerator(pathImageDirectory=CFG.data_dir, pathDatasetFile=CFG.trainfile, transform= train_transform)
test_data= DatasetGenerator(pathImageDirectory=CFG.data_dir, pathDatasetFile=CFG.testfile, transform=test_transform)
val_data= DatasetGenerator(pathImageDirectory= CFG.data_dir, pathDatasetFile=CFG.valfile, transform=test_transform)
def main():
## Lightning Data Module for Chexnet Images
data_module= ChexDataModule(dataset=[train_data, val_data, test_data], batch_size=48, num_workers=16)
logger= TensorBoardLogger("logs", name= 'chexnet', version= 1)
checkpoint_callback= ModelCheckpoint(monitor='val_auroc', mode= 'max')
trainer = pl.Trainer(accelerator="cuda", precision="16", logger=logger, callbacks=[checkpoint_callback], max_epochs=20)
dense0= Densenet201()
trainer.fit(dense0, data_module)
if __name__ == '__main__':
main()